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Abstract

This paper addresses the problem of 3D human body shape and pose estimation from
RGB images. Some recent approaches to this task predict probability distributions over
human body model parameters conditioned on the input images. This is motivated by the
ill-posed nature of the problem wherein multiple 3D reconstructions may match the im-
age evidence, particularly when some parts of the body are locally occluded. However,
body shape parameters in widely-used body models (e.g. SMPL) control global deforma-
tions over the whole body surface. Distributions over these global shape parameters are
unable to meaningfully capture uncertainty in shape estimates associated with locally-
occluded body parts. In contrast, we present a method that (i) predicts distributions over
local body shape in the form of semantic body measurements and (ii) uses a linear map-
ping to transform a local distribution over body measurements to a global distribution
over SMPL shape parameters. We show that our method outperforms the current state-
of-the-art in terms of identity-dependent body shape estimation accuracy on the SSP-3D
dataset, and a private dataset of tape-measured humans, by probabilistically-combining
local body measurement distributions predicted from multiple images of a subject.

1 Introduction
3D human shape and pose estimation from RGB images is a challenging computer vision
problem, with direct applications in virtual retail, virtual reality and computer animation.
Several deep-learning-based approaches to this task yield impressive human pose estimates
[6, 9, 10, 15, 20, 21, 25, 45]. However, body shape estimates tend to be inaccurate or
inconsistent for subjects in-the-wild. Recently, [35, 36] attempt to predict accurate and con-
sistent body shapes from multiple images of a subject, without assuming a fixed body pose or
background and lighting conditions. This involves (i) predicting independent Gaussian dis-
tributions (i.e. with diagonal covariance matrices) over SMPL [24] shape parameter vectors
conditioned on the input images and (ii) probabilistically combining the shape distributions
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Figure 1: Our three-stage approach for body measurement and pose estimation from a set of
images. Each image is converted into an edge and joint heatmap proxy representation, which
is passed through a distribution prediction network that yields distributions over body mea-
surements and pose conditioned on the input images. Individual measurement distributions
are probabilistically combined into a final measurement estimate, which can be mapped to
SMPL shape coefficients using the proposed measurements-to-β s linear regressor.

predicted from each image, to yield a final consistent shape estimate. However, indepen-
dent Gaussian distributions over SMPL shape parameters are unable to quantify uncertainty
in local body parts, since SMPL shape parameters (i.e. coefficients of a PCA shape space)
control shape deformation over the global body surface. Given multiple images of a subject,
meaningful probabilistic shape combination benefits from local shape uncertainty estima-
tion, where part-specific uncertainty arises from variation in camera viewpoints and body
poses within the images, as well as occlusion (see Figures 3 and 4).

To this end, we extend [36] by predicting distributions over local semantic body shape
measurements (e.g. chest width, arm length, calf circumference, etc), conditioned on an
input image. This necessitates learning a mapping from semantic body measurements to
SMPL shape coefficients (β s), which enables local, human-interpretable control of SMPL
body shapes. Independent Gaussian distributions defined over measurements translate to
localised uncertainty over SMPL T-pose vertices (as shown in Figure 2), in contrast with
independent Gaussian distributions over SMPL β s. Furthermore, we define the mapping
from measurements to SMPL β s to be a linear regression. Thus, a Gaussian distribution
over measurements can be analytically transformed into a distribution over SMPL β s, and
subsequently 3D vertex locations, using simple linear transformations (see Equation 3).

Having learned a linear mapping from measurements to SMPL β s, our pipeline for 3D
multi-image body shape and pose estimation consists of 3 stages (see Figure 1). First, we
compute proxy representations using an off-the-shelf 2D keypoint detector [12, 42] and
Canny edge detection [5]. This decreases the domain gap between synthetic training data
and real test data [35]. Second, a deep neural network predicts means and variances of Gaus-
sian distributions over SMPL pose parameters and body measurements, conditioned on the
input proxy representations. Third, body measurements from each image are probabilisti-
cally combined [36] to give a final measurements estimate, which is converted into a full
body shape estimate using our measurements-to-β s regressor and the SMPL function [24].
Probabilistic combination intuitively amounts to uncertainty-weighted averaging (Equation
5) - since our measurement distributions are able to better capture local shape uncertainty
than independent Gaussians over SMPL β s [36], we obtain improved body shape estimation
accuracy. This is quantitatively corroborated by shape metrics on the SSP-3D dataset [34],
as well two private datasets of tape-measured humans, in an A-pose and in varying poses.
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Figure 2: Left: Effect of various input measurement offsets applied to 3 different base
body shapes. Measurement offsets are mapped to SMPL β offsets using the proposed
measurements-to-β s linear regressor. Right: Transformation of Gaussian distributions over
various measurement offsets to Gaussians over 3D vertex locations. Visualisation of 3D ver-
tex variances along the width (x), height (y) and depth (z) axes aligned with the front-facing
human body. Note that semantic measurement offsets result in local shape deformations, and
distributions over these offsets result in localised vertex variance, representing uncertainty in
each vertex’s 3D location in the T-pose.

2 Related Work
This section reviews recent approaches to 3D human shape and pose estimation from images.

Monocular shape and pose estimators may be classified as optimisation-based or learning-
based. Optimisation-based approaches fit a parametric 3D body model [14, 24, 27, 29] to
2D observations, such as 2D keypoints [4, 22, 29], silhouettes [22] or part segmentations
[43] by minimising a suitable error function. They do not require expensive 3D-labelled
training, but are sensitive to poor initialisations and inaccurate 2D observations. Learning-
based approaches can be further split into model-free or model-based. Model-free methods
train deep networks to directly predict human body meshes [6, 21, 25, 44], voxel occupancies
[40] or implicit surface representations [32, 33] given an input image. Model-based methods
[3, 9, 10, 15, 20, 26, 28, 38, 45] regress 3D body model parameters [24, 27, 29], which
give a low-dimensional representation of a 3D human body. Learning-based methods yield
impressive 3D pose estimates in-the-wild, but shape predictions are often inaccurate, due to
the lack of shape diversity in training datasets. Some recent works improve shape estimates
using synthetic training data [34, 35, 36, 37], which we adopt in our method.

Multi-image shape and pose estimators leverage the extra shape information present in
videos [1, 2, 16, 19, 30, 39], as well as multi-view images [23, 37] of a subject in a fixed
pose captured from multiple camera angles. In contrast, [36] propose to estimate body shape
from a set of unconstrained images of a subject, by probabilistically-combining distributions
over SMPL [24] shape parameters. We extend this work by predicting distributions over local
body measurements instead of global shape parameters, and demonstrate that this improves
shape estimation accuracy from sets of unconstrained images.
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Figure 3: Comparing independent Gaussian measurement distributions and SMPL β distri-
butions on images from SSP-3D [34]. Measurement distributions predictions (left) exhibit
meaningful local shape uncertainty arising from varying camera angles, challenging poses
and self-occlusions. For example, comparing rows 1 vs 2 shows that front/back-facing im-
ages result in larger predicted uncertainty (i.e. variance) for depth measurements (columns 4,
7, 8), while side-facing images result in greater uncertainty for width measurements (columns
3, 5, 6). This is reasonable as body depth is ambiguous from a front-on viewpoint while
body width is ambiguous from the side. Moreover, in row 3 the subject’s hips are obscured
by their pose but the upper torso is visible, while the opposite is true in row 4 where hair oc-
cludes the torso. Accordingly, row 3 shows larger hip width uncertainty while row 4 shows
larger torso width uncertainty (columns 3 and 6). In contrast, independent Gaussian SMPL
β distributions (right), as proposed by [36], cannot model local shape uncertainty arising
from ambiguous inputs, since β s control global deformations over the whole body surface.
Global shape uncertainty is less useful for downstream probabilistic combination as it does
not specify which local body parts are uncertain.
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3 Method
This section provides a brief overview of SMPL [24], introduces our measurements-to-β s
linear regressor and presents our three-stage pipeline for probabilistic human pose and body
measurement estimation from multiple images of a subject.
SMPL [24] is a parametric 3D human body model. It provides a differentiable function that
maps pose parameters θθθ , shape parameters βββ and global body rotation γγγ to a 3D vertex mesh
VVV ∈ R6890×3. θθθ represents 3D joint rotations, relative to each joint’s parent in the kinematic
tree, in axis-angle form (i.e. θθθ ∈ R69 for 23 SMPL joints). Similarly, γγγ ∈ R3 represents
root joint rotation (i.e. global body orientation) in axis-angle form. The shape parameter
vector βββ ∈R|βββ | consists of coefficients quantifying the contribution of PCA shape-space ba-
sis vectors, {SSSi}|β

ββ |
i=1 where SSSi ∈ R6890×3, to the identity-dependent body shape. Specifically,

shape-space basis vectors represent deformations from a template mesh TTT ∈ R6890×3 over
the full body surface. The identity-dependent (i.e. T-pose) 3D vertex mesh is then given by

ṼVV =
|βββ |

∑
i=1

βiSSSi +TTT = vec−1(Sβββ + ttt) (1)

where ttt = vec(TTT ) ∈ R20670 and S = [vec(SSS1), ...,vec(SSS|βββ |)] ∈ R20670×|βββ | represent shape-
space bases and template vertices flattened with the vec() operation. vec−1() denotes the
inverse, converting a vector back into a matrix containing 3D vertices.
Measurements-to-β s Linear Regressor. We learn a simple linear regressor from 23 body
measurements to SMPL shape coefficients. Please refer to the supplementary material for
a list of measurements used and details regarding the definition of measurements over a
SMPL T-pose body, which is abstracted here as an operation mmm = measure(βββ ) that outputs
body measurements mmm ∈R23 given shape coefficients βββ ∈R|βββ |. We aim to obtain a mapping
from measurement offsets ∆∆∆mmm to shape coefficient offsets ∆∆∆βββ , such that

∆∆∆βββ
T = ∆∆∆mmmTWWW (2)

where WWW ∈ R23×|βββ | is the weight matrix of the linear regressor. Then, each specific mea-
surement of a given base body shape βββ (with measurements mmm) can be offset by (i) setting
the corresponding element of ∆∆∆mmm to the desired value, (ii) obtaining ∆∆∆βββ using Equation 2,
and (iii) adding the shape offset to the base shape to yield a new body βββ +∆∆∆βββ with mea-
surements mmm+∆∆∆mmm. Several measurement offsets on varying base body shapes are visualised
in Figure 2 (left). Note that the mean SMPL body is given by β̄ββ = 000 with measurements
m̄mm = measure(β̄ββ ). Thus, if the base body shape is assumed to be the mean SMPL body
β̄ββ = 000, coefficient offsets ∆∆∆βββ are equivalent to the new shape coefficients themselves.

To learn the weight matrix WWW , we first randomly sample a range of SMPL shape co-
efficients and stack them into a matrix BBB ∈ RL×|βββ |, with L = 106 samples. Corresponding
measurements are obtained as MMM = measure(BBB) ∈ RL×23. SMPL mean shape and measure-
ments are subtracted to give ∆∆∆BBB=BBB− β̄ββ and ∆∆∆MMM =MMM−m̄mm. Then, WWW , such that ∆∆∆BBB=∆∆∆MMMWWW ,
is estimated in a least squares sense using the pseudo-inverse WWW = (∆∆∆MMMT

∆∆∆MMM)−1∆∆∆MMMT
∆∆∆BBB.

An independent Gaussian distribution over measurement offsets, N (µµµ∆m,diag(σσσ222
∆m)),

can be transformed to a Gaussian distribution over shape coefficients, N (µµµβ ,ΣΣΣβ ), and then
over T-pose vertices N (µµµṼ ,ΣΣΣṼ ) using linear transformations of Gaussians (note that the
SMPL mean shape β̄ββ = 000 is assumed as the base body shape):

µµµβ =WWW T
µµµ∆m, ΣΣΣβ =WWW T diag(σσσ222

∆m)WWW , µµµṼ = Sµµµβ + ttt, ΣΣΣṼ = SΣΣΣβST (3)
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which follows from Equations 1 and 2. The diagonal terms of the covariance matrix ΣΣΣṼ
quantify the variance (i.e. uncertainty) in the 3D locations of T-pose vertices in the x, y and
z directions (i.e. width, height and depth axis). Figure 2 (right) visualises these directional
variances given different input measurement offset distributions.
Proxy representation computation. Given N RGB images {IIIn}N

n=1 of a subject, we first
compute edge-images and 2D joint heatmaps (see Figure 1), using Canny edge detection [5]
and Detectron2 [42]. The edge-image and joint heatmaps of IIIn ∈ RH×W×3 are stacked to
form a proxy representation XXXn ∈ RH×W×(J+1) (for J joints). We use this proxy representa-
tion as our input, instead of the RGB image, to decrease the domain gap between synthetic
training images [34, 35, 36] and real test images.
Body measurements and pose distribution prediction. Next, we follow [36] and pass each
XXXn into a distribution prediction neural network (as shown in Figure 1). However, instead
of predicting a distribution over SMPL shape coefficients, our network outputs the means
and variances of independent Gaussian distributions over measurement offsets ∆∆∆mmm (from
the mean SMPL body measurements m̄mm), as well as pose parameters θθθ , conditioned on the
inputs:

p(θθθ n|XXXn) =N (µµµθ (XXXn),ΣΣΣθ (XXXn)), p(∆∆∆mmm|XXXn) =N (µµµ∆m(XXXn),ΣΣΣ∆m(XXXn)) (4)

where ΣΣΣθ (XXXn) = diag(σσσ222
θ
(XXXn)) and ΣΣΣ∆m(XXXn) = diag(σσσ222

∆m(XXXn)). Specifically, σσσ222
θ
(XXXn) and

σσσ222
∆m(XXXn) estimate the heteroscedastic aleatoric uncertainty [8, 17] in pose and measurement

predictions, arising from ambiguities in the inputs due to varying camera views and poses
(resulting in self-occlusion), or occluding objects. Furthermore, our network also outputs
per-image deterministic estimates of weak-perspective camera parameters {cccn}N

n=1, repre-
senting scale and xy translation, and global body rotations {γγγn}N

n=1.
As an aside, our measurements-to-β s regressor, in theory, can be subsumed into the

SMPL β distribution network of [36]. However, in practice, independent Gaussian distribu-
tions (with diagonal covariances) over SMPL β s cannot model local shape uncertainty. We
would need to predict Gaussian distributions with full |βββ |×|βββ | positive semi-definite covari-
ance matrices (see Equation 3). This is difficult compared to (i) learning the measurements-
to-β s regressor separately, and (ii) predicting per-measurement variances σσσ222

∆m(XXXn) ∈ R23.
Multi-image measurement combination. Finally, we implement a similar probabilistic
combination operation to [36], that combines the shape distributions from the individual
images into a final, consistent body shape. However, instead of combining predicted distri-
butions over SMPL shape coefficients, our combination is done in the body measurement
space using the predicted measurement distributions:

p(∆∆∆mmm|{XXXn}N
n=1) ∝

N

∏
n=1

p(∆∆∆mmm|XXXn) ∝N (∆∆∆mmm; µµµcomb,ΣΣΣcomb)

ΣΣΣcomb =

( N

∑
n=1

ΣΣΣ
−1
∆m(XXXn)

)−1

, µµµcomb = ΣΣΣcomb

( N

∑
n=1

ΣΣΣ
−1
∆m(XXXn)µµµ∆m(XXXn)

)
.

(5)

We observe that combining measurement distributions instead of shape coefficient distribu-
tions results in improved shape estimation accuracy (see Section 5), since distributions over
measurements are able to predict local shape uncertainty due to varying camera views, poses
and occlusions, unlike independent Gaussian distributions over global shape coefficients (see
Figures 3 and 4). Please refer to [36] for more details on probabilistic shape combination.

At any stage of the inference pipeline, predicted measurement distributions or final com-
bined measurement estimates can be easily converted into SMPL shape coefficient distribu-
tions/estimates using Equations 2 and 3.
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Num. β s Local Offset Evaluation Reconstruction Eval.
Used Input Meas. ∆ Output Meas. ∆ Meas. MAE PVE-T

Ch. W. Ch. D. St. W. St. D. Ca. C. Ca. L.

10
Ch. W. +50 +27.3 +5.0 +10.1 -4.1 +6.1 -1.1

0.9 1.9St. D. +50 -2.7 +7.8 +11.2 +29.9 +6.0 +5.8
Ca. L. +50 -3.1 +0.8 +5.3 +5.2 -2.5 +27.8

70
Ch. W. +50 +51.1 +0.5 +0.5 +0.0 +0.3 +0.0

3.9 15.4St. D. +50 -0.3 -0.5 +0.0 +49.8 -3.6 +0.0
Ca. L. +50 +0.0 +0.2 +0.3 +1.9 +0.2 +50.1

90
Ch. W. +50 +51.6 +0.4 +0.0 +0.5 +0.4 +0.0

6.2 23.9St. D. +50 +0.0 +0.1 +0.0 +54.3 -0.6 +0.0
Ca. L. +50 +0.1 -0.2 -0.4 -1.0 +1.7 +50.3

Table 1: Local controllability and reconstruction ability of our measurements-to-β s regres-
sor, using different numbers of SMPL β s. Local Offset Evaluation involves passing an input
offset of +50mm for chest width, stomach depth and calf length in turn through the linear
regressor, and computing the corresponding output measurement offsets, thereby quantify-
ing the local controllability of our approach. Reconstruction Evaluation quantifies how well
an SMPL body (represented by T-pose vertices) can be reconstructed from just its corre-
sponding measurements, in terms of measurement error (Meas. MAE) and per-vertex error
(PVE-T). These are computed by sampling 100,000 random input SMPL bodies, passing
their measurements through the linear regressor and comparing the output SMPL bodies
with the inputs. All numbers in mm. Abbreviations: Ch. = Chest, St. = Stomach, Ca. =
Calf, W. = Width, D. = Depth, C. = Circumference, L. = Length.

Loss functions. At test-time, our measurement and pose prediction pipeline deals with sets
of input images. However, training occurs using a dataset of single-image input-label pairs,
denoted by {XXXk,{θθθ k,∆∆∆mmmk,γγγk}}K

k=1, with K i.i.d training samples. Note that measurement
offset labels ∆∆∆mmmk represent offsets from the mean SMPL body measurements m̄mm.

We train the distribution prediction network with a negative log-likelihood loss LNLL =

−∑
K
k=1

(
log p(θθθ k|XXXk)+ log p(∆∆∆mmmk|XXXk)

)
. We also apply the same 2D joints samples loss

proposed in [36], as well as a mean-squared-error loss over global body rotation matrices.

4 Implementation Details

Network architecture. Our distribution prediction network consists of a ResNet-18 [11]
convolutional encoder, followed by a 3 layer fully-connected network with 512 neurons in
the two hidden layers and ELU activations [7], and 190 output neurons. Output variances
are forced to be positive using an exponential activation function.
Synthetic training. We adopt the training frameworks presented in [28, 34, 36, 37], which
entail on-the-fly generation of synthetic training inputs and corresponding SMPL body shape
and pose labels during training. In short, for each training iteration, ground-truth body
shapes are randomly sampled from a Gaussian distribution over the SMPL shape space,
while ground-truth poses are obtained from the training sets of UP-3D [22], 3DPW [41] and
H3.6M [13]. These are rendered into synthetic input proxy representations using the SMPL
function, a light-weight renderer [31] and Canny edge detection [5]. Synthetic inputs are
augmented using various occlusion and corruption transforms. Our method differs from past
work in 2 main ways: (i) our measurements-to-β s regressor allows us to randomly sample
measurement offsets to further augment the random SMPL shape samples, and (ii) we use

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2021{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Clevert, Unterthiner, and Hochreiter} 2016

Citation
Citation
{Pavlakos, Zhu, Zhou, and Daniilidis} 2018

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2020

Citation
Citation
{Sengupta, Budvytis, and Cipolla} 2021{}

Citation
Citation
{{Smith}, {Chari}, {Agrawal}, {Rehg}, and {Sever}} 2019

Citation
Citation
{Lassner, Romero, Kiefel, Bogo, Black, and Gehler} 2017

Citation
Citation
{von Marcard, Henschel, Black, Rosenhahn, and Pons-Moll} 2018

Citation
Citation
{Ionescu, Papava, Olaru, and Sminchisescu} 2014

Citation
Citation
{Ravi, Reizenstein, Novotny, Gordon, Lo, Johnson, and Gkioxari} 2020

Citation
Citation
{Canny} 1986



8 SENGUPTA ET AL.: PROBABILISTIC HUMAN SHAPE & POSE WITH A LOCAL MODEL

Method
Synthetic SSP-3D 3DPW

Meas. MAE-SC Meas. MAE-SC PVE-T-SC MPJPE-SC MPJPE-PA
SI NA PC SI NA PC SI NA PC

10 β s Net 23.3 18.5 18.3 23.4 20.2 20.2 13.6 13.0 12.8 87.3 60.3
70 β s Net 23.2 18.6 18.2 23.7 20.1 20.0 13.6 12.9 12.9 92.9 63.8
Measure Net (Ours) 21.6 17.8 16.4 22.8 19.9 19.5 13.7 12.8 12.4 88.3 61.6
GraphCMR [21] - - - 47.2 47.0 - 19.5 19.3 - 102.0 70.2
SPIN [20] - - - 49.8 49.7 - 22.2 21.9 - 89.4 59.2
DaNet [45] - - - 49.9 49.7 - 22.1 22.1 - 82.4 54.8
STRAPS [34] - - - 24.5 21.0 - 15.9 14.4 - 99.0 66.8
Sengupta et al. [36] - - - 24.4 20.6 20.4 15.2 13.6 13.3 90.9 61.0
VIBE* [19] - - - - 50.1 - - 24.1 - - 51.9

Table 2: Single-image (SI) and multi-image (NA/PC) body shape evaluation on synthetic ab-
lation data and SSP-3D [34], and single-image pose evaluation on 3DPW [41]. Multi-image
shape evaluation compares naive-averaging (NA) of shapes predicted from individual inputs
against probabilistic shape combination (PC) (i.e. uncertainty-weighted averaging). The top
half compares SMPL shape β distribution predictors against our measurement distribution
predictor (both trained on the same synthetic data). The bottom half presents metrics from
competing approaches. Note that our 10 β s Net is equivalent to [36], except we use improved
edge-based training inputs [35]. All numbers in mm. *VIBE [19] uses video inputs.

body measurement labels to train our network usingLNLL, and thus need to compute ground-
truth measurements from the sampled ground-truth shape coefficients.
Training details. We use Adam [18] with a learning rate of 0.0001, batch size of 80 and
train for 150 epochs, which takes 2 days on a 2080Ti GPU.
Evaluation datasets. SSP-3D [34] is used to evaluate body shape prediction accuracy in the
wild. We report per-vertex Euclidean error in the T-pose after scale correction (PVE-T-SC)
[34] and mean absolute measurement error after scale correction (Meas. MAE-SC), both
in mm. In addition, we evaluate on two private datasets of tape-measured humans: “A-Pose
Subjects” consists of front and side views of 8 subjects in an A-pose and “Varying-Pose Sub-
jects” consists of 27 images of 4 subjects in a range of poses and camera views. We report
chest, stomach and hip circumference measurement errors. The test set of 3DPW [41] is
used to evaluate body pose accuracy, using mean-per-joint-position-error after scale correc-
tion (MPJPE-SC) and after Procrustes analysis (MPJPE-PA). Finally, we utilise a synthetic
evaluation dataset for our ablation studies, which consists of 1000 synthetic subjects with
randomly sampled body measurements. Each subject is posed using 4 SMPL poses sampled
from Human3.6M [13] and global body rotations are set to face forward, backwards, left and
right. Synthetic evaluation inputs are generated in the same way as our training inputs.

Please refer to the supplementary material for further details regarding synthetic data
generation, training hyperparameters and example test images from the private shape evalu-
ation datasets with tape-measured humans and the synthetic ablation dataset.

5 Experimental Results
This section discusses our ablation studies on the measurements-to-β s linear regressor, com-
pares measurement versus shape coefficient distribution prediction and evaluates the perfor-
mance of our method on real datasets against state-of-the-art approaches.
Measurements-to-β s linear regressor. Table 1 investigates the proposed measurements-
to-β s regressor using |βββ | = 10, 70 and 90 SMPL shape coefficients. From the local offset
analysis (Table 1, left), it is clear that 10 shape PCA coefficients are not expressive enough
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Figure 4: Comparing independent Gaussian measurement distributions and SMPL β distri-
butions on synthetic images. Similar to Figure 3, measurement distributions (left) capture
local shape uncertainty. For example, a front-on camera viewpoint (row 1) results in larger
predicted depth measurement uncertainties (column 4) compared to a side-on viewpoint (row
2). Bent limbs result in higher limb length uncertainties (see arm lengths in row 1 vs row 2).
Furthermore, when body parts are locally occluded, measurements specific to the occluded
part have larger predicted uncertainties (see rows 3-4, columns 3-8). In contrast, independent
Gaussian β distributions [36] (right) cannot model local shape uncertainty. For example, a
locally occluded input results in an undesired increase of global shape uncertainty over the
whole body surface (see rows 3-4, columns 10-13), which is less useful for downstream
probabilistic combination as it does not specify which body parts are uncertain.

to locally control body shape, since an input offset for one measurement (e.g. +50mm chest
width in row 1) results in significant output offsets for several other measurements. Increas-
ing the number of PCA shape coefficients used, from 10 to 70, greatly improves the local
controllability of the model, but further increasing to 90 does not provide much additional
benefit. Qualitative examples of local offsets are given in Figure 2.

Conversely to the local offset analysis, using a larger number of shape coefficients in-
creases reconstruction error (Table 1, right). While the greater expressiveness of more shape
coefficients is beneficial for local offsets, it means that measurements alone do not contain
enough information to reconstruct full body T-pose meshes. As a compromise between local
controllability and reconstruction error, we use 70 SMPL shape coefficients.
Comparison between β distributions and measurement distributions. Table 2 (top) com-
pares our proposed measurement distribution prediction network against SMPL β distribu-
tion predictors using 10 and 70 β s. Probabilistic combination (i.e. uncertainty-weighted av-
eraging) using β distributions only results in marginal improvements over naive-averaging
of β s, since the predicted β distributions are unable to quantify local uncertainty. In con-
trast, probabilistic measurement combination yields a significant improvement over naive-
averaging of measurements, on both synthetic data and SSP-3D, since measurement distri-
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Method
A-Pose Subjects Varying-Pose Subjects

Chest Stomach Hip Chest Stomach Hip
SI NA PC SI NA PC SI NA PC SI NA PC SI NA PC SI NA PC

10 β s Net 63 54 52 61 54 52 54 38 35 83 72 76 47 30 32 42 27 27
70 β s Net 61 44 39 61 47 45 52 32 25 60 56 58 39 32 30 33 27 25
Measure Net (Ours) 52 37 33 37 32 29 37 29 23 63 53 52 43 29 27 37 23 17
SPIN [20] 130 127 - 117 114 - 125 124 - 57 56 - 60 60 - 74 73 -
STRAPS [34] 82 80 - 81 81 - 84 83 - 67 67 - 54 53 - 59 55 -
Sengupta et al. [36] 65 53 51 61 54 52 53 49 42 78 68 67 49 41 43 42 33 35

Table 3: Single-image (SI) and multi-image (NA/PC) body shape evaluation on two
datasets of tape-measured humans, containing subjects in an A-pose and subjects in vary-
ing poses respectively. Multi-image shape evaluation compares naive-averaging (NA) of
shapes predicted from individual inputs and probabilistic body shape combination (PC) (i.e.
uncertainty-weighted averaging). The top half compares SMPL shape β distribution pre-
dictors against our proposed measurement distribution predictor. The bottom half presents
metrics from competing state-of-the-art approaches. All numbers are circumference errors
in mm. Note that our 10 β s Net is equivalent to [36], except we use improved edge-based
training inputs [35].

butions capture local shape uncertainty due to varying poses/camera angles (which cause
self-occlusion), as well as occluding objects (see Figures 3 and 4). Table 3 (top) further
exhibits the benefits of probabilistic measurement combination on both A-pose humans and
humans in varying poses. Note that combining β distributions (rows 1-2) can even result
in worse measurement errors than naive-averaging for varying-pose subjects (showcasing
challenging body poses), while measurement combination always improves errors.

Moreover, Table 2 shows a reduction in pose estimation accuracy for β distribution pre-
dictors when the number of β s used is increased from 10 to 70. We hypothesise that it is
challenging for the network to learn to estimate distributions over 7× more shape param-
eters, and pose accuracy suffers as a result. In contrast, predicting distributions over 23
local body measurements allows us to benefit from the increased expressiveness of 70 shape
coefficients, without compromising pose.
Comparison with the state-of-the-art. Table 2 (bottom) presents shape and pose metrics
from several approaches evaluated on SSP-3D and 3DPW. Our probabilistic measurement
combination approach yields the best shape metrics on SSP-3D. In terms of pose metrics, it
is competitive with approaches that do not any require 3D-labelled training images [34, 36].
Table 3 (bottom) also shows that measurement combination outperforms all other approaches
in terms of measurement errors on both A-pose and varying-pose subjects.

6 Conclusion
In this work, we propose a locally controllable shape model by learning a linear mapping
from semantic body measurements to SMPL [24] shape β s. This is motivated by the ob-
servation that distributions over SMPL shape β s are unable to meaningfully capture shape
uncertainty associated with locally-occluded body parts, since the SMPL shape space repre-
sents global deformations over the whole body surface. Our measurements-to-β s regressor
allows us to predict distributions over body measurements conditioned on input images. We
demonstrate the value of the proposed procedure when predicting a body shape estimate
from a set of images of a subject, where we achieve state-of-the-art identity-dependent body
shape estimation accuracy on the SSP-3D [36] dataset and a private dataset of tape-measured
humans, using probabilistic measurement combination.
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