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Abstract

Pooling is a simple but widely used layer in modern deep CNN architectures for fea-
ture aggregation and extraction. Typical CNN design focuses on the conv layers and
activation functions, while leaving the pooling layers with fewer options. We introduce
the Learning Discrete Wavelet Pooling (LDW-Pooling) that can be applied universally
to replace standard pooling operations to better extract features with improved accuracy
and efficiency. Motivated from the wavelet theory, we adopt the low-pass (L) and high-
pass (H) filters horizontally and vertically for pooling on a 2D feature map. Feature
signals are decomposed into four (LL, LH, HL, HH) subbands to retain features better
and avoid information dropping. The wavelet transform ensures features after pooling
can be fully preserved and recovered. We next adopt an energy-based attention learning
to fine-select crucial and representative features. LDW-Pooling is effective and efficient
when compared with other state-of-the-art pooling techniques such as WaveletPooling
and LiftPooling. Extensive experimental validation shows that LDW-Pooling can be ap-
plied to a wide range of standard CNN architectures and consistently outperform standard
(max, mean, mixed, and stochastic) pooling operations.

1 Introduction
Convolutional Neural Networks (CNNs) have been widely used in many domains, in-

cluding object detection, segmentation, and recognition. In the design of CNN architecture,
downsampling layers with pooling and stride-convolutions are common operations that can
effectively aggregate features. Standard pooling methods such as simple average pooling,
max/min pooling are widely used for multiple purposes in CNN, to (1) fine-select important
features, (2) aggregate spatially local features, and (3) retain important features for efficient
processing in subsequent layers. Although being widely used, there are several drawbacks of
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(a) (b)

Figure 1: Overview of the proposed LDW-Pooling method. (a) Given an input signal of
C channels of width W × height H, we use high-pass (H) and low-pass (L) filters in the size
of 1×K (horizontally) and K × 1 (vertically) to decompose each 2D feature map into four
subbands, LL, HL, LH, HH. (b) Reconstructed result after LDW-Pooling decomposition and
recovering by UNet with PSNR=33.1.

the simple pooling methods. First, over-aggressive filtering inevitably results in information
loss and degraded performance. Second, the simple reduction of spatial resolution breaks
shift-invariance [22]. Third, pooling operations are generally not invertible — upsampling
the down-sampled feature maps cannot recover the lost information. Finally, feature reduc-
tion can be pushed to the extreme, that the feature vector of a small object can reduce into
a single-pixel or disappear in the deeper layers, thus hinders accurate discrimination. To
this end, many recent designs of more sophisticated but effective pooling methods are pro-
posed [18, 24]. However, due to the broad applicability, the potential of a better pooling
mechanism is yet to be thoroughly explored. This paper investigates a bidirectional pooling
mechanism that can preserve details when down-sampling the feature maps and retain finer
spatial information to recover detailed up-sampled feature maps.

Max pooling is the most widely used downsampling operation in popular CNN architec-
tures, where the strongest activation within each neighborhood is kept in the filtering scope.
However, such strongest activations may not always be the best choice for pooling. In [20],
a stochastic pooling technique is proposed to ensure that non-maximal activations can also
be utilized. To address the shift-invariance problem, an anti-aliasing filter with a smoothing
kernel is adopted in [22] to improve ImageNet classification. In general, excessive pooling
can degrade object detection or recognition accuracy due to the inability to preserve discrim-
inative features or details. In [4], the Local Importance-based Pooling (LIP) outperformed
hand-crafted pooling layers by a large margin, with a penalty of lower efficiency. In [3], an
adaptive pooling technique can adjust the level of details to preserve. However, this adaptive
technique needs a parallel implementation for efficiency consideration.

In this work, we propose a learnable discrete wavelet (LDW) pooling technique to bet-
ter aggregate local features, such that lost information can be better recovered. Moreover,
in LDW-Pooling, we decompose 2-D convolutions into the 1×K and K × 1 kernels to ef-
ficiently extract horizontal and vertical features with a learnable attention mechanism. Fig-
ure 1 shows the overview of the proposed LDW-Pooling method.

The main contributions of this paper are summarized in the following:

• We propose a new LDW-Pooling scheme by decomposing the input signal into four
discrete wavelet subands (LL, LH, HL, HH) without information loss. With a new
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learnable energy attention design, LDW-Pooling enables accurate and fast pooling
that can be combined and used in mainstream CNN applications.

• The reversibility of LDW-Pooling is well-suited for fine-grained object classification
for objects in both small and large sizes with higher accuracy.

• The LDW-Pooling performs 2-D convolution by decomposing it into two 2 runs of
1-D convolutions. It is thus more efficient than traditional pooling methods. It can be
easily integrated with different backbone thanks to this efficient and reversible design.

• LDW-Pooling outperform the state-of-the-art classification method on CIFAR-10, CIFAR-
100, and ImageNet datasets in terms of accuracy and efficiency. Results also show
great generalization ability on various backbones.

2 Related Works
Pooling in CNN. In CNN architectures, pooling is a widely used technique to im-

prove the feature extraction efficiency and robustness to input variations. Two most popular
pooling methods are average pooling and max pooling. The former is equivalent to blurred-
downsampling and the latter is generally more effective and popularly used in many CNN
backbones. Although being simple and effective, these standard pooling methods lose de-
tails in downsampling [19, 20]. To maintain structured details, the detail-preserving pooling
(DPP) in [14] can magnify spatial changes and thus preserves some structural details.

Learning based pooling. To make the pooling learnable, [11] learns adapted pooling
on complex and variable patterns via a linear combination of max and average pooling. A
stochastic pooling was proposed in [20] for solving the over-fitting problem in CNN architec-
tures by using a multinomial distribution to aggregate activations within a region. Similarly,
in [21], S3 pooling was proposed to embed randomness into a multinomial probabilistic
model, to select local activations with proper weights. A Gaussian model is modified in [17]
for probabilistic pooling with trainable parameters, where local activations can be aggregated
based on their local statistics. Toward trainable pooling operation, a global feature guided
flexible pooling in [8] selects the pooling function based on the maximum entropy principle.

Wavelet related pooling methods. It is known that standard (max and average) pool-
ings can drop details in downsampling, especially for important details that are with less
intensity than the insignificant ones [19]. Several pooling approaches tried to preserve de-
tails by incorporate wavelet representations into CNNs. A wavelet pooling algorithm in
[18] decomposes input signals to different subbands using wavelet transform, such that the
feature contents can more accurately represented with fewer artifacts. The first layer of
ResNet is modified in [12] with a wavelet scattering network to maintain performances us-
ing a smaller number of pooling parameters. In [2], Haar wavelet CNNs are combined with
a multi-resolution analysis for texture classification and image annotation.

Feature-preserving and invertible pooling. The Lifting Scheme within the CNN net-
works in [3] improves texture and object classification with less parameters. Their frame-
work focuses on building an interpretable network by integrating multiresolution analysis,
rather than pooling. The BlurPool with a smoothing kernel in [22] can reduce aliasing and
improve ImageNet classification accuracy, however the pooling still results in detail lost. In
the above wavelet-based pooling techniques or multi-resolution analysis, Haar wavelets are
used for band decomposition. Thus in these methods, the wavelet filter are handcrafted, with
fixed values, and thus not adaptive to handle data-dependent tasks. These pooling methods
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not invertible (that is, the lost information in the downsampling process cannot be recov-
ered). Inspired by the Lifting Scheme [16], LiftPooling [24] allows the CNN architecture to
be invertible and thus can achieve better robustness against input corruptions and perturba-
tions. The LiftDownPool module was created to decompose the input into four sub-bands
with the Haar wavelet. Next, another LiftUpPool module performs upsampling from these
four sub-bands without losing information. The parameter space of LiftPooling is high, since
all subbands must be used to achieve the best performance. Similar to other wavelet-based
pooling methods, the Haar wavelet filters used for generating the four bands (LL, LH, HL,
and HH) are handcrafted and not learnable from data.

Compared to all surveyed methods, in this paper, we propose a learnable pooling scheme
based on discrete wavelets that is invertible, adaptive, and efficient. The proposed LDW-
Pooling learns the wavelet filter parameters from data for subband decomposition and recov-
ery. Since the filters are learned from image contents, it is adaptive and potentially perform
better for image classification and recognition. With a new energy attention learning, our
method enables accurate and fast pooling that is suitable for CNN classification of objects of
various sizes. It is computational efficient due to the decomposition of the 2-D convolution
into two 1-D convolution operations.

3 Methods
3.1 Discrete Wavelet Pooling

We employ the learnable discrete wavelet pooling to extract features and better retain
them with less computation. Let X ∈ RH×W denote an input feature map. The local pooling
operation on X can be defined as:

Y(x′,y′) = ∑
(∆xi,∆yi)∈Ω

wi X(x+∆xi,y+∆yi) s.t. ∑
i
(wi)

2 = 1, wi ≥ 0, (1)

where Ω indicates a kernel region, and wi indicates the weighting parameter at each position.
The division ( x

x′ ,
y
y′ ) stands for the stride factor, i.e., x = 2x′ and y = 2y′ for 2× 2 stride.

For the case of average pooling, Y represents the low-frequency part of X ; and the high-
frequency part of X is discarded (in other words, the details of X are missing after pooling).
Max pooling keeps the maximal activation and thus performs generally better than average
pooling on feature selection. However all non-maximum signals are discarded after max
pooling. The widely used down-sampling scheme of convolution with stride 2 in CNN also
results in information loss. An intuitive motivation of our work is to develop a pooling
operation that can extract and retain both low and high frequency parts of X . Inspired by
the wavelet theory and the strength of invertability of wavelet transform, our wavelet based
pooling is invertible in nature. With the new design of learning wavelet parameters from
data, our LDW-Pooling can excel in feature-preserving and computational efficiency.

Let W L and W H denote the low-pass and high-pass wavelet kernel weights, respectively.
According to the property of wavelet transform, W H and W L should satisfy the constraints:

∑
i∈K

(
W L(i)

)2
= 1 and ∑

i∈K
W H(i) = 0, (2)

where K represents a 1-D kernel of size K = |K|. As shown in Figure 1, the two horizontal
poolings are first performed using W L and W H respectively, and then two vertical pooling
are performed subsequently. The horizontal pooling decomposes the incoming map along
the X-direction to low-frequency signal Y L

(x′,y) and high-frequency signal Y H
(x′,y):
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Y L
(x′,y) = ∑

i∈K
W L(i) X(x+i,y), (3) Y H

(x′,y) = ∑
i∈K

W H(i) X(x+i,y). (4)

Assume there are C channels of input feature maps. After the horizontal pooling, there
are 2C channels of resulting feature maps with half sizes along the X direction.

Next, two vertical pooling operations continue on Y L
(x′,y) and Y H

(x′,y), respectively. Re-
garding Y L

(x′,y), we obtain two subbands:

Y LL
(x′,y′) = ∑

j∈K
W L( j) Y L

(x′,y+ j), (5) Y LH
(x′,y′) = ∑

j∈K
W H( j) Y L

(x′,y+ j). (6)

In addition, for Y H
(x′,y), we obtain the other two subbands Y HL

(x′,y′) and Y HH
(x′,y′) are obtained:

Y HL
(x′,y′) = ∑

j∈K
W L( j) Y H

(x′,y+ j). (7) Y HH
(x′,y′) = ∑

j∈K
W H( j) Y H

(x′,y+ j). (8)

Note that only 1-D convolutions are used to obtain the pooling results Y LL
(x′,y′), Y LH

(x′,y′),
Y HL
(x′,y′), and Y HH

(x′,y′) as well. The time complexity for performing Eqs.(3)-(8) is O(KWH).
In comparison, standard pooling techniques such max pooling or average pooling on conv
stride 2 are all based on a 2-D kernel. Their complexity is O(K2WH), and the output signal
is not invertible.

For the best of our knowledge, all other existing wavelet-based pooling techniques [2,
3, 12, 18, 24] perform signal decomposition based on a fixed Haar wavelets design: W L =
{ 1

2 ,
1
2} and W H = { 1

2 ,
−1
2 }. Such handcrafted wavelet parameters are not learnable nor adap-

tive to application tasks. Another drawback of these methods are that, after each pooling
operation, the number of feature channels increases to become quadruple. Their parameter
spaces are higher, since all subbands shall be used to achieve the desired CNN performance.
In comparison to these method, our proposed LWD-Pooling adopts a learnable scheme to
learn filter parameters from data for subband decomposition. Such learned 1-D wavelet pa-
rameters can better recover pooled signals with improved efficacy and efficiency, and the
total parameters are greatly reduced.

3.2 Learning Discrete Wavelet Pooling Filter Parameters
We next describe the design of the loss function for data-driven learning of discrete

wavelet (DW) filter parameters. To prevent the filter weights from approaching mostly zero
during the training process, we enforce the following constraints in the loss design.

For the low-pass DW filter, the square sum of filter weights should be equal to 1 accord-
ing to Eq. (2). Since the filters are to be learned from data, the values of the low-pass DW
filter can be distinct to gain better performance. And we empirically confirmed such propo-
sition. Let W L denotes the low-pass DW filter weights. According to this constraint from
Eq. (2) during training, we introduce the following loss term for the low-pass DW filters:

LLow =

[
K

∑
i

W L(i)2 −1

]2

+

[
K

∑
i

(
W L(i)

)
−
√

2

]2

. (9)

This constraint minimizes the squared differences between the sum of low-pass wavelet
weights and

√
2. For the high-pass DW filters, similarly, direct summation of high-pass
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Figure 2: The energy attention mechanism for feature enhancement consists of two
parts. The “Energy” part calculates feature energy in each channel as the sum of squared
feature values. The “Attention” part learns which channel is important via squeeze-and-
excitation [6].
filter weights in training may result in all zeros (as a trivial solution that is not desirable).
Since the sum of high-pass filter weights must be zero, we introduce the following constraint
LHigh in the loss term for the high-pass DW filters:

LHigh =

(
K

∑
i

W H(i)
2 −1

)2

+

(
K

∑
i

W H(i)

)2

, (10)

where W H denote the high-pass filter weight. The first term of Eq. (10) enforce W H to
become unit vectors.

To retain the reversibility of DW pooling, the energy of W L and W H should be equal to
1. Thus, we introduce the following reversibility loss term:

LReverse =

[(
K

∑
i

W L(i)
2
+

K

∑
i

W H(i)
2
)
−2

]2

. (11)

Finally, to make the symmetrical filters, we introduce the following symmetrical loss term:

LSym =
⌊K/2⌋

∑
i

[
W L (i)−W L (K − i)

]2
+

⌊K/2⌋

∑
i

[
W H (i)−W H (K − i)

]2
. (12)

The four constraints in Eqs. (9)-(12) jointly ensure: (1) the sum of low-pass filter
weights to be

√
2, (2) the sum of high-pass filter weights to be 0, (3) the reversibility of

pooling, and (4) the symmetric of the filter. We sum up all three terms in combination:
LWavelet = (LLow +LHigh +LReverse +LSym). (13)

For training the CNN classification model, we use cross-entropy loss which is commonly
used in the classification task,

LCE =
B

∑
b
[ŷb log(yb)+(1− ŷb) log(1− yb)], (14)

where B denote the batch size, and ŷb and yb denote the ground-truth label and model pre-
dicted probability, respectively. The final total loss used for training is the sum of the cross-
entropy loss LWavelet and the constraint terms LWavelet :

Ltotal = LCE +LWavelet . (15)

3.3 Energy-based Attention Learning

To finish feature aggregation from the discrete wavelet pooling in § 3.1 so that features
can be better preserved, we perform an energy based attention learning that can enhance the
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Figure 3: Original Bottleneck. BN and ReLU denote to batch normalize and ReLU function.
With several convolutions to extract the feature to get ∆x. The residual branch simply get
features from Xt−1 with 1×1 convolution with 2-stride if needed.

extracted feature with crucial information. Figure 2 illustrates such energy-based attention
learning mechanism. In contrast to the use of average in computing the feature map, the en-
ergy design aims to keep high activations. In standard average pooling, such high activations
will be smoothed by the average operation when it surrounds by low activation, which is a
drawback that leads to the missing of crucial information after pooling.

In our energy-based design, we introduce a square operation in energy calculation, such
that low activations that are possibly with negative values can become positive after taking
square. This way, the energy-based learning can possibly attend to low input activations dur-
ing the training. This design can essentially resolve the difficulty of learning important low
activation signals, while preventing the high activations to be smoothed by low activations.

Energy definition. Given an input feature map X of size W ×H, let Xc denote the
feature map of the cth feature channel. The energy Ec of the feature map Xc for channel c is
calculated as the sum of the square of all feature values in the channel:

Ec =
W

∑
x

H

∑
y

(
Xc
(x,y)

)2
. (16)

Note that the output Y of feature maps ( Eqs.(3)-(8)) at current layer will be the input X of
next layer. The energy mechanism reinforces all the activations no mater it responses high or
low to the filter. To eliminate the impact of image brightness (whose value is usually greater
than other features), we perform batch normalization before calculating the energy.

Attention calculation. In contrast to the simple use of global average to summarize
the feature information, we use the energy calculated from Eq. (16) to represent the channel
information. Our approach is inspired from the Squeeze-and-Excitation Net (SENet) [6].
Let SE denote the Squeeze-and-Excitation without average pooling. The Squeeze-and-
Excitation with energy Se is calculated as:

Se = SE
(
E1, ...,Ec, ...,EC) , (17)

where C is the total number of channels. The feature channels {Xc,c = 1, ...C} can then be
weighted based on Se.

3.4 LDW-Pooling for Residual Net
We describe how to apply LDW-Pooling to the widely used Residual Net [5]. In Resid-

ual Net, the down-sample operators including max pooling and 2-stride convolution, as in
Figure 3. The time complexity to perform the residual block is O( 1

4CK2WH), where the
kernel size for convolution is K ×K.

To apply LDW-pooling to the Residual Net, we first use a 1×1 convolution with stride
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Figure 4: LDW-Pooling in Bottleneck. With LDW-Pooling on Xt−1 at residual branch. We
slightly change the output of Conv1×1 with the channel number equal to the input channel.
This makes the output channel of LDW-Pooling correspond to the original output.

2 to reduce the number of channels from C to C
4 . Then, the time complexity to perform the

residual block is thus O( 1
16CK2WH). Figure 4 shows the details of how our LDW-pooling is

applied to the bottleneck of Residual Net. The LDW-pooling is added to the skip connection.
The number of feature channels fed to the LDW-pooling is C/4 and becomes C after pooling.
After integration, the output dimension of this bottleneck is C× W

2 × H
2 . The LDW-Pooling

performs 2-D convolution by decomposing it into two 2 runs of 1-D convolutions and results
in the time complexity O( 1

2CKWH). It is thus more efficient than the original design of
Residual Net. LDW-Pooling can be easily integrated with different backbones in a similar
way to leverage such efficient design.

Table 1: Ablation study of our LDW-pool on CIFAR-10 [10] and CIFAR-100 [9]
CIFAR-10 CIFAR-100

Model Pooling Mean Test Error Model Pooling Mean Test Error

ResNet50 Original 8.72% ResNet50 Original 31.89%
Ours 7.87% Ours 29.75%

VGG13 Original 9.63% VGG13 Original 32.06%
Ours 8.98% Ours 30.50%

VGG16 Original 8.48% VGG16 Original 30.73%
Ours 7.94% Ours 29.87%

4 Experimental Results

Implementation details. We trained several CNN models (ResNet and VGG with var-
ious depth) with LDW-Pooling with batch size 64 for experimental evaluation. The learning
rate starts from 10−4 with a decrease by the rate of 0.1 for every 100 epochs. Each model is
trained for 400 epoch using the Adam optimizer with weight decay 10−4.

4.1 Results

Results on CIFAR-10. The dataset consists of 50,000 training data and 10,000 testing
data in 10 classes of low resolution (28×28), so we perform data augmentation on training
set by re-scaling the images into 300×300 then random cropping into 224×224, and random
flipping horizontally or vertically. For testing, we simply re-size the images into 224×224.
As shown in Table 1 (left) our proposed pooling surpass three popular backbones.

Results on CIFAR-100. The CIFAR-100 dataset is similar to CIFAR-10, except that
the number of the class is 100 classes and 600 images per class. There are 500 and 100
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images per class for the training and testing set, respectively. We perform the same pre-
processing as in CIFAR-10. As shown in Table 1 (right), that LDW-Pooling has sigfinicant
performance gain over all the baselines due to the property of feature preserving.

Results on PASCAL-VOC12. The PASCAL-VOC12 is a semantic segmentation dataset
that contains 20 foreground object classes and one background class. The augmented ver-
sion of PASCAL-VOC12 which contains 10582 training images and 1449 validation images
is used for training and validation. We consider the basic UNet model which downsamples
with maximum pooling and upsamples with de-convolution as the benchmark. We change
the maximum pooling and de-convolution with LDW-Pooling and reverse LDW-Pooling for
the comparison. The performance is measured in terms of pixel mean-intersection-over-
union(mIoU) across 21 classes as shown in Table 4. The reversibility of our method makes
better segmentation results gained than the original Unet. Figure 1(b) shows the recon-
structed result after LDW-Pooling decomposition and recovering by UNet with PSNR=33.1.

Results on ImageNet. ImageNet consists of 1,000 categories ranging from 732 to
1300 images per class in the training set and 50 images per class in the validation set. We
performed the same pre-processing as done in Section 4.1 for CIFAR-10. Table 2 shows
the comparison of LDW-Pooling with other state-of-the-art pooling methods. For all the
categories except ResNet 18, our method outperforms other methods. For ResNet18, fewer
convolution layers might cause few semantic features to be extracted for LDW-pooling.

4.2 Ablation Study
To show the effectiveness of our method, we conduct ablation study on several settings.
LDW-Pooling and Energy Attention on classification is reported with CIFAR-10/100

in Table 3. It is clear that the accuracy improvement is majorly caused by the LDW-Pooling
technique rather than energy attention.

LDW-Pooling vs i-RevNet [7]: Table 5 shows that comparing with SoTA reversible
pooling method, i.e., i-RevNet [7]. Our LDW-pooling method can gain better classification
accuracy on both CIFAR-10 and CIFAR-100 dataset. Since i-RevNet [7] focuses only on the
design of filters with good reversibility rather than good feature extraction.

Pretrained Filter Weights: The pretrained weights were obtained by randomly gener-
ating filters which satisfy wavelet constraints before training. Clearly, better pooling filters
for target tasks can be derived via the loss Lwavelet . More weights on LWavelet will enhance the
reversibility with higher PSNR if the target task is "reconstruction" or "segmentation". For
the classification task, LCE is a necessary term. Table 6 shows the accuracy of classification
can be further improved if the term LWavelet is added. If the loss LWavelet is added more, more
classification accuracy can be gained. However, when the reversibility is higher, the effect of
LCE will decrease and result in accuracy degradation. Thus, the weights for LCE and LWavelet
are equally set (see Eq.(15)). The "pretrain" option means initial weights are obtained by
randomly generating filters which satisfy wavelet constraints before training.

5 Conclusion
This paper presented the LDW-Pooling, an effective learnable pooling method that can

swap and replace the widely-used pooling methods in CNN with many desirable advan-
tages. The discrete wavelet transform properties ensure the invertibility of the extracted
features after pooling. The weights of the wavelet kernel can be learned from training data
via an energy-based attention mechanism to better perform in each application-dependent
scenario. The 1-D linear complexity is computationally efficient when compared with other
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Table 2: Comparisons among LDW-Pooling and SoTA pooling methods based on Ima-
geNet [1]. Symbol ⋆ denotes the re-evaluated scores by running source codes from original
authors. Other scores were cited from [24].

ResNet18 Renst50 MobileNet-V2
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Skip [15] 30.22 10.23 24.31 7.34 28.66 9.70
MaxPool 28.60 9.77 24.26 7.22 28.65 9.82
AveragePool 28.03 9.55 24.40 7.35 28.32 9.72
S3Pool [21] 33.91 13.09 27.98 9.34 40.56 17.91
WaveletPool [18] 30.33 10.82 24.43 7.36 29.27 10.26
BlurPool [22]⋆ 29.88 10.58 24.60 7.73 30.58 11.26
DPP [14]⋆ 29.12 10.21 24.62 7.49 29.85 10.53
SpectralPool [13] 28.69 9.87 24.81 7.57 33.38 12.56
GatedPool [11] 27.78 9.44 23.79 7.06 28.94 9.90
MixedPool [11] 27.76 9.50 24.08 7.32 29.00 9.97
GGFGP [8]⋆ 26.88 8.66 22.76 6.34 28.42 9.59
GaussPool [17]⋆ 26.58 8.86 22.95 6.30 27.13 8.92
LiftDownPool [23] 25.80 8.14 22.36 6.11 26.09 8.22
LDW-Pool 26.10 8.01 22.10 5.88 25.97 7.98

Table 3: Ablation study of LDW-Pooling and Energy Attention.

Model LDW-Pooling Energy Attention
CIFAR-10

Mean Test Error
CIFAR-100

Mean Test Error

ResNet50
V V 7.87% 29.75%
V 7.98% 29.83%

8.72% 31.89%

Table 4: Ablation study of reversibility with UNet on VOC12 dataset.
VOC12 (21 classes)

Model Pooling mIoU

Unet Original 47.83
Ours 49.02

Table 5: Comparisons between our method and i-RevNet[7].

Model Pooling
CIFAR-10

Mean Test Error
CIFAR-100

Mean Test Error

ResNet50 Our 7.87% 29.75%
PS 8.77% 32.02%

Table 6: Ablation study of the effect of LWavelet .
Pretrain L_wavelet Mean Test Error

V V 7.87%
V 7.98%

V 9.13%
9.94%

wavelet-based pooling methods. Experimental evaluations show that LDW-Pooling outper-
forms other wavelet-based pooling approaches as well as standard pooling methods.

Future work includes further application and evaluation of the LDW-Pooling on other
computer vision tasks such as object detection with segmentation, as well as application to
non-vision tasks including NLP and others.
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