Up: Vehicle Tracking with Applications Previous: Conclusion

References

1
S. S. Beauchemin and J. L. Barron, The Computation of Optical Flow, ACM Computing Surveys, Vol. 27, No. 3, pp433-467, September 1995.
2
M. Bertozzi and A. Broggi, GOLD: A Parallel Real-Time Stereo Vision System for Generic Obstacle and Lane Detection, IEEE Transactions on Image Processing, Accepted for publication, 1997.
3
J. M. Ferryman, A. D. Worrall, G. D. Sullivan and K. D. Baker, A Generic Deformable Model for Vehicle Recognition , Proceedings 6th British Machine Vision Conference, pp127-136, 1995.
4
M. A. Fischler and R. C. Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography, Communications ACM, 24, pp381-395, 1981.
5
A. Giachetti, M. Campani and V. Torre, The Use of Optical Flow for Autonomous Navigation, Proceedings 3rd European Conference on Computer Vision, pp 146-151, 1994.
6
C. Harris and M. Stephens, A Combined Corner and Edge Detector, Proceedings Alvey Vision Conference, University of Manchester, pp147-151, 1988.
7
K. Kanatani, Geometric Computation for Machine Vision, Oxford Engineering Science Series No. 37, Oxford Science Publications, 1993.
8
N. D. Matthews, P. E. An and C. J. Harris, Vehicle Detection and Recognition for Autonomous Intelligent Cruise Control, Technical Report, Department of Electronics and Computer Science, University of Southampton, 1995.
9
H-H. Nagel, On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results, Artificial Intelligence, 33, pp299-324, 1987.
10
W. H. Press et al, Numerical Recipes , Cambridge University Press, 1986.
11
G. D. Sullivan, Visual Interpretation of Known Objects in Constrained Scenes , Phil. Trans. R.Soc. Lon., B, 337, pp361-370, 1992.
12
G. D. Sullivan, Model-based Vision for Traffic Scenes using the Ground-plane Constraint , Real-time Computer Vision, D. Terzopoulos and C. Brown (eds), Cambridge University Press, 1994.
13
T. N. Tan, G. D. Sullivan and K. D. Baker, Efficient Gradient-Based Object Localisation and Recognition, Proc. CVPR, San Francisco, pp397-402, 1996.
14
T. Y. Tian, C. Tomasi and D. J. Heeger, Comparision of Approaches to Egomotion Computation, Proc. CVPR, San Francisco, pp315-320, 1996.
15
A. D. Worrall, G. D. Sullivan and K. D. Baker, A Simple, Intuitive Camera Calibration Tool for Natural Images , Proceedings 5th British Machine Vision Conference, pp781-790, 1994.



Up: Vehicle Tracking with Applications Previous: Conclusion

James Michael Ferryman
Fri Jul 18 17:59:39 BST 1997