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Abstract

We introduce the concept of contractive appearance flow to address photometric
stereo with general reflectance. Our solution is motivated by the fact that the shape
intrinsics of an object are encoded by its Lambertian reflectance, based on which we
design a neural network that maps a set of per-pixel general appearances to their Lam-
bertian counterparts as if this process is carried by a flow in a field of vectors of pixel
values. Our design has two features: (1) by introducing a transfer operator in the en-
coded latent space, we replace the typical workflow of a Variational AutoEncoder (VAE)
with a more generic encode-transfer-decode procedure. For photometric stereo, we ap-
ply this procedure to produce consistent representations of the incident light fields and
to eliminate the signal variation caused by material properties; (2) during training each
sample of general reflectance is associated with its Lambertian-related template samples,
and by minimizing the distance between these two types of signals in the latent space,
we enforce the flow to contract in the subspace spanned by Lambertian appearances on-
ly. The proposed method learns reflectance measurements directly and does not need to
parameterize material properties. Our design is simple, lightweight, and automatic, yet,
experiments show that it is effective and yields accurate estimations.

1 Introduction
An effective inverse model for surface reflectance plays an important role in data-driven
photometric stereo [51]. A common paradigm is to establish a mapping from reflectance
measurements to the surface normal directly, where inverse reflectance functions are ap-
proximated by a variety of designs of neural networks that are trained using a large set of
synthesized images depicting arbitrary object appearances under various lighting conditions
[22, 32].

Synthesizing images to train an inverse model from reflectance to surface geometry is
usually restrictive. This is because to train a unified model that simultaneously quantifies
material, shape and lighting, explicit reflectance modeling, such as inter-pixel constraints
[8, 49], isotropy [22], parameterizations of rendering equations [46],etc., must be incorpo-
rated through human intervention. However, as the essence of photometric stereo is to re-
solve arbitrary surface shape using natural appearances, how to design an automatic, generic
and per-pixel machinery that directly learns from reflectance measurements while without
domain knowledge about material properties still merits further investigation.
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To this end, our solution takes a different path. Rather than training a model in a com-
pletely supervised manner, we choose to train a simple network as a part of self-supervised
learning pipeline in which Lambertian reflectance is the supervised signal. In fact, focusing
on Lambertian reflectance for data-driven shape-material analysis is well-motivated: in the-
ory, the intrinsic scene characteristics [3] are believed to form an essential component for
shape perception; numerically, Lambertian signals encode surface normal almost linearly so
flexible estimation is possible; representation-wise, since general reflectance and Lambertian
reflectance co-reside in the same space, elimination of material properties can regarded as a
transformation from the former to the latter. Explicitly parameterizing general reflectance as
a subjective, perception-based measure without domain knowledge is difficult, but solving a
simpler task that learns how general reflectance can be reduced to its Lambertian counterpart
has the same effect.

Therefore, our objective is to (1) identify the subspace that only contains the signals
of Lambertian reflectance, and (2) design a procedure that transforms the signals of general
reflectance to this subspace. In other words, we demand a per-pixel mapping from the general
appearances of a surface point to its Lambertian counterpart, and we introduce the concept
of appearance flow to model this process. In particular, we want the flow to perform a many-
to-one mapping and in our design it is implemented by a composition of mappings of two
types: (1) cross-space mapping and (2) space-invariant mapping. Correspondingly, a transfer
operator is introduced to implement an encode-transfer-decode procedure that allows the
flow to contract in a latent space formed by the Lambertian reflectance. During training, each
sample is associated with its corresponding Lambertian signal as a template, which is used
to regularize the distribution of the latent signals. This training process is self-supervised as
in its pretext task shape intrinsics are obtained without explicitly labeled material properties,
and in its downstream task surface shape is recovered using Lambertian reflectance only. In
our design there are two types of template signals: one used to regularize lighting distribution
while the other represents the corresponding Lambertian reflectance under the designated
lighting. As a result, the learned flow converts a sample under arbitrary lighting into the
Lambertian appearances sampled under lights with fixed positions. An overview of our
design is illustrated in Figure 1.

To sum up, in this paper, we introduce a generic semi-supervised learning pipeline that
learns surface reflectance automatically from the tabulated optical measurements for photo-
metric stereo. The contributions of this work include:

1. A theoretical framework to establish the concept of appearance flow that is motivated
by the fundamental understanding about intrinsic scene characteristics in the context
of shape perception.

2. A generic encode-transfer-decode procedure to implement flows in a systematic and
consistent design.

3. A self-supervised training strategy that effectively ensures the flows to be contractive .

4. An effective and lightweight neural network for photometric stereo that is trained with-
out domain-specific knowledge.

The remaining of this paper is organized as follows: Section 2 overviews the related work;
Section 3 presents the formal definition of contractive appearance flow and the generic design
of encode-transfer-decode procedure; Section 4 presents an effective training strategy for
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Figure 1: An overview of our design of per-pixel contractive flow for photometric stereo. The
appearances of each pixel is represented as a vector of intensities (e.g. X ∈ R3 in the case of
three directional lights). In the above example, the flow defines a mapping from appearances
of two materials (aluminium and blue rubber [36]), denoted by X(~n,θr1) and X(~n,θr2), to the
latent signal Z(~n,θ1), which can be decoded to synthesize a set of Lambertian appearances,
X(~n,θ1). The flow takes three steps: (1) encode, (2) transfer, (3) decode. The latent space
is identified by the encoder, and the flow is contractive if the transfer operator allows all
latent signals encoding the same surface geometry to converge. For instance, Z(~n,θr1)→
Z(~n,θ1), Z(~n,θr2)→ Z(~n,θ1), and Z(~n,θ1) is the point of contraction. Normal estimation is
performed independently in a separate downstream task.

photometric stereo. Section 5 discusses the performance of our solution with experiment
results. Section 6 concludes this paper.

2 Related Work
Photometric stereo [47] is a derived problem of shape from shading [20] in which inter-pixel
constraints can be removed. So the reflectance model is the core of its solution [44]. Vari-
ous models have been proposed but in recent years deep learning-based approaches become
dominant.

2.1 Traditional Formulation
In the simplest case object appearances are confined in a low dimensional linear space by
the Lambertian reflectance [6], which can be generalized by taking the specular signal as
an outlier [48]. Various nonlinear models have also been proposed, where parameters are
set algebraically [23, 42] or derived from physical or geometric models [11, 12, 16]. Their
performance can be further enhanced by confining the parameters using examplers, which
is done so by optimizations [18, 21] or through direct matching [15]. While some work
addresses scenarios of near field lighting [31], the majority of cases assume directional light.
The effect of lighting can be analyzed using bases of spherical harmonics [4, 39], and when
the light is uncalibrated, low rank constraints [5, 38] is used to resolve ambiguity [7] to some
extent. Derive isocontours as a geometric primitive from isotropic reflectance serve as useful
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shape cue [2, 45], and algebraic formulation is applied in a less constrained environment [33,
34, 41], which assumes that object appearances and surface geometry lie on two correlated
low-dimensional manifolds. Additionally, smoothness constraints may also be leveraged
using variational approaches [17, 37].

2.2 Deep Learning-based Formulation
Neural networks are powerful in that they can represent a forward or inverse reflectance
model flexibly. Due to their differentiability, they can be used to as a renderer to determine
the surface normal by minimizing a their output with the actual observation [25, 46]; alterna-
tively, they may also set up an inverse mapping from pixel values to surface normal directly
[40]. To achieve flexible per-surface-point training, the concept of “observation map” is in-
troduced [22] as a canonical 2D representation of the incident light field, between which and
the surface normal an inverse mapping is established. On the other hand, Siamese network
is an alternative to indirectly regularizing the image-based learning of reflectance functions
[8]. In this case, image features inferring surface geometry are obtained through pooling.
Furthermore, spline interpolation [50] and graph-based model are [49] available to address
the case when distribution of the light is sparse. A neural network trained dedicated for cali-
bration can be used in a cascade pipeline [9] and the concerns about ambiguity is discussed
in [10]. Part of our design exhibits certain analogies to “observation map” [22] in that both
work model per-pixel incident light field. The difference is that the input into our pipeline is
a vector and its underlying implementation is all-MLP.

2.3 VAE and Representation Disentanglement
The theoretical essence of contractive appearance flow lies in structuring the distribution of
latent signals encoded by a VAE [27] through constraints [19]. Since the latent space may
represent a union of multiple subspaces with respect to some semantic meaning, and the
ability to “disentangle” them is highly desirable [1]. This can be achieved through imposing
low-rank constraint [14], explicitly modeling [24], learning subspaces in ensemble [35], or
applying matrix factorization [30]. Labels may be utilized in various ways to facilitate the
factorization process [13, 28, 29]. In this context of subspace decomposition,our design
only focuses on one subspace, which is the manifold that only contains encoded Lambertian
signals, Z(~n,θ1). Moreover, instead of identifying the structures of the supplement space,
we train a transfer operator that associates the signals lie outside the subspace with their
counterparts lying inside it. Moreover, contractive flow is non-invertible, which differentiates
it from regular normalizing flows [26].

3 Contractive Appearance Flow
A reflectance function is defined in terms of three quantities: the surface normal ~n, the
directional light~l and the direction of the view~v, and it is normally expressed in the form of

I~l = fr(~l ~Tn,~l ~Tv,~n), (1)

where scalar I~l is the pixel-wise appearance which is in turn parameterized as I~l(~n,θr), where
θr denotes a set of unknown parameters modeling a material’s reflectance property. We use
θ1 to denote Lambertian reflectance: I~l(~n,θ1) = max(~l ~Tn,0).
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3.1 Formulation
Illuminating a surface point by a set of K directional lights L = {~l1,~l2, . . . ,~lK} produces a
sequence of appearances represented by a K-tuple: X(~n,θr,L) = {I1, I2, . . . IK}~n,θr . As ~n
and θr vary, a field of vectors is formed for any specific L. Unless otherwise stated, in
the following literature L is omitted and treated as a constant. Over this field, we define a
per-pixel flow:

F~n(θr,θ1) : X(~n,θr)→ X(~n,θ1), (2)

with X(~n,θ1) = {~lᵀ1~n,~l
ᵀ
2~n, . . . ,~l

ᵀ
K~n}. Moreover, F~n(θr,θ1) is said to be contractive if it is

guaranteed to reach its point of contraction, X(~n,θ1), from all possible starting positions
designated by θr.

Accordingly, we can define a contractive mapping, Φ(·), over the field of X such that:

|Φ(X(~n,θr))−Φ(X(~n,θ1))| ≤ |X(~n,θr)−X(~n,θ1)| (3)

where | · | is a type of norm designated by the loss function used for training (Section 4.2). It
can be readily observe that F~n can be represented by a composition of contractive mappings:
F~n(θr,θ1) = ΦD ◦ΦD−1... ◦Φ1(·), with X(~n,θr) being the input to Φ1 and X(~n,θ1) being
the output of ΦD. It is worth noting that Φ(·) does not depend on ~n. In this case, we have
two types of mapping: (1) cross-space mapping, which is implemented by an encoder and
decoder that can alter the dimension of a signal representation; (2) space-invariant mapping,
which alters the relative positions among signals in the same space. A standard VAE does the
former, whereas we introduce the design of transfer operator to achieve the latter. Essentially,
a contractive flow can be simply carried out by a combination of encoding, transfer and
decoding procedure, all of which can be implemented by Multi-Layer Perceptrons (MLPs)
along a single pipeline. In other words, we can assemble and train an all-MLP neural network
to implement a contractive flow F~n.

3.2 Encode-Transfer-Decode Procedure
Equation 1 indicates that for any X there exists a low-dimensional latent embedding param-
eterized by ~n and θr. This allows us to design an encoder, Φen(·), to encode X(~n,θr) in a
latent space containing Z(~n,θr):

Φen(X(~n,θr)) = Z(~n,θr), (4)

where Z(~n,θr) has a much lower-dimensional representation than X(~n,θr). We prefer to
operate on Z(~n,θr) instead of X(~n,θr) because mappings between low dimensional signals
can be implemented by simpler networks, which are easier to train.

However, direct encoding does not guarantee Equation 3 to hold. In fact, it is as chal-
lenging to obtain a VAE-based pipeline that achieves Z(~n,θr) = Z(~n,θ1) as to set up a direct
inverse mapping discussed in Section 1. This is because in a directly-encoded space the vari-
ance of θr caused by material variations persist. Instead, appearance flow allows us to set up
a space-invariant transfer mapping, Φtr(·),

Φtr(Z(~n,θr)) = Z(~n,θ ′r), (5)

that eliminates these variations by enforcing the following:

|Z(~n,θ ′r)−Z(~n,θ1)| ≤ |Z(~n,θr)−Z(~n,θ1)|. (6)
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Figure 2: We design an encode-transfer-decode procedure to implement contractive flow.
The dashed line represents a typical VAE pipeline for comparison. The difference is that
instead of enforcing a multivariate gaussian distribution in the latent space, we introduce a
transfer operator,Φtr(·), that regularizes the distribution of the latent signals (in the middle)
using an explicit sample X(~n,θ1) from the corresponding Lambertian appearances (at the
bottom). The transfer operator essentially performs a nonlinear projection in the latent space
through which signals are mapped to a subspace containing only Z(~n,θ1). We use a residual
block to implement this process, where by subtraction we want Z(~n,θ ′r) and Z(~n,θ1) to
converge. The residual signal being taken away encodes the information about material
properties.

which regularizes the distribution of the encoded signals in place of the KL-divergence in
the case of standard VAE. It is worth noting that this procedure is purely data-driven and no
explicit modeling about θ is involved.

In particular, the operation described by Equation 5 and 6 exhibits certain analogy to
a projection operator. Namely, the transfer operator decomposes Z(~n,θr) into two sub-
components: one lies in the subspace spanned by Z(~n,θ1) with respect to ~n, and one is
“orthogonal to/independent of it”. Our design creates a similar scheme by deploying a resid-
ual block denoted as Φtr(·), which represents its input as a superposition of a signal of our
interest and its residual. In a nonlinear context, we want the residual component to carry
away the information uncertainty about the material properties (θ ), and only the information
about the Lambertian reflectance to remain. This intuition and analogy are illustrated in Fig-
ure 2. It is worth noting that each transfer operator is paired with an encoder, as the latter
creates the latent space for the former to operate.

Furthermore, at the end of the pipeline a decoder, Φde(·):

Φde(Z(~n,θ1)) = X(~n,θ1), (7)

is attached for two reasons. First, it prevents the distribution of the signal from collapsing
in the latent space (i.e. creating a vanishing point) ; second,~n can be obtained from X(~n,θ1)
directly by solving a linear least sqaures problem in the downstream task. The subspace of
Z(~n,θ1) is rank-3.

4 Training to Obtain Shape Intrinsics
To train a network that implements contractive appearance flows, a variety of combinations
of L,~n and θr should be included in the training data, with θr being an unobserved quantity.
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Training mainly consists of two tasks: (1) design a robust and neural network-compatible
representation to accommodate inputs of variable lengths; (2) design a training strategy that
ensures the resulting flow is contractive. Even though the first task is not the main focus
of this work, with the tools described in Section 3.2, we show that both tasks can be ac-
complished by a single learning pipeline end-to-end. Also, the training is self-supervised
because among all the training samples only the ones sampled from Lambertian reflectance
are identified (i.e. X̄(~n,θ1) defined in Section 4.1 ) and serve as the supervisory signals.

The pipeline identifies two latent spaces, Z1 and Z2, where in Z1 through transfer we
want per-pixel reflectance signals of the same material sampled by lights of varying distri-
bution to have a consistent representation, and in Z2 we want all signals carried by the same
per-pixel flow to meet at Z2(~n,θ1). In other words, in each latent space we specify a type of
point of contraction, Z̄1(~x,θr) (Section 4.1) and Z̄1(~x,θ1) (Section 4.2), respectively, and our
training objective is to enforce the flow to pass through them. To this end, we associate each
sample with two types of template samples, X̄(~x,θr) and X̄(~x,θ1) , which are to be encoded
into the two points of contraction,respectively. We make use of the fact that a transfer oper-
ator behaves as an identity mapping when its input signal is the point of contraction (e.g.
it is the template signal) to instruct the transfer operators how to regularize the two latent
subspaces. Specifically, we enforce the pipeline to minimize the contractive loss,L1 and L2,
respectively. They have a similar effect to that of KL loss in the case of VAE. The perfor-
mance of the decoder is measured by the reconstruction loss L3. The training workflow is
depicted in Figure 3.

4.1 A Consistent Representation for Incident Light Fields
In Section 3.1, we use X(~n,θr) to denote a vector of pixel values whose length depends on
L, but since in practise the distribution of L is not known as a priori, it needs a consistent
representation in order to be neural network-compatible. Let L̄ denote a fixed set of samplers
over the spherical surface with which standard representation,X̄(~n,θr), is defined, and
Z̄(~n,θr) be its latent signal. So, by enforcing Z1(~n,θr)→ Z̄1(~n,θr), the effect of varying L is
reduced.

Solutions exist to address this issue [49, 50], but since both implementations are indepen-
dent of the design of appearance flow, incorporating them into our design will be our future
work. Instead, similar to the idea of “observation map” [22], we partition the lighting hemi-
sphere into a set of disjoint blocks to generate X(~n,θr) out of an arbitrary L. Accordingly, a
transfer operator is trained by minimizing the function of contractive loss,

L1 = |Z1(~n,θr)− Z̄1(~n,θr)|, (8)

and when the optimum is achieved, it becomes an identity mapping for Z̄1(~n,θr).

4.2 Detect the Subspace of Lambertian Reflectance
Subsequently, we also want to detect the subspace only spanned by Z̄2(~n,θ1) in Z2. To this
end, we include an additional template sample, X̄(~n,θ1), whose encoded signal, Z̄2(~n,θ1)
undergoes an identity mapping in Z2. This leads to the second contractive loss,

L2 = |
1
2

Z(~n,θ ′r)+
1
2

Z̄(~n,θ ′r)− Z̄(~n,θ1)| (9)

which reflects the requirement that the flow should end up at the point of contraction Z(~n,θ1).
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Figure 3: The workflow of the per-pixel self-supervised training process. ~n is omitted in
notations for brevity. There are three data paths passing through two latent spaces Z1 and
Z2, among which the top path: X(θr)→ Z1(θr)→ Z2(θ

′
r)→ X̄1 represents the standard

procedure used in testing. There are three samples, two of which are templates: X(θr) is
arbitrarily sampled under L and standardized by the nearest neighbor matching against L̄;
X̄(θr), the appearances with same reflectance properties sampled from L̄, and X̄(θ1), the
Lambertian appearances sampled also from L̄. Correspondingly, L1 and L2 are contractive
loss and L3 is the reconstruction loss in terms of ¯X(θ1). Z̄(~n,θ1) is the point of contraction.

Finally, we introduce a reconstruction loss,

L3 = |
1
3

X̄1 +
1
3

X̄2 +
1
3

X̄3− X̄(~n,θ1)|, (10)

which produces X̄(~n,θr) = max(L̄ ~Tn,0), from which ~n is solved by a linear least-squares
problem. The loss function is taken as the sum of L1, L2 and L3 and they are all measured in
L2-norm. Because the decoding process is much simpler than the encode-transfer procedure,
the architecture of the pipeline is asymmetric.

5 Experiment

Table 1 compares the performance of our solution (AF) with other recently-proposed per-
pixel solutions to deep-learning-based photometric stereo that represent the state-of-the art.
“AF-VAE” is the results of an ablation study. The experiment settings, the architecture of
the network and performance analysis with illustrations can be found in the supplemental
material.
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BALL CAT POT1 BEAR POT2 BUDDHA GOBLET READING COW HARVEST AVG.

CNN-PS[22] 2.2 4.6 5.4 4.1 6.0 7.9 7.3 12.6 8.0 14.0 7.2

DPSN[40] 3.4 7.2 7.9 7.2 8.8 13.3 12.3 17.4 8.4 16.8 10.3

BS 4.1 8.4 8.8 8.3 14.6 14.9 18.5 19.8 25.6 30.6 15.4

AF 3.3 7.8 7.8 7.5 9.8 13.4 12.4 15.9 9.8 18.7 10.6
AF-VAE 30.1 36.1 36.2 34.2 36.7 38.1 36.0 32.4 40.5 42.7 36.3

Table 1: Comparison of the benchmark results [43] produced by our solution and other
per-pixel methods with baseline performance. Ablation study(AF-VAE): the entire pipeline
is trained as if it is a standard VAE to generate Lambertian reflectance, where template
signals are disabled in training. It can be seen that the transfer operator trained using the
template signals plays a critical role in ensuring the flow to contract in the space spanned by
Lambertian signals.

Figure 4: Our estimation results on DiLiGent image set [43]. From top to bottom: Pot1,
Buddha, Reading and Harvest. The error is normalized and saturates at 40 degrees. It can be
observed that cast shadows and interreflections are the main sources of estimation error. The
reflectance displayed by various types of materials, be it diffusive or specular, is properly
addressed.
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5.1 Performance

Though the performance of our solution is inferior to CNN-PS, it is worth noting that in
terms of model complexity, the resources consumed for training and the way the network is
trained, our solution are advantageous in that it adopts a self-supervised pipeline that only
consumes a small fraction of training data required by other methods (2GB v.s. 10+GB), but
it generalizes reasonably well. In particular, our model is trained on monochromatic MER-
L [36] that only tabulates direct optical measurements. Since our model does not require
domain-specific knowledge, the process for collecting training data would be much easier
than synthesizing images with a renderer, which is a major requirement for other methods.

As illustrated by Figure 4, the major source of error of our estimations is inter-reflections
(“Reading” and “Harvest”) and cast shadows (“Buddha”). This indicates that extra compo-
nents needed to be deployed to address these optical phenomena in addition to the pipeline
designed for shape-reflectance analysis. Since the architecture of our network is extremely
light weight, and the function of each block can be explicitly designated, the proposed de-
sign has the flexibility to scale-up to address these issues. This defines a major task of our
follow-up work.

5.2 Ablation Study

We conducted an ablation study and include the results in the last line of Table 1 (AF-VAE).
It is to prove the necessity of applying template signals in training and deploying the transfer
block in our design. Namely, if we remove the constraints imposed by the template samples
during training, and resort to a typical implementation of VAE with its encoder taking X(θr)
as input and its decoder being trained to produce X̄(θ1), with the loss functions in Equation 8
and 9 being disabled, the implementation will fail to generalize to the testing data completely,
as the results suggest. After all, without the template samples regularizing the distribution of
the signals in the latent space, the neural network will not be able to capture the underlying
geometry-dependent structure solely from end-to-end instruction.

6 Conclusion
We establish the concept of contractive appearance flow to address photometric stereo with
general reflectance. The main idea of the proposed design is to learn a procedure that trans-
forms a set of per-pixel appearances caused by general surface reflectance to its Lambertian
counterparts, which is aligned with the traditional treatment of intrinsic shape recovery from
material reflectance but offers a generic data-driven tool set. In particular, we propose a self-
supervised learning pipeline implemented with generic encode-transfer-decode procedure,
and by placing the point of contraction in the geometry-dependent latent space we are able
to synthesizes Lambertian appearances without any explicit modeling or parameterizations
regarding the material properties that often involve domain-specific knowledge. Our solution
is validated by benchmark experiments on real world data.

Though, our method does not deliver the state-of-the-art performance at the moment,
this new framework offers plenty of room for improvement. By integrating a mechanism
that allows for flexible representations for the incident light field in our follow-up work, we
expect this design to be applied to a broader range of applications in which cast shadows and
interreflections will be be addressed.
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