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Abstract

Learning modality invariant features is central to the problem of Visible-Thermal
cross-modal Person Reidentification (VT-ReID), where query and gallery images come
from different modalities. Existing works implicitly align the modalities in pixel and
feature spaces by either using adversarial learning or carefully designing feature extrac-
tion modules that heavily rely on domain knowledge. We propose a simple but effective
framework, MMD-ReID, that reduces the modality gap by an explicit discrepancy re-
duction constraint. MMD-ReID takes inspiration from Maximum Mean Discrepancy
(MMD), a widely used statistical tool for hypothesis testing that determines the dis-
tance between two distributions. MMD-ReID uses a novel margin-based formulation to
match class-conditional feature distributions of visible and thermal samples to minimize
intra-class distances while maintaining feature discriminability. MMD-ReID is a simple
framework in terms of architecture and loss formulation. We conduct extensive exper-
iments to demonstrate both qualitatively and quantitatively the effectiveness of MMD-
ReID in aligning the marginal and class conditional distributions, thus learning both
modality-independent and identity-consistent features. The proposed framework signif-
icantly outperforms the state-of-the-art methods on SYSU-MM01 and RegDB datasets.
Code will be released at https://github.com/vcl-iisc/MMD-ReID .

1 Introduction
Person re-identification (ReID) is widely studied in computer vision as a pedestrian matching
problem between query and gallery images from different cameras [45, 46, 55]. Traditional
methods focus on scenarios where single-modality cameras capture images: Visible-Visible
ReID (VV-ReID), where the focus is on matching visible images. However, in 24-hour
intelligent surveillance systems, we need to process data from infrared cameras at nighttime.
Thus, there has been a significant interest in Visible-Thermal ReID (VT-ReID) which, given
a visible image, aims to match it to the thermal image of the same person [8, 44, 48, 51].
VT-ReID is more challenging than VV-ReID as it suffers from both intra-modality variations
(caused by pose, illumination, and viewpoint changes) as well as inter-modality variations
(caused by a huge modality gap between visible and thermal images [13, 31, 44, 47]).
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The quest to bridge the cross-modality discrepancy has pushed advancements in two
significant directions: First, adversarial-learning based approaches have paved the way for
joint pixel and feature space alignment [8, 22, 44, 47]. This is typically achieved by lever-
aging generative adversarial networks to translate an image from a heterogenous modality
to the desired modality and using a mini-max setup to learn modality invariant feature rep-
resentations. However, generative methods do not guarantee identity preservation across
modality translation and often require excessive training tricks and additional computation.
Second, shared feature learning techniques currently achieve state-of-the-art results for VT-
ReID by projecting features from heterogeneous modalities into a common feature space
[7, 26, 31, 52]. However, they heavily rely on carefully designed feature selection modules
such as partition strips [26, 39, 54], semantic alignment [19], human landmarks [42] . Recent
studies [5, 27, 32] have criticized the current state-of-the-art methods’ overly complex and
rigid nature, citing the need for new algorithmic ideas that are both simple and effective.

We approach the problem of learning modality invariant representations in the VT-ReID
task from an explicit distribution discrepancy perspective. The centerpiece of such a formu-
lation is the use of a statistical hypothesis testing framework called maximum mean discrep-
ancy (MMD) [11] that measures the proximity between two distributions. MMD has been
widely studied in unsupervised domain adaptation (UDA) literature to minimize marginal
[29, 30] as well as (more recently the) class-conditional distribution discrepancy [49]. In-
spired by this, we adopt MMD in the supervised VT-ReID task to align visible and infrared
distributions for a particular identity. However, we (empirically) observed that this formu-
lation is vulnerable to overfitting and feature degradation, leading to suboptimal results. To
alleviate this problem, we introduce a novel margin-based MMD loss: Margin MMD-ID.

With the goal of providing a simple yet strong framework to achieve competitive per-
formances, we propose MMD-ReID that utilizes Margin MMD-ID as its core training ob-
jective. MMD-ReID is simple, primarily as (1) it only uses the global features and does
not rely on part-level features. (2) It is easily extendable since it’s built on the traditional
two-stream network that has enjoyed promising results in VT-ReID. Furthermore, (3) Mar-
gin MMD-ID loss is intuitive and easy to train in a deep learning setup. We demonstrate the
effectiveness of MMD-ReID through extensive experimentations on two popular benchmark
datasets: SYSU-MM01 and RegDB, outperforming the current state-of-the-art by 5.07% and
4% Rank1 accuracy, respectively. Moreover, we empirically observe that our modified loss:
Margin MMD-ID is not only complementary to the current best practices in the ReID com-
munity but can also be easily adopted in existing baselines to further boost the performance.

In summary, the main contributions of our work are:

• We propose a simple but effective framework: MMD-ReID, which to the best of our
knowledge, is the first work to explore the VT-ReID task from the perspective of ex-
plicit distribution discrepancy reduction constraint. MMD-ReID employs our novel
margin-based modification: Margin MMD-ID loss to alleviate the problem of overfit-
ting and feature degradation that occurs with standard MMD in supervised VT-ReID.

• Extensive experiments demonstrate that MMD-ReID achieves state-of-the-art results
on two benchmark datasets: SYSU-MM01 and RegDB. It is worth mentioning that we
achieve improvement in performance just by using global features.

• We empirically demonstrate that Margin MMD-ID can be used on top of existing
baselines to improve their performance further. We verify our claim by performing
experiments on three popular baselines: AGW [55], Hc-Tri [26], DGTL [27].
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2 Related works

VV-ReID: Person re-identification problem has been primarily studied in a closed-world
setting where images are acquired by single-modality cameras [33, 57, 60, 61]. Accordingly,
researchers have focussed a great deal of attention on dealing with challenges of appearance
changes pertaining to a single modality, such as variation in viewpoint [1, 21], pose [6, 37,
58], illumination [18], occlusions [17], and background clutter [38]. This is usually achieved
by augmenting standard convolutional neural networks with powerful (manually-designed)
feature selection modules such as partition-strips [26, 39], pose estimation [59] to handle
occlusions and misalignment, etc. Another line of approaches utilizes deep metric learning
[4, 9, 26, 41, 56] to design loss functions (such as triplet loss [15], quadruplet loss [4]) that
ensure robust and discriminative feature representations.

VT-ReID: Recent VT-ReID methods primarily rely on either adversarial learning-based
modality alignment or modality shared feature learning methods to alleviate cross-modality
discrepancy. Inspired by the success of generative adversarial networks, adversarial learning-
based approaches aim to perform cross-modality alignment in pixel and feature space. Dai et
al. [8] utilized adversarial training strategies to learn modality invariant feature representa-
tions. Kniaz et al.[22] proposed a novel GAN framework ThermalGAN to translate a single
visible probe image to a thermal probe set and perform conventional ReID in the thermal do-
main. Wang et al. [44] in their work, employed an end-to-end three-player mini-max setup
to jointly optimize for pixel and feature space alignment across modalities. On similar lines,
Wang et al. [47] proposed to decompose modality and appearance discrepancy and reduce
them separately using a bi-directional cycleGAN and conventional feature level constraints,
respectively.

Learning robust and discriminative shared feature representations is central to the suc-
cess of VT-ReID systems. Most recent studies approach this through a two-stream network
backbone (first proposed by Ye et al. [50, 51, 53]) that projects cross-modality embeddings
in a common feature space. Ye et al. [52] in their work handle the modality discrepancy at
both feature and classifier level by proposing an ensemble learning scheme to incorporate the
modality shareable classifier and the modality-specific classifiers. Liu et al. [25] in pursuit
of learning robust and discriminative person features, proposed a mid-level feature incorpo-
ration strategy using skip-connections. Shared features disregard modality-specific features
reducing the discriminability of feature representation. To alleviate this problem, Lu et al.
[31] proposed a novel shared-specific feature transform algorithm to utilize both modality-
specific and modality-shared information by modeling the affinities between intra-modality
and inter-modality samples. Liu et al. [26] in their work, proposed the hetero-center based
triplet loss to provide a strong baseline for VT-ReID tasks utilizing both global and local
feature extraction strategies.

MMD: In the scope of deep learning, MMD was first studied in the unsupervised domain
adaptation (UDA) literature to align source and target distributions. Most notably, Long et
al. [30] first introduced the idea of minimizing multi-kernel MMD between task-specific lay-
ers to enhance feature transferability across domains. To optimize conditional-distributions
discrepancy, Long et al. [28] adopted a pseudo label refinement strategy to generate target
domain labels and perform a joint adaptation of both marginal and conditional distributions
between domains. Owing to its intuitive and strong foundations, MMD has been adopted
by diverse emerging paradigms in deep learning such as generative adversarial networks,
variational autoencoders, transfer-learning, noise-insensitive auto-encoders [24, 36].
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3 Methodology
The rest of the paper is organised as follows: Section 3.1 briefly introduces MMD, Sec-
tion 3.2 describes using MMD for VT-ReID task and margin-based modifications. Section
3.3 describes the architecture, batch sampling strategies and overall loss formulation. Sec-
tion 4 describes in detail the datasets, experiments, results, and ablation studies. Section 5
concludes the work with future directions.

3.1 Maximum Mean Discrepancy (MMD)
The two sample test is one of the fundamental tests in statistics that tries to determine whether
the given two datasets, {Xn} ∼ P and {Ym} ∼Q are generated from the same underlying dis-
tribution or not. This task is difficult since the distribution information is generally unknown
apriori [2, 3, 10, 12]. MMD is a test statistic that measures the discrepancy of two distribu-
tions by embedding them in a Reproducing Kernel Hilbert space (RKHS) [11]. To simplify,
MMD performs the two sample test by finding the difference between the mean function val-
ues of the two samples evaluated on a smooth function, where the function class for MMD is
a unit ball in an RKHS. If the difference in mean values is large, then the samples are likely
to be drawn from different distributions. The formulation of MMD is,

MMD2(X ,Y ) =

∥∥∥∥∥ 1
N

N

∑
n=1

φ (Xn)−
1
M

M

∑
m=1

φ (Ym)

∥∥∥∥∥
2

(1)

=
1

N2

N

∑
n=1

N

∑
n′=1

φ (Xn)
>

φ (Xn′ )+
1

M2

M

∑
m=1

M

∑
m′=1

φ (Ym)
>

φ (Ym′ )−
2

NM

N

∑
n=1

M

∑
m=1

φ (Xn)
>

φ (Ym) (2)

= Ex,x′∼P
[
k
(
x,x′
)]

+Ey,y′∼Q
[
k
(
y,y′
)]
−2Ex∼P,y∼Q[k(x,y)] (3)

where φ(.) is the feature mapping function.
Kernel trick can then be applied on the inner product in Eq.(2) to get Eq.(3)

3.2 MMD in VT-ReID
Let P =

{
xi

v...x
NV
v

}
andQ=

{
xi

t ...x
NT
t

}
denote the visible and thermal images, respectively.

NV and NT denote the total number of visible and thermal images in the dataset, respectively.
To reduce the distribution discrepancy in the shared space, we use MMD distance as the
criterion to explicitly learn representations such that the MMD loss between visible and
thermal features is minimized.

LMMD(P,Q) = EP
[
k
(
xv,x′v

)]
+EQ

[
k
(
xt ,x′t

)]︸ ︷︷ ︸
same modality distribution

− 2EP,Q[k(xv,xt)]︸ ︷︷ ︸
cross modality distribution

(4)

The first two terms are the kernel similarity between the same modality samples, which
has a high value at the start of training. The last term is the similarity between cross-modality
samples, which is low initially. When MMD loss is minimized, it eventually tries to bring
the cross-modality similarity as close as possible to the same modality similarity, thereby
aligning both the distributions. MMD aims to match infinite order moments with a Gaussian
kernel [11]. Thus, reducing the MMD distance aligns the two distributions in a superior way
compared to other implicit aligning methods discussed in the introduction section (Section-
1).
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MMD-ID: The above MMD loss formulation in Eq.(4) aligns the two modalities marginally
without considering the class conditional distribution relationship between the two modal-
ities. Thus, when modalities get aligned, the learned features may not preserve the class
discriminative property. In order to align the modalities, respecting the class-wise distribu-
tion, we use a modified version of MMD, in which we precisely align the distributions on a
per-identity basis and averaging over all possible identities. The modified loss is of the form,

MMD2(Pc,Qc) = EP

[
k
(

xc
v,x

c′
v

)]
+EQ

[
k
(

xc
t ,x

c′
t

)]
−2EP,Q[k(xc

v,x
c
t )] (5)

LMMD−ID(P,Q) =
1
C

C

∑
c=1

MMD2(Pc,Qc) (6)

Pc and Qc denote visible and thermal sample distribution of a particular cth identity.

Margin MMD-ID: Although MMD-ID is intuitive, it can suffer from the problem of
overfitting, thus collapsing all the features of the same identity to a small region in feature
space, as shown in Figure 1. To mitigate this effect and optimally use the strengths of MMD-
ID, we propose a new margin-based loss as,

MMD
′2(Pc,Qc) =

{
MMD2(Pc,Qc), if MMD2(Pc,Qc)−ρ > 0
0, otherwise

(7)

LMargin−MMD−ID =
1
C

C

∑
c=1

MMD
′2(Pc,Qc) (8)

We add a margin term ρ , which can control the amount of distribution alignment, thus keep-
ing a balance between aligned and generalised model. Intuitively, we measure the averaged
MMD-ID distance over the training and restrict the reduction to a certain value, i.e. ρ .

Train-Features (Pooling Layer) Test-Features (Pooling Layer)

MMD-ID Margin MMD-ID

Train-Features (Pooling Layer) Test-Features (Pooling Layer)

Figure 1: t-SNE plot for the last epoch of the model trained with MMD-ID and Margin
MMD-ID. The intra-class compactness in train data doesn’t translate to testing data indicat-
ing feature degradation and high overfitting.

3.3 MMD-ReID Framework
We introduce our proposed framework MMD-ReID as depicted in Fig 2. Our model mainly
consists of two components: 1. Two stream backbone network to explore the shared and
specific features 2. Our proposed Margin MMD-ID loss along with Identity softmax loss
and triplet loss to get identity separable as well as discriminative features.
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Figure 2: MMD-ReID: Structure of our two stream architecture for VT-ReID. Modality
specific layers (L-0, L-1, L-2) have independent weights for each modality. Modality shared
layers (L-3, L-4, Pool, BN, FC) have shared weights for both modalities, denoted by dotted
by bi-directional arrows. Visible and Thermal features are extracted independently and ID
loss is applied. Margin MMD-ID and Hc-Tri are applied on pooled features.

Two stream network: We adopt the conventional two-stream architecture as [26] which
consists of feature extractor and feature embedding to extract modality-specific features and
shared features, respectively. We use ResNet50 [14] as the backbone with initial shallow
layers and first two res-convolution blocks as feature extractor (L-0,L-1,L-2 in Fig. 2) which
have separate weights for each modality and last two res-convolution blocks (L-3,L-4) as
feature embedding, followed by pooling and BN layers, which have shared weights for both
modalities. To get fine-grained features, we use Generalized-mean (GeM) Pooling instead
of average or max pooling [35, 55]. For details on GeM layer, refer supplementary material.

Batch sampling: We create our mini-batch by randomly sampling P×K images, where
P is the number of identity in the batch and K is the number of images per identity. We
randomly choose K visible and K thermal images, per identity to mitigate class imbalance
issues, effectively making a batch size of 2×P×K.

Overall loss: We use our proposed Margin MMD-ID loss Eq.(8) along with the stan-
dard identity softmax loss to learn discriminative features. Our loss explicitly aligns the
two modalities based on class conditional distributions, thereby reducing the intra-class dis-
crepancy. However, inter-class separation is not guaranteed, which is needed for good rep-
resentation learning in open-set problems. To tackle this, we use a variant of Triplet loss,
called Hetero-center triplet loss (Hc-Tri) [26] to maximize inter-class distances. Hc-Tri is
formulated in the same way as standard Triplet loss [16], but it takes centers of different
modalities as input rather than individual samples. More details on Hc-Tri are provided in
the supplementary material. Although Hc-Tri also reduces the intra-class distances, it is
worth mentioning that the space in which MMD and Triplet losses work is different. Triplet
loss formulation brings anchor and positive closer in euclidean space, whereas the MMD
loss statistically matches all the higher-order moments. Thus, MMD is a stronger loss in
terms of distribution alignment as compared to Hc-Tri loss. The total loss is of the form,

L = λ1Lid +λ2LMargin−MMD−ID +λ3LHc−Tri (9)
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4 Experiments and Results

4.1 Datasets and settings
SYSU-MM01: SYSU-MM01 [48] is a large-scale dataset containing images captured by
two thermal and four visible cameras. It contains 491 identities and we use 395/96 iden-
tities for training/testing, making 22,258 visible and 11,909 thermal images for training.
The test set contains 3803 thermal images for Query and 301 randomly selected visible im-
ages as Gallery. We adopt the most challenging and commonly used evaluation mode: All
search/Indoor search in Singleshot setting, where only one gallery image per identity is avail-
able. We follow the evaluation protocol as [26, 51, 55] to perform ten trials of gallery set
selection and then report the average performance.

RegDB: The dataset [34] is collected by dual-camera systems (visible and thermal) and
includes 412 identities. For each identity, ten visible and ten thermal images are captured.
We follow the evaluation protocol as [7, 51] where the dataset is randomly split into two
parts, one for training and one for testing. For testing, images from one modality are selected
as gallery and images from other modality as probe set. The process is repeated for ten trials
and averaged results are reported.

Evaluation metrics: Following standard protocol [48], Cumulative matching charac-
teristics (CMC) and mean average precision (mAP) are adopted as evaluation metrics. Query
and gallery are from different modalities. CMC (rank-k) measures whether correct identity
from cross modality is retrieved in top-k results and mAP measures retrieval performance
when the gallery set contains multiple matching images.

Implementation details: For implementation details please refer to the supplementary.

4.2 Results and Analysis
Comparison with state-of-the-art: The results on SYSU-MM01 and RegDB datasets is
shown in Table 1, 2 respectively. All metrics for other methods are taken from their paper.
In the All-search mode, our method surpasses the current state-of-the-art method: cm-SSFT
by 5.15 %, 4.96 %, and 3.48 % in rank-1, rank-10, and rank-20 metrics respectively while
achieving comparable mAP. A similar trend is observed in the Indoor search where we sig-
nificantly outperform the state-of-the-art on all metrics. We observe that we marginally lag
behind ‘Farewell to Mutual Info.’ on rank-10 and rank-20 in All-search mode, however con-
siderably surpass them in rank-1 and mAP as well as on all metrics in Indoor-search. Our
results on RegDB are better than the state-of-the-art: Hc-Tri by 4% on Rank-1 and by 5.67%
on mAP for Visible to Thermal task and the gain for Thermal to Visible task is of 4.35% in
Rank-1 and 5.84% in mAP.

Ablation study of different loss components: Table 3 shows the importance of each
loss component in training. It is evident that using only cross-entropy loss (CE), or CE with
Hc-Tri (row:1,6) loss gives sub-optimal results, and thus there is a scope for explicit modality
alignment. We observe a boost in both rank-1 and mAP after adding MMD loss with CE
(row 2) in both the datasets, which supports our claim that explicit discrepancy reduction
helps in VT-ReID. We further see that replacing MMD with MMD-ID (row 3) rather drops
the mAP and rank-1 by ∼ 2% for the SYSU-MM01 dataset, and the reason for this is the
overfitting of the model leading to feature degradation as shown in Fig.1. To regularise
this, we add a margin term in MMD-ID as per Eq.(7) and we see an increase in rank-1 and
mAP indicating a reduction in misclassifications (row 4) which is in agreement with Fig.1.
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Method All Search Indoor Search
r1 r10 r20 mAP r1 r10 r20 mAP

BDTR [51] 17.01 55.43 71.96 19.66 - - - -
SDL [20] 28.12 70.23 83.67 29.01 32.56 80.45 90.67 39.56

cmPIG [43] 38.1 80.7 89.9 36.9 43.8 86.2 94.2 52.9
Hi-CMD [7] 34.94 77.58 - 35.94 - - - -

CASE-Net [23] 42.9 85.7 94.0 41.5 44.1 87.3 93.7 53.2
AlignGAN [44] 42.4 85.0 93.7 40.7 45.9 87.6 94.4 54.3

Neural Feature Search [5] 56.91 91.34 96.52 55.45 62.79 96.53 99.07 69.79
Farewell to Mutual Info [40] 60.02 94.18 98.14 58.80 66.05 96.59 99.38 72.98

Hc-Tri [26] 61.68 93.10 97.17 57.51 63.41 91.69 95.28 68.17
cm-SSFT [31] 61.6 89.2 93.9 63.2 70.5 94.9 97.7 72.6
MACE [52] 51.64 87.25 94.44 50.11 57.35 93.02 97.47 64.79

MMD-ReID (Ours) 66.75 94.16 97.38 62.25 71.64 97.75 99.52 75.95

Table 1: Results on SYSU-MM01 dataset

Method Visible to Thermal Thermal to Visible
r1 r10 r20 mAP r1 r10 r20 mAP

BDTR [51] 33.47 58.42 67.52 31.83 32.72 57.96 68.86 31.10
SDL [20] 26.47 51.34 61.22 23.58 25.74 50.23 59.66 22.89

cmPIG [43] 48.5 - - 49.3 48.1 - - 48.9
Hi-CMD [7] 70.93 86.39 - 66.04 - - - -

AlignGAN [44] 57.9 - - 53.6 56.3 - - 53.4
Neural Feature Search [5] 80.54 91.96 95.07 72.10 77.95 90.45 93.62 69.79

Farewell to Mutual Info [40] 73.2 - - 71.6 71.8 - - 70.1
Hc-Tri [26] 91.05 97.16 98.57 83.28 89.30 96.41 98.16 81.46

cm-SSFT [31] 72.3 - - 72.9 71.0 - - 71.7
MACE [52] 72.37 88.40 93.59 69.09 72.12 88.07 93.07 68.57

MMD-ReID (Ours) 95.06 98.67 99.31 88.95 93.65 97.55 98.38 87.30

Table 2: Results on RegDB dataset

Further adding Random erasing (RE) as augmentation helps in the overall generalization of
our model giving the best accuracy in row 5. In a complementary sense, since Margin MMD-
ID cannot increase inter-class distances, we adopt Hc-Tri loss for this purpose. As discussed
in Section 3.3, although Hc-Tri loss reduces intra-class distances, MMD is a stronger loss in
terms of distribution alignment, hence using Margin MMD-ID with Hc-Tri performs better
than only Hc-Tri which can be shown from rows 6,9. Row 6-10 is similar to Row 1-5 but
with added Hc-Tri loss and we see that we get the best performance (row 10) when we have
all the four components of CE, Margin MMD-ID, Hc-Tri, and RE augmentation.

Components SYSU-MM01 RegDB
Sr.No C.E. HC-Tri MMD MMD-ID Margin MMD-ID R.E. r1 mAP r1 mAP

1 3 7 7 7 7 7 52.78 50.29 69.45 (72.94) 66.31 (69.53)
2 3 7 3 7 7 7 59.09 54.85 82.95 (84.66) 78.63 (80.17)
3 3 7 7 3 7 7 57.07 53.52 90.52 (91.02) 85.59 (86.74)
4 3 7 7 7 3 7 60.13 55.97 90.76 (91.33) 85.31 (85.51)
5 3 7 7 7 3 3 64.86 60.12 93.57 (93.95) 86.54(88.74)

6 3 3 7 7 7 7 54.75 52.14 86.18 (88.79) 80.80 (81.81)
7 3 3 3 7 7 7 59.25 55.32 89.94 (91.52) 84.70 (85.92)
8 3 3 7 3 7 7 62.15 57.58 90.85 (92.68) 86.53 (87.68)
9 3 3 7 7 3 7 63.11 58.48 92.44 (93.78) 87.76 (88.82)

10 3 3 7 7 3 3 66.75 62.25 93.65 (95.06) 87.30 (88.95)

Table 3: Ablation Study of different Components on SYSU-MM01 on RegDB datasets. For
RegDB dataset, metrics reported as : Thermal to Visible (Visible to Thermal)

Using Margin MMD-ID with existing baselines: To further evaluate the generalisabil-
ity of our Margin MMD-ID, we take three popular and open-sourced baselines: AGW ([55]),
DGTL ([27]) and HcTri [26]. The top-row for each baseline in Table-4 corresponds to the
metrics reported in their original work on the SYSU-MM01 dataset. We progressively add
MMD-ID and Margin MMD-ID to evaluate their effects on the overall performance. Two
goals of this experiment are we want the Margin MMD-ID to be easily integrated with ex-

Citation
Citation
{Ye, Wang, Lan, and Yuen} 2018{}

Citation
Citation
{Kansal, Subramanyam, Wang, and Satoh} 2020

Citation
Citation
{Wang, Yang, Cheng, Chang, Liang, Hou, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020{}

Citation
Citation
{Choi, Lee, Kim, Kim, and Kim} 2020

Citation
Citation
{Li, Luo, Weng, and Kitani} 2020

Citation
Citation
{Wang, Zhang, Cheng, Liu, Yang, and Hou} 2019{}

Citation
Citation
{Chen, Wan, Li, Jing, and Sun} 2021

Citation
Citation
{Tian, Zhang, Lin, Qu, Xie, and Ma} 2021

Citation
Citation
{Liu, Tan, and Zhou} 2020{}

Citation
Citation
{Lu, Wu, Liu, Zhang, Li, Chu, and Yu} 2020

Citation
Citation
{Ye, Lan, Leng, and Shen} 2020{}

Citation
Citation
{Ye, Wang, Lan, and Yuen} 2018{}

Citation
Citation
{Kansal, Subramanyam, Wang, and Satoh} 2020

Citation
Citation
{Wang, Yang, Cheng, Chang, Liang, Hou, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020{}

Citation
Citation
{Choi, Lee, Kim, Kim, and Kim} 2020

Citation
Citation
{Wang, Zhang, Cheng, Liu, Yang, and Hou} 2019{}

Citation
Citation
{Chen, Wan, Li, Jing, and Sun} 2021

Citation
Citation
{Tian, Zhang, Lin, Qu, Xie, and Ma} 2021

Citation
Citation
{Liu, Tan, and Zhou} 2020{}

Citation
Citation
{Lu, Wu, Liu, Zhang, Li, Chu, and Yu} 2020

Citation
Citation
{Ye, Lan, Leng, and Shen} 2020{}

Citation
Citation
{Ye, Shen, Lin, Xiang, Shao, and Hoi} 2021

Citation
Citation
{Liu, Chai, Tan, Li, and Zhou} 2021

Citation
Citation
{Liu, Tan, and Zhou} 2020{}



JAMBIGI, RAWAL, CHAKRABORTY: MMD-REID 9

isting baselines without many changes and to get an overall improvement by adding Margin
MMD-ID loss in training. It is worth noting that adding Margin MMD-ID loss is not only
compatible with the three baselines, but we also get a considerable improvement over base-
line (top-row) as well as standard conditional MMD-ID (middle-row). For further details
regarding each baseline experiment, please refer to the supplementary material.

Method SYSU-MM01
r1 r10 r20 mAP

AGW 47.50 (54.17) 84.39 (91.14) 92.14 (95.98) 47.65 (62.97)
AGW + MMD-ID 53.10 (58.05) 89.97 (96.03) 95.83 (99.32) 51.12 (66.41)

AGW + Margin MMD-ID 54.35 (59.17) 90.87 (96.09) 96.09 (99.27) 51.91 (66.92)

DGTL 57.34 (63.11) - - 55.13 (69.20)
DGTL + MMD-ID 58.77 (62.75) 90.94 (94.96) 96.01 (98.73) 55.59 (68.99)

DGTL + Margin MMD-ID 59.63 (65.13) 92.10 (96.17) 96.84 (99.15) 56.50 (71.26)

HcTri 61.68 (63.41) 93.10 (91.69) 97.17 (95.28) 57.51 (68.17)
HcTri + MMD-ID 63.50 (67.18) 92.11 (93.32) 96.47 (97.14) 59.69 (71.81)

HcTri + Margin MMD-ID 64.35 (68.49) 93.02 (93.55) 96.96 (97.33) 60.11 (72.73)

Table 4: Incorporating Margin MMD-ID on existing baselines (AGW [55], DGTL [27],
HcTri [26]) for SYSU-MM01 dataset. For each setting metrics are reported as: All-Search
(Indoor-Search)

Qualitative evaluation: To visualize the inter-class separation and intra-class compact-
ness across the modalities (shown in Fig.3), we define a thermal and visible feature repre-
sentative for each identity by calculating the centroid of image features belonging to that
identity and modality. Thus, we have a visible and thermal feature vector for each identity.
Ideally, discriminative yet modality-invariant features should give high intra-class and low
inter-class similarity values. We calculate the intra-class similarity by finding the cosine dis-
tance between each identity’s visible and thermal centroid features and calculate the mean
and standard deviation, on which we fit a Gaussian distribution (Orange curve in Fig.3).
Similarly, we calculate the inter-class similarity by finding the cosine distances between the
visible and thermal centroid features of different identities and get the mean and standard de-
viation and fit a Gaussian distribution (Blue curve). Fig.3 shows that the intra-class similarity
between visible and thermal pairs has increased, indicating the feature vectors of different
modalities for same identity are more closer when we use Margin MMD-ID loss. As a result,
the separation between the inter and intra class similarities has increased, which is needed
to avoid misclassifications. To avoid outliers, we use centroids for each identity instead of
individual samples. We choose this strategy of using all identities (then fitting a Gaussian
over mean and standard deviation), instead of selecting few identities, so as to holistically
visualise the inter-class and intra-class similarities.

Figure 3: Plot for Gaussian fitted distributions over given mean(m) and std deviation(s) for
Intra and Inter class similarities on Test identities.
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Figure 5: Sensitivity analysis for Margin on
SYSU-MM01

Ablation study for Margin: We find the optimal margin value by following the similar
strategy as employed by conventional methods [47], [8], [27] i.e., using validation data to
tune the hyperparameters. Specifically, since ‘ρ’ is a hyper-parameter, we fine-tune it sep-
arately on both datasets. We perform a sensitivity analysis for the margin values (Fig. 4 for
RegDB and Fig. 5 SYSU-MM01), which conveys that the performance is stable across a
broad range of margins (ρ), around the optimal. Consequently, we choose ρ as 1.4 for both
SYSU-MM01 and RegDB as it’s the best performing margin for both datasets. It is worth
noting that the stable nature of Margin MMD-ID for our configuration allowed us to keep
same margin across both datasets.

Computational cost analysis: A detailed overview about the computations involved
with Margin MMD-ID loss is given in the Supplementary (Section 3.5) We show that, com-
putation wise, our loss is comparable to standard Triplet loss. We also do a training time
analysis and report the hours needed to train the model for 60 epochs for different setups
which confirms that the training time with MMD-ReID (∼ 6 hrs) is almost same as the C.E.
and C.E. + HC-Tri setup, thus making our method easily trainable.

5 Conclusion
Although the last few years have witnessed significant progress in the VT-ReID task, the
current state-of-the-art methods aim to reduce the cross-modality discrepancy in an implicit
fashion by aligning pixel and feature space representations using adversarial learning strate-
gies or designing domain-knowledge reliant feature extraction modules. This paper provides
a simple but effective framework for performing VT-ReID called MMD-ReID based on a
margin-modification of the standard MMD. We empirically observed that using standard
MMD to align identity-conditioned visible and thermal distributions in supervised VT-ReID
task leads to overfitting and devise a simple margin-modification, Margin MMD-ID, to alle-
viate it. Extensive experimentations demonstrate the superiority of our proposed framework
as well as validate the effectiveness of each component in it. We also evaluate the effect of
incorporating Margin MMD-ID in existing baselines and observe that it leads to significant
gains in performance. We thus urge the VT-ReID community to explore more simpler and
stronger ways to solve this problem of VT-ReID.
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