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Abstract

The study of material corrosion is an important research area, with corrosion degra-
dation of metallic structures causing expenses up to 4% of the global domestic product
annually along with major safety risks worldwide. Unfortunately, large-scale and timely
scientific discovery of materials has been hindered by the lack of standardized corro-
sion experimental data in the public domain for developing machine learning models.
Obtaining such data is challenging due to the expert knowledge and time required to
conduct these scientific experiments and assess corrosion levels. We curate a novel data
set consisting of 600 images annotated with expert corrosion ratings obtained over 10
years of laboratory corrosion testing by material scientists. Based on this data set, we
find that non-experts even when rigorously trained with domain guidelines to rate cor-
rosion fail to match expert ratings. Challenges include limited data, image artifacts, and
millimeter-precision corrosion. This motivates us to explore the viability of deep learning
approaches to tackle this benchmark classification task. We study (i) convolutional neural
networks powered with rich domain-specific image augmentation techniques tuned to our
data, and (ii) a recent self-supervised representation learning approach either pretrained
on ImageNet or trained on our data. We demonstrate that pretrained ResNet-18 and HR-
Net models with tuned augmentations can reach up to 0.83 accuracy. With this corrosion
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Figure 1: Three sample images per corrosion rating class 5 - 9 from our data set.

data set, we open the door for the design of more advanced deep learning models to sup-
port this real-world task, while driving innovative new research to bridge computer vision
and material innovation. Our data and code are available at: https://arl.wpi.edu

1 Introduction
Background. Corrosion is defined as the gradual degradation of a metal over time due
to chemical interactions with its environment. Corrosion comes with significant economic
burden, costing an equivalent of approximately 4% of the gross domestic product (GDP) in
losses worldwide – around $2.5 trillion [5, 21]. It results in major safety risks worldwide and
negatively impacts the environment, societal health, national infrastructure, manufacturing,
and transportation. The study of corrosion is an active area of research in material science
focused on the design of new materials to prevent corrosion with corrosion tests conducted
by diverse industries, government agencies, and countries [1, 7, 8, 22, 30, 37, 42, 47]. How-
ever, it is challenging to assess corrosion progression precisely, quickly, and safely, which
impedes the understanding of corrosion and material discovery in general. The reasons in-
clude: costs of manufacturing processes and running tests, danger of hazardous chemicals,
expert knowledge required to identify corrosion, long periods of observation for corrosion to
progress, and inherent biases associated with human analysis and measurements [7, 8, 37].
Although AI and computer vision have increasingly become popular for automation of many
critical tasks in science and engineering, there has been limited usage in materials research,
possibly due to requiring large amounts of pedigreed, high-quality data [23].
Corrosion image data set. In this paper, we provide a unique data set for automating sci-
entific assessment of materials, aiming at end-to-end learning the corrosion ratings process
using computer vision techniques. This data set is composed of 600 images of tested material
panels and expert-confirmed annotations of corrosion assessment scores under standardized
laboratory environments and procedures [2, 14, 47]. To our knowledge, this is the first-ever
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open data set with images and expert annotations from standardized corrosion tests for the
use of discovering new materials. Examples of this data set are depicted in Figure 1. As
we see, images can contain a single or double scribe across the image, have differing back-
ground colors for the same rating, and can contain noisy areas around the actual corrosion.
Sometimes corrosion can even get too thin to be measured visually by an untrained eye.

Challenges. From the computer vision perspective, challenges on our data set include:
• The amount of training images for corrosion ratings is very limited. This leads us to

the following questions: Can deep learning based models be trained well from scratch to
achieve comparable performance to human experts? Can data augmentation help improve
the performance? Manually or automatically?

• Corrosion on the collected images shows difficult patterns, tiny mm-level scales, and simi-
lar colors and textures with non-corrosion objects such as water staining. Such appearances
are far away from natural image sets such as ImageNet [11]. This observation leads us to
the following questions: Can pretrained models on ImageNet be transferred to our task?
Which models work better, pretrained or trained from scratch?

Empirical study. We demonstrate the automation of corrosion assessment (in fact, a classi-
fication task) on our data set using convolutional neural networks (CNNs). Specifically,
• Non-expert human study: Two raters, instructed by a corrosion scientist, worked together

to identify and measure areas of corrosion with the help of computer tools. Following
the corrosion rating guidelines, they were required to specify the location of corrosion,
measure its length, and then assign a rating to each image. The whole procedure can take
up to 5 minutes per image. After several trials, the best test accuracy is only 0.38. This
clearly indicates that our corrosion rating task is non-trivial especially for non-experts.

• Learning with manual data augmentation: ResNet-18, ResNet-50, DenseNet, and HRNet
[17, 18, 44] are trained from scratch with extensive tuning with 9 different data augmen-
tation approaches, achieving 0.81, 0.77, 0.80, and 0.77 best test accuracy using 10-fold
cross-validation, respectively.

• Self-supervised learning: We investigate the potential of a recent self-supervised learning
approach, PIRL [27], which takes advantage of data augmentation automatically for rep-
resentation learning. We compare the pretrained PIRL on ImageNet and the PIRL trained
from scratch on our data, leading to 0.75 and 0.72 test accuracy, respectively.

Contributions. In summary, our key contributions in the paper are listed as follows:
• We demonstrate that deep learning has great potential in automating scientific assessment

of materials, and works significantly better than non-experts.
• We conduct comprehensive experiments on our data set, and identify key issues that mis-

lead our deep learning classifiers.
• We provide rich research opportunities with our data set in material science, machine learn-

ing, and computer vision via the first meticulously collected corrosion data set with high-
quality images and expert annotations.

2 Related Work
Deep learning & data sets in material science. While studies with traditional machine
learning approaches in the material science domain exist [12, 15, 32, 39, 41, 45, 46, 48], the
use of deep learning techniques has been limited. Over the last few years, initial work w.r.t.
the detection of material defects has emerged, such as LEDNet [25], Faster Region-based
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Figure 2: Material experimentation and corrosion rating process. Left: Application of coat-
ings to test panels. Test panels are coated with a pretreatment, primer, and topcoat and then
scribed with tungsten carbide (circled in red). Middle: Panel is placed in accelerated corro-
sion chamber to initiate corrosion. Right: Final time point. Corrosion width is measured at
12 evenly distributed locations along the scribes and assigned an appropriate rating.

CNN (Faster R-CNN) [6, 35], fully connected networks [3], and Texture CNN (T-CNN)
working on a data set of 150 raw corroded pipe images and 3 imprecise rating categories
(i.e., non-defective, medium corrosion, and aggravated corrosion) [43]. These prior works
are done with the purpose of monitoring or detecting defects on corroded pipes, bridges, or
synthetic data. None are for material discovery as our work, and thus our proposed data set
is unique due to being intentionally prepared for scientific study over a period of ten years.

Data augmentation. In this work we leverage the benefit of data augmentation techniques
to improve corrosion assessment with our relatively small data. Manual data augmentation
such as rotation and random crop is widely used in training deep models. Other advanced
techniques include, for instance, TANDA [33], AutoAugment [9], Fast AutoAugment [24],
RandAugment [10], and SelfAugment [34]. These approaches work with unlabeled data
or large-scale data sets, which cannot be applied to our case. Instead, we employ Pretext-
Invariant Representation Learning (PIRL) [27], a self-supervised approach involving auto-
matic data augmentation that can be easily fine-tuned on small data sets, and compare it with
manual data augmentation.

3 Data Set Description
In this section, we introduce our corrosion image data set, its real-world applications, and
the manufacturing and assessment processes involved in obtaining it. All experiments follow
standard material science procedures. An example process can be viewed in Figure 2.

Corrosion panel samples. In the field of coatings and corrosion research, test articles are
typically assessed using a layered stack up of materials consisting of a topcoat, primer, pre-
treatment, surface profile, and substrate layer. This can be seen in the supplementary docu-
ment. The five constituent layers of the coating stack up for each sample are reinforced by
multiple replicates of the same stack up to provide an adequate statistical sample for mate-
rial performance testing. When panels with the coatings stack up of materials are assessed,
corrosion scientists consider two main elements: the panel surface condition and the compo-
sition of the five layers in the stack up. Any commercial names of materials are omitted in
this paper and data set for proprietary reasons.

Real-world data applications. Corrosion panels such as those in our work are used through-
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Figure 3: Scribe corrosion rating scale. Top: Discrete corrosion rating assigned for each mm
measurement range, i.e. rating 10 is 0 mm, rating 0 is 16+ mm (higher ratings mean less
corrosion). Bottom: mm measurements of average scribe corrosion width for a panel.

out various industrial domains, government branches, and countries. Corrosion tests fol-
lowing these standards are conducted anywhere a paint is applied to a surface to prevent
corrosion. This includes industries from automotive, aerospace, chemical, construction,
healthcare, to mining [4, 31]; government branches such as the US Army, Navy, Air Force,
Marines, Department of Defense (DoD), Department of Energy, NASA, and even the United
States Postal Service [16, 29], and similarly in all US-allied countries. Similar tests are even
conducted for developing household items such as air conditioning units. These corrosion
tests represent the simplest form of testing criteria for industries and companies and thus are
ubiquitous in use. The application of these standardized tests are described across countless
studies in the DoD-Allied Nations Technical Corrosion Conference [13, 19, 20, 26, 38].

Experimental corrosion testing procedure. Our data set comes from standardized labora-
tory corrosion tests that are primarily used as a quality control element for production. Each
panel is assessed on daily or weekly timescales. The process of obtaining this data is ex-
tremely expensive due to the skilled labor required, time it takes to assess the panels, and the
costs to process the panels and operate the machines used to conduct corrosion testing.

The laboratory experiments that are conducted come from two possible experimental
methods. The first is ASTM B117, a static salt-fog corrosion experiment that consists of
a continuous 5% salt-fog (NaCl) atomized into the test chamber containing the panel at
35◦C. The second laboratory experiment that is conducted, cyclic corrosion, is an extension
from the static salt-fog experiment and is regarded as a more realistic analogue to outdoor
environmental conditions. Each experiment cycle consists of a period of ambient dwell,
high humidity at an increased temperature, and a high temperature, low humidity dry cycle
event. The ambient phase of the test includes 4 spray events where a solution of NaCl,
NaHCO3, and CaCl2 (an approximate to seawater) is sprayed across the surface of the panels.
Cyclic experiments are observed and rated by investigators at intervals of 10 cycles [42]. For
the purpose of this work, the two indoor tests are considered together as one data set, as
individually they do not have a significant number of representative samples.

Panel rating procedure. The assessment and ratings done by corrosion scientists are done
in accordance with standards defined in ASTM D1654 [47]. These standards define the
standard practice to visually evaluate the amount of scribe corrosion for a panel. Scribe
corrosion is referred to as corrosion creep, which is emanating out from a deliberately cut
area in a panel. Analysis is done using an optical magnifying tool to measure the amount of
corrosion emanating from the scribe at 12 equally spaced points along the scribe; 6 points
along one scribe direction and 6 points along the other (6 points are used if the panel only
has a single scribe), as seen in Figure 2. The 12 measurements are then averaged, divided by
two, and correlated to a discrete rating label between 0 and 10 as seen in Figure 3. A rating of
0 signifies a large amount of corrosion, whereas a rating of 10 signifies no corrosion, and is
generally only observed at the very start of the testing process. Due to the earliest corrosion
assessments typically having high ratings, this leads to imbalance in data collected.

Data set details. Our data set includes 600 images of corroded panels (physical size 4 inches

Citation
Citation
{Banis, Marceau, and Mohaghegh} 1999

Citation
Citation
{Panyam and Venkatraman} 2013

Citation
Citation
{Green} 2010

Citation
Citation
{NASA} 

Citation
Citation
{Elliot and Cook} 2019

Citation
Citation
{Jun, Sabau, Burns, and Stephens} 2019

Citation
Citation
{Kelly, Goff, Yang, Sprinkle, and Galyonprotect unhbox voidb@x protect penalty @M  {}Dorman} 2019

Citation
Citation
{Mattison and Kleinschmidt} 2019

Citation
Citation
{Sabau, Jun, Burns, and Stephens} 2019

Citation
Citation
{Skar and Albright} 2003

Citation
Citation
{YING-YU and QUI-DONG} 1992



6 YIN ET AL.: CORROSION IMAGE DATA SET

Figure 4: Non-expert rating procedure. Corrosion areas are identified in 12 locations on an
image, measured on the computer in a pixel width, averaged across the 12 boxes, converted
to a mm width, and then assigned the appropriate scribe corrosion rating 0-10.

x 6 inches) that underwent laboratory experiments, with resolution of 512x512 pixels. Each
panel received a ground-truth rating based on the ASTM standard assigned by a corrosion
scientist. To avoid heavy imbalance in corrosion ratings, and also in accordance with the
most domain-relevant corrosion ratings obtained, we only assess panels of ratings in the
range 5-9. We do this because any rating less than a 5 is generally considered a failed test,
often leading to the sample being removed from testing to be discarded. A rating of 10
is generally only observed at the very start of testing (prior to the initiation of corrosion).
Across each of these 5 rating classes 5-9, we provide a balanced data set of 120 images for
each rating class. Present in the data set exists a mix of both single and double scribe panels.

4 Experiments
Given the challenges in obtaining the data and ratings in the corrosion science domain, we
are motivated to develop automated techniques that can reliably classify levels of corrosion.
The first approach we take is a non-expert corrosion rating study that establishes the need for
expert knowledge in corrosion assessment. Through this study, we find that individuals who
have been trained and are supervised by expert raters are not able to rate corrosion effectively.
Therefore, we explore deep learning models (ResNet-18, ResNet-50, DenseNet, and HRNet)
[17, 18, 44] and tune these models with various image augmentation methods. After deter-
mining that tuning augmentation methods can improve performance significantly, we explore
the use of PIRL [27] to demonstrate that automatic representation learning approaches are
able to achieve similar performance to those based on heavily tuned deep models.

4.1 Non-Expert Rating Study

We first establish a baseline rating performance by conducting a non-expert corrosion rating
study that follows domain rating rules as defined in the ASTM D1654 standards. Two raters,
who have undergone several sessions of review and training by a corrosion expert, working
together, identified where corrosion was present on a set of 60 image panels (our test set)
and measured and averaged the corrosion width at 12 equally spaced locations (6 for single
scribe panels) with the help of an interactive segmentation tool, called Grabcut [36]. They
measure the width at each point in terms of a pixel length, average all widths, then convert
that averaged pixel length to a mm length by calculating the legs of a right triangle formed
by the diagonal pixel length measurement, then scaling pixel lengths to the physical panel
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size of 4 inches x 6 inches, converting from inches to mm using the conversion 1 inch = 25.4
mm, getting the diagonal mm width using the Pythagorean theorem, then dividing by two
as required by domain standards to only measure corrosion emanating out along the scribe
in one direction, and finally associating that mm length with one of the 11 (0 - 10) possible
corrosion ratings. See this process in Figure 4.

Using this method, the well-trained non-material scientists are only able to obtain a 0.38
classification accuracy. This confirms that rating corrosion is a non-trivial task requiring do-
main expertise and experience typically gained by years of working with materials. Strictly
following measurement rules from the ASTM standard, without any other in-depth knowl-
edge of corrosion, leads to the inability to make judgement decisions on identifying corrosion
for difficult panels. A corrosion scientist is more experienced and can make better decisions
on panels that are borderline between two rating classes. We also observe that in this non-
expert study there is also a 0.75 classification accuracy when considering a relaxation of ±
1 rating class, meaning there exist small discrepancies between what a non-expert and an
expert sees when reviewing panels. We can visually see some of these difficulties in Figure
1 where for each rating 5-9, a variety of panel appearances for a single rating exist, there are
difficult distinctions between close rating categories such as ratings 6 and 7, and challenging
areas of corrosion to identify due to water staining and corrosion not perforating the topcoat.
Ultimately, with this classification accuracy of 0.38 we conclude that pursuing the avenue
of deep learning with our data is a valuable avenue as it gives more potential for learning
domain specific information corrosion scientists use in determining corrosion ratings.

4.2 Convolutional Neural Networks and Data Augmentation
After determining the inability for non-experts to assess corrosion, we moved to using deep
learning classification approaches to more closely learn how an expert determines corro-
sion ratings. Not only do experts follow prescribed rules, but they better identify areas of
corrosion based on their expertise on scenarios where a panel is close between ratings.

Figure 5: Illustration of data augmentation in our ex-
periments for corrosion classification.

We use our 600 corrosion im-
ages and split our data into 10-
folds of training (0.80) and vali-
dation (0.10) data sets with a held
out test set (0.10) of 60 images
(same 60 used in the non-expert
study). We survey a variety of
image augmentation methods and
their parameters to improve test
accuracy. All augmentations ex-
perimented with are seen in Figure
5. Details on each augmentation method and the parameters surveyed can be found in the
supplementary materials and tuned parameters for each method can be found in Table 1. We
present classification results using ResNet-18, ResNet-50, DenseNet, and HRNet [17, 18, 44]
with tuned data augmentation methods in Table 1. Key tuned hyperparameters for: ResNet-
18 and ResNet-50 are a base learning rate of 1x10−3 and weight decay of 5x10−2, DenseNet
is a base learning rate of 1x10−4 and weight decay of 5x10−2, and HRNet is a base learn-
ing rate of 1x10−3 and weight decay of 1x10−4. For ResNet-18, a batch size of 64 is used
whereas for all other models a batch size of 32 is used. For all four models, a cosine learn-
ing rate scheduler with exponential warmup was used and were all trained for 2000 epochs.
Further, all images for all models are resized to 256x256 pixels prior to training. All ex-
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Augmentation Parameters ResNet-18 ResNet-50 DenseNet HRNet
None N/A 0.78 ± 0.03 0.72 ± 0.03 0.79 ± 0.01 0.76 ± 0.04
Color Jitter Prob. 25%, Brightness (1.5, 2), 0.79 ± 0.03 0.74 ± 0.03 0.76 ± 0.02 0.68 ± 0.04

Contrast (0.5, 1.5), Hue 0.5,
Saturation (0.5, 1.5)

Gaussian Blur Prob. 75%, Kernel 11, Sigma 5 0.75 ± 0.04 0.71 ± 0.05 0.74 ± 0.03 0.75 ± 0.02
Horiz. Flip Prob. 25% 0.74 ± 0.03 0.70 ± 0.03 0.78 ± 0.03 0.77 ± 0.04
Rand. Erasing Prob. 25%, Max Attempt 5, 0.78 ± 0.04 0.74 ± 0.04 0.80 ± 0.02 0.75 ± 0.02

Area Ratio (0, 0.05)
Rand. Perspective Prob. 75%, Distortion Scale 25% 0.76 ± 0.03 0.74 ± 0.04 0.74 ± 0.02 0.76 ± 0.05
Rand. Resized Crop Prob. 25%, Scale (0.3, 0.7) 0.77 ± 0.03 0.76 ± 0.04 0.77 ± 0.03 0.77 ± 0.04
Rand. Rotation Prob. 75%, Degrees (-25, 25) 0.77 ± 0.03 0.69 ± 0.03 0.74 ± 0.04 0.75 ± 0.03
Vert. Flip Prob. 50% 0.75 ± 0.03 0.72 ± 0.04 0.80 ± 0.02 0.76 ± 0.04
Rand. Crop Prob. 50%, Padding 4, 0.81 ± 0.04 0.74 ± 0.02 0.79 ± 0.02 0.77 ± 0.03

Padding Mode Constant
Combination Same settings 0.81 ± 0.04 0.77 ± 0.03 0.80 ± 0.03 0.76 ± 0.04
Pretrained + Combination Same settings 0.83 ± 0.01 0.76 ± 0.02 0.79 ± 0.04 0.83 ± 0.03

Table 1: Test accuracy comparison using 10-fold cross-validation.

periments make use of the Apex package to improve computational efficiency [28] with our
Pytorch codes running on GeForce RTX 2080 Ti GPUs.

We establish baseline performance for all four models by first using no augmentations.
ResNet-18, ResNet-50, DenseNet, and HRNet, averaged over the 10 trained models, achieved
0.78 ± 0.03, 0.72 ± 0.03, 0.79 ± 0.01, and 0.76 ± 0.04 test accuracies, respectively. Table
1 demonstrates that different augmentation methods can yield higher classification accuracy.
The best performance for ResNet-18 uses random cropping or a combination of random
cropping and color jitter and achieves 0.81 ± 0.04 test accuracy. For ResNet-50, using a
combination of color jitter, random erasing, random perspective, random resized crop, and
random crop achieves 0.77 ± 0.03 test accuracy. DenseNet uses a combination of vertical
flip and random erasing, or each one individually, and achieves 0.80 ± 0.03 or 0.02 test ac-
curacy. HRNet uses horizontal flip, random resized crop, or random crop individually and
achieves 0.77 ± 0.04 or 0.03 test accuracy. Combining these three augmentations for HRNet
decreases performance by 1% back to baseline. Combinations of augmentations were chosen
based on if individually they achieved higher than baseline no augmentation accuracy.

All rows in Table 1 are trained from scratch on our corrosion data, except the final row
where each model is first pretrained on ImageNet then finetuned on our corrosion data set
with augmentation. We see performances increase for ResNet-18 and HRNet. From this, we
conclude that using pretrained models we can boost our best test accuracy by 0.2 to 0.83.

When using data augmentation methods, the goal is to supplement our data set to in-
crease sample size and data variance. While applying any of these methods will theoretically
achieve this, certain augmentation methods are more fitting for some data sets. We observe
that color jitter can boost accuracy for ResNet models. Corrosion panels vary in background
and corrosion color and therefore color invariance should be learned. We observe that gaus-
sian blur never improves performance. We suspect blurring degrades image quality such that
distinguishing between corrosion and background is blurred. Horizontal flip only slightly
improves HRNet and vertical flip only slightly improves DenseNet. Flipping an image re-
sults in an "identical" image, allowing the model to see more examples. Random erasing
tends to consistently improve performance. Removing image patches allows models to be-
come robust to image occlusion. It thus leads to learning with information loss with overall
image structure still being preserved [49]. In general, random perspective and random rota-
tion are not helpful. All corrosion images are well centered and do not present distortions nor
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re-orientations given by these methods. Random resized crop does improve ResNet-50 and
HRNet. However, cropping and resizing effectively changes scribe ratings by expanding cor-
rosion areas. Finally, random crop is observed as one of the most consistent augmentations
that improves accuracy. This is not surprising, given random cropping allows for occluding
parts of images, makes small shifts in positions of the images, and preserves overall image
structure and relative corrosion size.

From these experiments, we see that we are able to significantly improve classification
performance over our non-expert rating study (0.38) using deep learning with tuned data
augmentation methods. We identify that a smaller model, ResNet-18, tends to work better.
We expect that this is due to fewer parameters in the model that allow better generalizability
to unseen test data and the unique augmentation methods selected for our data set.

Figure 6: Misclassified samples with ground truth (GT) and
predicted (Pred) ratings noted. Red arrows identify water stain,
blue arrows identify raised blistering under the topcoat.

In further investiga-
tion of the CNN perfor-
mance, we analyze in-
stances of misclassifica-
tion, as seen in Figure 6.
We observe a fairly un-
even pattern of corrosion
across the single scribe
along with water staining
shown in red leading to potentially varied measurements across the scribe. The blue arrows
point at raised blistering that have not yet perforated the topcoat. These areas would be iden-
tified and measured by an expert, but may not be recognized by current models. In panels
1 and 2, our model predicts a less harsh corrosion rating (Pred=8) when the ground truth
is actually a lower rating (GT=6). This means that an expert accounted for the blistering
and this resulted in a lower rating (more corrosion). In panels 3 and 4, we see more water
staining identified with red arrows, and lower predicted ratings indicate that the similar col-
ored water stain is confused with the prominent and dark corrosion. Finally, in panel 5, we
observe very thin corrosion with a small amount of water staining around the thinly corroded
area, potentially leading to the predicted lower corrosion rating (Pred=8) than ground truth
(GT=9). These observations provide us with many hints about how to improve the accuracy
of deep models, which we will explore in our future work.

4.3 Grad-CAM Visualization

Figure 7: Grad-CAM visualization for correct predic-
tions. Left to right: ResNet-18, ResNet-50, DenseNet,
HRNet. High activation in red, low activation in blue.

For each of the four models, we
select the best trained from scratch
model and visualize a coarse lo-
calization map of important re-
gions using the gradients flowing
into the final convolutional lay-
ers via Gradient-weighted Class
Activation Mapping (Grad-CAM)
[40]. Grad-CAM produces an at-

tention heatmap that can be applied to any neural network architecture. We illustrate our
results in Figure 7 for an example image from our test set; with additional examples placed
in the supplementary document. The example in Figure 7 with a ground truth rating of 5 has
all four models predict this image correctly. We observe that for DenseNet and HRNet, the
scribe area is distinctly highlighted with minimal activation of the background. This pro-
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vides good evidence that these models can learn to focus on corrosion. For ResNet-18, the
central area of the image is mainly focused on, leading us to believe that a smaller area of
the panel may only need to be observed for it to make an accurate prediction (ResNet-18 had
the highest test accuracy, 0.81). Finally, for ResNet-50, the scribe area is fully activated, but
there is a large amount of activation beyond the scribe area. In this case, ResNet-50 appears
to not be learning as well (0.77 test accuracy) as other models to focus on corrosion areas
and thus does not generalize well to unseen images.

4.4 Self-Supervised Representation Learning: PIRL
PIRL Backbone Classifier Test Acc.
Pretrained ResNet-50 MLP 0.75 ± 0.03
Pretrained ResNet-50 Linear 0.68 ± 0.02
Trained ResNet-50 Linear 0.72 ± 0.04
Trained ResNet-18 Linear 0.70 ± 0.03

Table 2: Pretrained and trained from
scratch PIRL + classification results.

Using pretext tasks, self-supervised learning
develops representations that are semantically
meaningful without training on a large data set.
In this way, learned representations are covari-
ant with the pretext tasks, which involves re-
dundant use of information. Recently, Pretext-
Invariant Representation Learning (PIRL) was
developed to learn invariant representations
with pretext tasks. Solving jigsaw puzzles as the pretext task, PIRL with ResNet-50 achieves
0.64 accuracy on ImageNet comparing to 0.76 accuracy entirely supervised with ResNet-50
[27]. Following common practice in self-supervised learning, we applied the pretrained
PIRL representation as an encoder and fine-tuned on our data to test our downstream corro-
sion classification task. Instead of a linear layer as the downstream classifier, we also tried a
simple MLP layer with one relu activation layer to add complexity for this transfer learning
process. We then trained a customized PIRL encoder on our training set entirely and tested
the learned representations to classify corrosion. In Table 2, this empirical evaluation shows
that: (i) the MLP layer rather than the linear layer improves the transfer learning performance
from ImageNet to our data, (ii) with the linear layer classifier, using the PIRL representation
trained on ImageNet (0.68) is worse than using the representation trained on our data with
ResNet-50 (0.72) or ResNet-18 (0.70) backbone, and (iii) comparing with results in Table
1, PIRL pretrained on ImageNet with ResNet-50 backbone and MLP classifier (0.75) out-
performs the baseline supervised ResNet-50 (0.72), but does not beat supervised ResNet-50
with tuned data augmentation (0.77).

5 Conclusion
In this work, we introduce a corrosion image data set with expert annotated ratings derived
from standardized experiments used for materials research. Such data comes with several
challenges, including the domain knowledge required to assess panels, the time to prepare
panels, run experiments, and analyze each panel, and the cost to operate laboratory facilities.
With our data set, we demonstrate that we can leverage deep learning techniques to automate
corrosion assessment.We demonstrate that image augmentation methods can be tuned to our
data achieving 0.83 classification accuracy in corrosion assessment.

Our longer-term goal is to build quality assessment models and integrate the assessment
model with standardized experimental procedures for speeding up experimental workflows.
Our data set will drive innovation and development of deep learning techniques such as gen-
erative models for corrosion progression prediction and new representation learning tech-
niques for small data sets – over time bridging computer vision and material innovation.
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