
BOULAHBAL ET AL: ARE CONDITIONAL GANS EXPLICITLY CONDITIONAL? 1

Are conditional GANs explicitly conditional?

Houssem eddine Boulahbal12

houssem-eddine.boulahbal@renault.com
Adrian Voicila1

adrian.voicila@renault.com
Andrew I. Comport2
Andrew.Comport@cnrs.fr

1 Renault Software Factory,
2600 Route des Crêtes,
06560 Valbonne, France

2 CNRS-I3S, Université Côte d’Azur,
2000 Route des Lucioles,
06903 Sophia Antipolis, France

Abstract

This paper proposes two important contributions for conditional Generative Adver-
sarial Networks (cGANs) to improve the wide variety of applications that exploit this
architecture. The first main contribution is an analysis of cGANs to show that they are
not explicitly conditional. In particular, it will be shown that the discriminator and sub-
sequently the cGAN does not automatically learn the conditionality between inputs. The
second contribution is a new method, called a contrario cGAN, that explicitly models
conditionality for both parts of the adversarial architecture via a novel a contrario loss
that involves training the discriminator to learn unconditional (adverse) examples. This
leads to a novel type of data augmentation approach for GANs (a contrario learning)
which allows to restrict the search space of the generator to conditional outputs using ad-
verse examples. Extensive experimentation is carried out to evaluate the conditionality
of the discriminator by proposing a probability distribution analysis. Comparisons with
the cGAN architecture for different applications show significant improvements in per-
formance on well known datasets including, semantic image synthesis, image segmen-
tation, monocular depth prediction and "single label"-to-image using different metrics
including Fréchet Inception Distance (FID), mean Intersection over Union (mIoU), Root
Mean Square Error log (RMSE log) and Number of statistically-Different Bins (NDB).

Since the seminal work in 2014, Generative Adversarial Networks (GANs) [14] have
introduced an alternative framework for training generative models that has led to a multitude
of high impact publications over a very large number of applications. Conditional GANs,
introduced shortly after [35], have extended GANs to incorporate conditional information
as input and have demonstrated resounding success for many computer vision tasks such as
image synthesis [6, 22, 33, 41, 48, 49, 54], video synthesis [5, 32, 53], image correction[29,
42, 58], text-to-image[30, 43, 57, 60]. In all these works, the underlying GAN model as
proposed in [14] and [35] have formed the basis for more advanced architectures and their
properties have been analysed in detail and established in terms of convergence[27, 38],
mode collapse[47], Nash equilibrium[12, 51], vanishing gradients[1], etc.

The « conditionality » of cGANs is at the crux of their theoretical contribution and its im-
pact therefore merits in-depth analysis. From the existing literature it is not clear, however,
if this now widely used architecture explicitly models or even learns conditionality. Em-
pirically, the impressive results obtained with cGANs show that the generator automatically
seeks to incorporate conditional variables into its generated output. Fundamentally the gen-
erator is, however, free to generate whichever output as long as it satisfies the discriminator.
Therefore, the conditionality of cGAN also depends on the conditionality of the discrimina-
tor. This begs the question as to whether or not the baseline architecture of cGANs explicitly

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 BOULAHBAL ET AL: ARE CONDITIONAL GANS EXPLICITLY CONDITIONAL?

Figure 1: The classic cGAN and the proposed a contrario cGAN discriminators are tested with 500
validation images of the Cityscapes dataset on both conditional and unconditional label-to-image input
set. Unconditional inputs (Real a contrario and Generated a contrario ) set are obtained by randomly
shuffling the original conditional sets of data. The classic cGAN discriminator fails to classify uncon-
ditional input set as false as seen by the histogram distributions on the right (real a contrario in red
is classified as true). The proposed method trains the discriminator with a general a contrario loss
to classify unconditional input set as fake (note that no extra training samples are required). The he
proposed a contrario cGAN correctly classifies all four modalities (blue, green, red, yellow) correctly.

models conditionality and if not, how can the core adversarial architecture be redefined to
explicitly model conditionality? This is therefore the object of this paper.

Problems with cGANs conditionality have been observed independently for different
tasks in the literature. Label-to-image tasks observe that using only adversarial supervision
yields bad quality results [33, 41, 48, 54]. "Single Label"-to-image tasks [4] observes class
leakage. It is also well known that cGANs are prone to mode collapse [44]. In this paper it
is suggested that all these problems are related to the lack of a conditional discriminator.

Consider a simple test of conditionality on a learnt discriminator for the task of label-to-
image translation, shown in Figure 1. The conditional label input is purposely swapped with
a non-corresponding input drawn randomly from the input set (e.g. labels). From this test it is
revealed that the discriminator does not succeed to detect the entire set of a contrario exam-
ples (defined in Section 2.3) as false input pairs. More extreme cases are shown in A.2. This
suggests that the generator is not constrained by the discriminator to produce conditional
output but rather to produce any output from the target domain (images in this case). Fur-
thermore, in practice, the large majority of methods that exploit cGANs for label-to-image
translation, if not all, add additional loss terms to the generator to improve conditionality.
These loss terms are, however, not adversarial in their construction. For example, high reso-
lution image synthesis approaches such as [54] suffer from poor image quality when trained
with only adversarial supervision [48]. Considering the well known pix-to-pix architec-
ture [22], a L1 loss was introduced to improve performance. This additional term seeks to
enforce conditionality on the generator but does not act explicitly on the discriminator. Sub-
sequently, one could question if the conditionality obtained by such methods is obtained via
this loss term which is not part of the adversarial network architecture. Moreover, adding an
extra loss term to the generator has now become the defacto method for improving cGANs
results. For example perceptual loss [23] and feature-matching [45] have been proposed and
reused by many others[6, 39, 41, 54]. As demonstrated in the experiments different tasks
such as image-to-depth or image-to-label also exhibit these drawbacks.

In this paper it will be argued that simply providing condition variables as input is insuf-
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ficient for modelling conditionality and that it is necessary to explicitly enforce dependence
between variables in the discriminator. It will be demonstrated that the vanilla cGAN ap-
proach is not explicitly conditional via probabilistic testing of the discriminator’s capacity to
model conditionality. With this insight, a new method for explicitly modelling conditional-
ity in the discriminator and subsequently the generator will be proposed. This new method
not only offers a solution for conditionality but also provides the basis for a general data
augmentation method by learning from the contrary (a contrario data augmentation).

1 Related work
Conditional GANs Generative adversarial networks [14] can be considered as a zero-sum
game between two player neural networks G and D competing to reach a Nash equilibrium.
This game is commonly formulated through a min-max optimization problem as follows:

min
G∈G

max
D∈D

V (G,D) (1)

where G and D are respectively the generator and discriminator function sets. A GAN is
considered conditional [35] when the generator’s output is conditioned by an extra input
variable. The condition variable can be any kind of information such as a segmentation
mask, depth map, image or data from other modalities.

There are various methods that have been proposed for incorporating conditional infor-
mation into the generator [10, 20, 41, 52, 66, 66]. Recently [49] introduced a classification-
based feature learning module to learn more discriminating and class-specific features. Addi-
tional generator losses have also been proposed including feature matching [45], perceptual
loss [23] and cycle-consistency loss [67]. While all these methods improve the conditionality
of the generator, they assume that the discriminator models conditionality.

Alternatively several methods have been proposed to incorporate conditional information
into the discriminator. [35] proposed an early fusion approach by concatenating the condi-
tion vector to the input of the discriminator. [24, 26, 33, 36, 39] proposed a late fusion by
encoding the conditional information and introducing it into the final layers of the discrim-
inator. [48] replaces the discriminator with a pixel-wise semantic segmentation network.
Most of these methods are task specific and not general [24, 26, 48]. The method proposed
in this paper is a task agnostic solution for incorporating any conditional variables and it will
be shown to perform on several different datasets.

One concern raised in the literature is that improving either player is at the detriment to
learning and can lead to mode collapse or vanishing gradient [1, 9]. In the present paper,
whilst the aim is to define a conditional discriminator, it is argued that not only this does not
affect the Nash equilibrium but also helps to avoid mode collapse and vanishing gradient. A
simple example is that the proposed discriminator imposes conditionality and therefore the
different condition inputs cannot be collapsed into a single mode.

Data augmentation for GANs Data augmentation is a highly useful strategy to improve
generalization for machine learning that involves increasing the diversity of training data
without collecting new samples. Augmentation strategies have involved performing a vari-
ety operations on input training data including random cropping, horizontal flipping, various
hand-crafted operations [13, 17] or even learning augmentation strategies from data [8, 62].
Performing data augmentation on GANs is less straightforward and has been limited to a
handful of operations such as flipping, cropping and jittering [22]. [59, 64] propose a method
to enforce the discriminator to remain unchanged by arbitrary augmentation. [25, 50, 63, 65]
study the artifacts produced by augmentation and propose to perform augmentation on both
real and generated images for both generator and discriminator training. Further, [25] pro-
poses a method called stochastic discriminator augmentation that adjusts the augmentation
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strength adaptively. Alternatively to all these approaches, the a contrario learning proposed
in this paper performs data augmentation by providing false counter examples rather than
augmenting the real data-set with transformations. The proposed data augmentation ap-
proach is therefore specific to adversarial architectures, however, it will be shown that by
discriminating against undesirable distributions, the generator is better constrained towards
the target distribution. In the specific case of conditionality, by providing a contrario ex-
amples to the discriminator as fakes, the discriminator constrains the generator to only learn
conditional generations and the generator is therefore better constrained. It should be noted
that in parallel to this work, the idea of augmenting the discriminator with fake examples was
recently proposed in [46], however, this method did not consider discriminator conditionality
and only investigated data augmentation through creating fake data.

Evaluation criteria for GANs Defining an evaluation criteria to assess and compare GAN
architectures has been a major problem in advancing the field. The difficulty and advantage
of GAN architectures lies in that the learnt discriminator replaces the classic objective func-
tion. Classic approaches for evaluating GANs often use the FID [18] or Inception scores [45]
to evaluate high-level generation quality and diversity. For example, the inception score only
allows to evaluate a perceptual image quality and does not account for consistency between
generated output and label. By construction it is therefore domain specific and does not
evaluate conditionality in the output. More recent approaches investigate more general met-
rics [2, 15, 19, 21, 61]. Nevertheless, none of these approaches specifically allow to evaluate
the conditionality of conditional GANs. Such an evaluation metric should take both the con-
dition variables and generated variables into account. Therefore, for the sake of evaluation,
experiments were done on tasks that could provide a strong conditional metric to evaluate
conditionality. The mIoU was used specifically for evaluating semantically conditional ex-
amples and log RMSE was considered for geometric depth conditionality.

2 Method
2.1 Classic cGAN
Classical cGAN training is based on conditionally paired sets of data C(x,y) where x∼ p(x)
is the condition variable and y ∼ p(y|x) is the real training variable. The generator of a
cGAN outputs a transformed set of data CG(x,yG) composed of the generator output variable
yG ∼ pG(y) and the condition variable. These sets of data will be called "real-conditional"
and "generated-conditional" respectively. The discriminator is defined as:

D(x,y) :=A( f (x,y)) (2)

Where f (.) is a neural network function of x and y, and A is the activation function whose
choice depends on the objective function. The cGAN objective function is defined as:

Ladv = min
G

max
D

(
Ex∼p(x),y∼p(y|x)

[
log(D(x,y)]

]
+Ex∼p(x)

[
log[1−D(x,G(x))]

])
(3)

The min-max activation function is defined as a Sigmoid A(x) =
(

1
1+e−x

)
.

2.2 Evaluating conditionality
The objective of this section is to propose methods to test the conditionality of cGAN net-
works. As mentioned in Section 1, state-of-the-art approaches have focused on evaluating
cGAN architectures with metrics applied to the generator output. Since the generator and
discriminator are coupled, these metrics essentially evaluate the full GAN architecture.
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A proposal is made to test the conditionality by visualizing the probability distribution
at the output of the discriminator. Due to the fact that adversarial training involves a zero-
sum game between a generator and a discriminator, both the generator and discriminator
should seek to reach an equilibrium (Eq 1) at the end of training. One issue for GANs is that
when the discriminator dominates there is a vanishing gradient problem [1]. It is therefore
more difficult (but not impossible) to isolate the discriminator during training to evaluate its
capacity to detect unconditional examples as false. For this reason, an optimal discriminator
can be used to give insight for evaluation purposes as in [1, 12]. An optimal discriminator is
essentially a binary classifier which classifies between true and fake (see Eq (3)).

In order to test the optimal discriminator, consider that the generator has been fixed after
a certain number of iterations (the generator is initially random) and the discriminator has
been allowed to converge to an optimal solution based on the following objective function:

max
D∈D

V (G f ixed ,D) (4)

The evaluation subsequently involves analysing the distributions produced by the optimal
discriminator (Eq (4)) given test distributions containing unconditional or a contrario sets of
data-pairings. The capacity of the discriminator to correctly classify unconditional data as
false is then analysed statistically. Section 2.3 provides a formal definition of these uncon-
ditional data pairings. Probability distributions are visualised and evaluated by histogram
analysis on the discriminator features in the last convolution layer. Refer to Section A.1 for
a more theoretical analysis and detailed results.

2.3 A contrario conditionality loss
The proposed a contrario cGAN approach is based on training with unconditionally paired
sets of data, obtained by randomly shuffling or re-paring the original conditional sets of data.
The a contrario set is defined as CU (x̃,y), where x̃ ∼ p(x) is the a contrario conditional
variable (x̃ 6= x) and y is the real training variable as in Section 2.1. In this case x̃ and y
are independent. The generator of the a contrario cGAN outputs a transformed set of data
CUG(x̃,y) composed of the generator output variable yG ∼ pG(y) and the random variable
x̃. For the purpose of this paper these two sets of data will be called "real-a contrario "
and "generated-a-contrario " respectively. The motivation to create these new sets is to train
the discriminator to correctly classify unconditional data as false. Figure 1 shows the four
possible pairings. In practice, random sampling of a contrario pairs is carried out without
replacement and attention is paid to not include any conditional variables into a same batch
while processing.

In order to enforce conditionality between y and x an a contrario term is proposed as:

Lac = max
D

(
Ex̃∼p(x̃),y∼p(y)

[
log(1−D(x̃,y))

]
+Ex̃∼p(x̃),x∼p(x)

[
log(1−D(x̃,G(x)))

])
(5)

The first term is enforces the real-a-contrario pairs to be classified as fakes. The second
terms enforces the generated-a-contrario as fake. The final loss is:

L′adv = Ladv +Lac (6)

3 Experimental section
Several experiments will be presented that evaluate the conditionality of cGANs including:
Real image generation from semantic masks on Cityscapes dataset [7];"Single label"-to-
image on CIFAR-10 [28]; Monocular depth estimation on [37]; Semantic segmentation using
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Figure 2: Label-to-image histogram results when validating 500 Cityscape images on a discriminator
trained until epoch 200. Blue is Generated-conditional, Green is generated a contrario , Red is real-
a contrario , Yellow is Real-conditional. (a) The trained baseline discriminator, (b) Optimal baseline
discriminator, (c) a contrario cGAN discriminator, (d) Optimal a contrario cGAN discriminator. (a)
and (c) are still learning indicating no vanishing gradient or mode collapse [1]. (b) doesn’t detect con-
ditionality since a contrario real is classified as true (red) (d) succeeds to classify all modes correctly.

pix2pix on Cityscapes dataset. For label-to-image generation, pix2pix[22], pix2pixHD[54],
SPADE[41] and CC-FPSE[33] were used to test the conditionality and to highlight the con-
tribution of the a contrario cGAN wrt state-of-the-art approaches. "Single label"-to-image
is also considered as most new techniques that improves cGANs are designed tested us-
ing this task. To demonstrate the generality of the proposed approach depth estimation and
image-to-label segmentation tasks are also performed. These structured prediction problems
offer strong metrics for evaluating cGANs and various public datasets are available for train-
ing. While the scope of conditional evaluation has been limited to tasks that could provide
a metric to evaluate both the conditionality and the quality of the generation, the proposed
approach is general and not specific to these particular tasks. During training, the network’s
architecture, the additional losses, the hyper-parameters and data augmentation schemes are
kept as in the original papers [22, 33, 41, 54]. The new additional a contrario term is the
only difference between the compared methods.

3.1 Evaluating conditionality
Preliminary conditionality evaluation follows the method presented in Section 2.2 using
a contrario sets to evaluate an optimal discriminator. In a first part experiments were carried
out on the vanilla pix2pix cGAN with a discriminator PatchGAN architecture with 70×70
receptive field. The model was trained on the Cityscapes dataset [7] for label-to-image trans-
lation with 2975 training images resized to 256× 256. The pix2pix GAN model is trained
with the same hyper-parameters as specified in the original paper [22]. The evaluation his-
togram is calculated on the values of the last convolution layer of the discriminator ( f (x,y)
of Eq (2)) based on the 500 validation images. Each sample from the last convolutional layer
is composed of a 30× 30 overlapping patches with one channel.The proposed approach is
trained in exactly the same manner with the only difference being the new objective function.

Various tests were carried out to investigate the output distributions of each set of data
for both the baseline architecture and the proposed method. The underlying accuracy of the
implementation was first validated to ensure the accuracy reported in the original paper. A
histogram analysis was then performed for different levels of training including: training
for 20, 100, 200 epochs and evaluating after each. In another experiment the discriminator
was allowed to continue to converge for one epoch after fixing 20, 100 and 200 epochs of
cGAN training. In particular, training is performed with the objective given in Eq (4) and
as proposed in [1, 12]. These results are plotted for each data pairing: real-conditional,
generated-conditional, real-a-contrario and generated-a-contrario in Figure 2. Figure 2 (a)
and (c) show that during training the generator is still learning with no vanishing gradient
or mode collapse. In Figure 2 (b) the discriminator has been allowed to reach an optimal
value by fixing the generator. The real a contrario pairing is wrongly classified 99.9% of the
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Figure 3: Comparison of the proposed approach on the Cityscape label-to-image training set. (a) The
loss function for each set of data-pairing for the baseline cGAN method (a contrario are for evaluation
only). (b) The loss function for each set of data-pairing for the a contrario cGAN method. (c) The
evolution of the mIOU for both methods, performed on the validation dataset. It can be seen in (b)
compared to (a) that the a contrario loss converges to 0 rapidly for the proposed approach. In (c) the
proposed approach is much more efficient and converges much faster and with higher accuracy.

time indicating that the discriminator has not learnt conditionality. (d) Shows clearly four
distinct distributions and shows the ability of the proposed approach to learn conditionality
and correctly classify real a contrario pairing 91.9% of the time. Refer to Section A.1 for
more insight into the histogram evaluation of conditionality. Similar conditionality tests were
performed for various alternative architectures including using a separate/shared network for
x and y and early/late/at-each-layer fusion. In all cases conditionality was not learnt.

The same analysis was performed for the monocular depth prediction dataset and similar
observations were made (see Figure A.1). These results strongly suggest that classic cGAN is
unable to learn conditionality and that the spectacular results obtained by cGAN architectures
are largely due to higher a level style constraints that are not specific to the input condition
variable since swapping condition variables produces no effect. The proposed histogram
test allows to demonstrate the ability of the discriminator to classify the various underlying
classes of data and shows their statistical distribution. The approach proposed in [1, 26]
looks only at accuracy, while the proposed histogram test also allows to see how well the
discriminator distinguishes between the different data modalities (real/fake/a contrario ).

3.2 Label-To-Image translation
Generating realistic images from semantic labels is good task to evaluate the effect of the
a contrario at a high level since many images can be potentially generated for each semantic
class label. Figure 3(c) shows a comparison of the mIoU for the baseline pix2pix model
and proposed pix2pix model with the additional a contrario loss. It can be observed that
the a contrario cGAN converges faster than the baseline. The mIoU of the model with
a contrario at iteration 163k is 24.46 whereas the baseline is 14.65. The mIoU oscillates
around that value for the a contrario model indicating that the model has converged. After
595k iterations, the mIoU for both models are very close 28.28 and 26.41. It is worth noting
that evaluating using real images yields 29.6. The convergence is reported for the generator
where the computational cost is exactly the same. the a contrario loss is specific only to the
discriminator and adds a small computational cost. By restricting the search space of the
generator to only conditional pairs, the generator’s convergence is faster.

Table 1 shows a comparison of different architectures with and without a contrario aug-
mentation. For a fair comparison all the networks are trained from scratch and the same
hyper-parameter are used. The a contrario loss is the only difference between the two net-
works. The batch size for SPADE is 32 and 16 for CC-FPSE. Through explicitly enforcing
the conditionality with a contrario examples, the discriminator learns to penalize uncondi-
tional generation achieving better results. Figure A.10 shows a qualitative comparison.

Moreover, Figure 3(a) and Figure 3(b) show the comparison of the losses of the discrim-
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Method Resolution FID mIoU Pixel accuracy (PA)
pix2PixHD 256×512 66.7 56.9 92.8

a contrario pix2pixHD 256×512 60.1 60.1 93.2
SPADE 256×512 65.5 60.2 93.1

a contrario SPADE 256×512 59.9 61.5 93.7
CC-FPSE 256×512 52.4 61.8 92.8

a contrario CC-FPSE 256×512 53.5 63.9 93.5
Table 1: A comparison of different architectures trained from scratch with and without a contrario
augmentation. The networks with a contrario achieves better results with a mean improvement of
∆mIoU =+2.3, ∆PA =+0.56, and ∆FID =−3.8.

inator for both models on this dataset. The baseline is trained with only conditional pairs,
however, the a contrario data pairs are plotted to asses the ability of the discriminator to
learn the conditionality automatically. The a contrario losses remain high for the baseline
and converge to 0 for the proposed a contrario cGAN. Figure 2 presented the histogram
results for this experiment showed that the proposed approach better models conditionality.
Subsequently the gradients provided to the generator are expected to be better directed. The
gradient norm is plotted in Figure A.5.

3.3 "Single-label"-to-image
The generality of the proposed a contrario cGAN can also be demonstrated by showing that
it also improves architectures other than image-to-image. An example of a different task
is conditioning the generated image on a single input class-label as in [4, 24, 25, 36, 40].
This different architecture is of interest because many new methods for improving cGANs
are often tested on this task. Unfortunately, these methods are mainly evaluated on the
FID [18] and IS [45] scores. As stated earlier, these metrics measure the quality/diversity
and they favor models that memorise the training set [15]. They have not been designed to
evaluate conditionality and therefore not sufficient for the purpose of this paper. Despite that,
these criteria are still important for evaluating the quality of GANs, however, an additional
criterion is required for testing conditionality.

Here a simple conditionality test is proposed specifically for "single label"-to-image gen-
eration tasks based on a pretrained Resnet-56 [16] classifier trained on CIFAR-10 [28]. Big-
GAN [4] was selected as the baseline. Since BigGAN uses the Hinge-loss [31], the a con-
trario loss is adapted as follows:

LD =−Ex∼p(x),y∼p(y|x)
[
min(0,−1+D(x,y)]

]
−Ex∼p(x)

[
min(0,−1−D(x,G(x))]

]
−Ex̃∼p(x̃),y∼p(y)

[
min(0,−1−D(x̃,y))

]
−Ex̃∼p(x̃),x∼p(x)

[
min(0,−1−D(x̃,G(x)))

]
LG =−Ex∼p(x)D(x,G(x)) (7)

Both models are trained from scratch on CIFAR-10 [28] dataset using the hyper-parameter
specified in [4]. The conditionality is tested by generating 10k images for each label(100k
images in total) and calculating the accuracy. The results1are shown in Table 2.

Method IS score FID score Acc
BigGAN[4] 8.26 ± 0.095 6.84 86.54

a contrario BigGAN 8.40 ± 0.067 6.28 92.04
Table 2: A comparison of BigGAN [4] with and without the a contrario GAN. The network with
a contrario achieves significantly better results with an improvement of ∆Acc =+5.59, ∆IS =+0.14,
and ∆FID =−0.56.

1The Pytorch IS and FID implementations were used for comparison
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Figure 4: Comparison of the proposed approach on the NYU Depth V2 training set. (a) The loss
function for each set of data-pairing for the baseline cGAN method. (b) The loss function for each
set of data-pairing for the a contrario cGAN method. (c) The evolution of the RMSE log for both
methods, performed on the validation dataset. It can be seen in (b) compared to (a) that the a contrario
loss converges to 0 rapidly for the proposed approach. In (c) the proposed approach is much more
efficient and converges much faster and with much higher accuracy.

The conditionality improved significantly over the baseline with ∆Acc = +5.59 and the
quality also improved with ∆FID = −0.56 , ∆IS = +0.14. Similar to the observation made
before a contrario enforces the conditionality without compromising the quality. A failure
mode of the lack of conditionality of the discriminator is class leakage : images from one
class contain properties of another. While is it not easy to define a proper metric for such
failure mode, it is shown that using the a contrario loss the classification was improved and
therefore the generation is better constrained and does not mix class properties. This result
shows that a contrario GAN also improves on a different SOTA task and confirms again that
conditionality is an overlooked factor in current SOTA metrics.

3.4 Monocular Depth prediction
Monocular depth prediction is an ill-posed problem as an infinite number of 3D scenes can
be projected onto the same 2D scene. A good model for predicting image geometry should
exploit visual clues such as object sizes, lighting, shadows, object localization, perspective
and texture information. Depth prediction is an appropriate task to evaluate the conditional
relationship between x and y. The RMSE log error is a strong metric to evaluate the condi-
tional information since it takes into account the fidelity of the prediction with respect to the
input. Similar to [11] other metrics are also reported for completeness. The model is trained
on the NYU Depth V2 Dataset [37] to predict depth from monocular 2D-RGB images only.
The official train/validation split of 795 pairs is used for training and 694 pairs are used for
validation. Similarly to low resolution label-to-image translation, the dataset images are re-
sized to have a resolution of 256× 256. The experiment is repeated 6 times without fixing
the seed and the mean and standard deviation are reported.

Figure 4(c) shows the RMSE log performances of the validation set over the training
iterations for one experiment. Table 3 shows the comparison of the two models across dif-
ferent metrics. Clearly the a contrario cGAN reaches a better performance with log RMSE
0.3036 versus 0.3520 for the baseline (the mean is reported here). The evaluation of mode
collapse using NDB [44] of the two networks is given in Section A.3. The qualitative results
are shown in Figure A.8. Moreover, Figure 4(a) and Figure 4(b) compare the losses of the
discriminator for the different data pairings when using the baseline model and the proposed
a contrario model. Similar to Label-To-Image translation, the baseline results show high
loss for real a contrario.

The discriminator is optimized only to distinguish real and generated samples its decision
boundary is independent off conditional variable. The baseline cGAN architecture will not
penalize the generation of outputs belonging to the target domain but that do not correspond
to the input. Not only does this leave the generator with a larger search space ( the generator
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Method RMSE log silog log10 abs rel
baseline 0.3520± 0.0016 28.54± 0.1932 0.1247 ± 0.0005 0.3318± 0.0026

a contrario 0.3036± 0.0055 23.51± 0.1932 0.1079 ± 0.0021 0.2868 ± 0.0093

Table 3: Monocular Depth prediction experiments were repeated on the baseline and a contrario
cGANs 6 times with different seeds. The mean and standard deviation are reported for each metric.
The results shows that the a contrario cGAN outperforms the baseline on the depth metric [11].

Method Pixel accuracy (PA) Mean Acc FreqW Acc mIoU
Baseline 66.12 23.31 53.64 15.97

a contrario 72.93 26.87 60.40 19.23
Table 4: Comparison on the Cityscapes dataset validation set. The proposed method consistently
obtains more accurate results and finishes with a largely different score at the end of training with
mIoU of 19.23 versus for the baseline 15.97.

is less efficient), but it can allow mode collapse whereby the generator always produces
the same output. The a contrario loss explicitly avoids this by penalizing unconditional
generation. The a contrario losses of the a contrario cGAN can be observed in Figure 4(a)
and Figure 4(b) to converge rapidly to 0. This indicates the search space of the generator is
explicitly restricted to only conditional samples early in the training.

3.5 Image-to-label segmentation
Image-to-label is a simpler task compared to depth prediction and label-to-image predic-
tion as the goal of the generator is to transfer from a high-dimensional space to a lower-
dimensional space. Furthermore, the evaluation is simpler since the image mask does not
have multiple solutions and it is not necessary to use an external pre-trained segmentation
network for comparison as in the case of label-to-image translation. It is worth mentioning
that pix2pix is trained to output 19 classes as a segmentation network and is not trained as an
image-to-image network as it is often done in cGAN architectures. FCN [34] trained on [22]
obtains 21.0 mIoU. The performances are shown in Table 4. As expected the training was
unstable (refer to Figure A.6). However, the a contrario cGAN shows superior mIoU per-
formance with 19.23 versus 15.97 for the baseline model. Figure A.7 shows the qualitative
results of the both models. It can be observed that the model baseline has invented labels that
are not specified by the input. Training with a contrario helps the discriminator to model
conditionality. Thus, the generator search space is restricted to only conditional space. The
generator is penalized for conditionality even if the generation is realistic.

4 Conclusion
This paper has proposed two important contributions for conditional Generative Adversarial
Networks (cGANs). The first main contribution is a probabilistic analysis of the discrimi-
nator to show that it is not explicitly conditional. The second contribution is a new method,
called a contrario cGAN, that explicitly models conditionality for both parts of the adver-
sarial architecture via a novel a contrario loss that involves training the discriminator to learn
unconditional (adverse) examples. This leads to a novel type of data augmentation approach
for GANs (a contrario learning) which allows to restrict the search space of the generator to
conditional outputs using adverse examples. Extensive experimentation has shown signifi-
cant improvements across several tasks, datasets and architectures.

Although a contrario has shown significant improvement for image domain addressing
other modalities such as audio and text is to be tested in the future work. It will also be of
interest to explore multiple discriminator output classes for the four pairings considered in
this paper.
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