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Abstract

In the last decade, radar is gaining its importance in perception modules of cars and
infrastructure, due to its robustness against various weather and light conditions. Al-
though radar has numerous advantages, the properties of its output signal also make the
development of fusion scheme a challenging task. Most of the prior work does not exploit
full potential of fusion due to the abstraction, sparsity and low quality of radar data.

In this paper, we propose a novel fusion scheme to overcome this limitation by intro-
ducing semantic understanding to assist the fusion process. The sparse radar point-cloud
and vision data is transformed to robust and reliable depth maps and fused in a multi-
scale detection network for further exploiting the complementary information. In our
experiments, we evaluate the proposed fusion scheme on both depth estimation and 2D
object detection problems. Object detection results compare favourably to the state-of-
the-art and demonstrate the effectiveness of the proposed scheme. Depth map estimation
results are on par with the state-of-the-art on depth from RGB estimation. The ablation
studies also show the effectiveness of the proposed components.

1 Introduction

With the rapid need to develop the autonomous driving system, object detection and depth
estimation have become increasingly important research problems. For achieving accurate
and reliable results, multiple sensors are fused to take advantage of different modalities,
especially LiDAR, radar, and camera. Radar is an important sensor in perception modules
because of its robustness against various weather and light conditions, but it has not been
investigated much in a fusion context. Moreover, compared to LiDAR, radar has a larger
operation range and lower costs [1, 16], which makes it a suitable alternative for combining
with RGB cameras. However, due to the specular nature of electromagnetic reflections at
wavelengths employed by the radar [30], noisy measurements with a limited field of view
make designing an applicable fusion scheme become a challenging problem with limited
previous research.
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In order to fuse the radar signal with RGB images, numerous methods have been pro-
posed to tackle this problem. Typically, radar data is processed by CFAR algorithm to con-
vert the range-azimuth-doppler tensor into a point-cloud to separate the targets of interest.
There are a few studies combining the radar point-cloud with various fusion schemes, was
presented in [3, 20, 21, 22, 23, 30]. Although the surrounding clutter and noise have been
eliminated, the measurements are still ambiguous and abstract in terms of position and ve-
locity. Furthermore, the fusion is also limited due to the extremely sparse points (much fewer
than LiDAR). Hence, it becomes challenging to fully exploit the complementary information
of the radar and RGB images.

In this paper, we propose a novel scheme for 2D object detection and depth estimation
based on semantic-guided fusion which combines the radar point-cloud and vision data. We
are aiming at fusion of the radar point-cloud with monocular RGB images on two levels.
Firstly, in order to alleviate problems caused by the sparsity and abstraction of the radar
point-cloud, we introduce a semantic-guided depth estimation method to fuse vision data and
generate accurate dense depth maps. We rely on the semantic understanding of vision data
and the long detection range of radar signals to improve the performance of depth estimation
and enhance the visibility of far targets in the scene. With the proposed method, the sparse
radar point-cloud could be well transformed into a robust and reliable depth map, solving
the limitation introduced by radar signal post processing. One of the advantages radar brings
into this fusion, over RGB based depth estimation methods is physical distance of the targets.

Moreover, in the second level, we further combine the two sensor modalities to per-
form object detection by proposing a multi-scale fusion network (FusionYOLO) based on
YOLOv3 [25]. For fully exploiting the potential of the complementary information from the
previous level, an additional extraction network is introduced to explore the features from
modalities. We fuse the estimated depth maps with vision data, relying on multi-scale repre-
sentations. Figure 1 illustrates the main architecture of our work. The two levels are trained
separately from scratch and fine-tuned together with the object detection goal.

Our contributions can be summarized as follows:

• To our best knowledge, we are among the first to propose a novel semantic-guided fu-
sion scheme, integrating features from monocular RGB images, semantic information,
and sparse radar point-clouds to estimate accurate dense depth maps and to perform
2D object detection.

• Our proposed multi-scale fusion framework (FusionYOLO) and estimated dense depth
maps can significantly enhance the visibility of small and far targets in the scene.

• In our experiments, we qualitatively and quantitatively verify the performance of our
model and achieve the state-of-the-art 2D object detection performance and a compa-
rable depth estimation result on nuScenes dataset.

2 Related Work

2.1 Depth Estimation
RGB-based Depth Estimation One of the main research directions of RGB-based depth
estimation is relying on the supervision from stereo image pairs or video sequences. Various
objective functions were proposed to explore the geometric priors, such as inverse warping
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[6], left-right viewpoints consistency [7], or spatial and temporal warping [31]. On the other
hand, without using additional sources of information, estimating depth solely from monoc-
ular images is much more challenging. Eigen et al. [5] proposed a multi-scale framework for
estimation of the depth map, relying on the coarse and fine cues. Liu et al. [18] combined
the strength of deep convolution network and continuous condition random field to estimate
the depth. In addition to exploiting the geometric properties from image pairs or the depth
ground truth, some prior works also introduced the semantic information to assist the depth
estimation. Most previous methods used shared latent representations [12], task-specific
sub-network [4, 32], or multi-task learning to leverage the semantic information [9].

Cross-modal Depth Estimation In contrast to monocular depth estimation, combining in-
formation from multiple modalities, results in more reliable and accurate results. LiDAR is
one of the most popular sensors used for fusion with RGB data. Jartiz et al. [11] proposed
a late fusion scheme to handle LiDAR data and RGB images to learn semantic segmenta-
tion and depth completion. Ma et al. [19] simply concatenated the depth information with
vision data along RGB channels to learn directly from RGB-D data. Qiu et al. [24] used the
estimated surface normal as the intermediate representation to produce dense depth. Nev-
ertheless, due to the sparsity, noisiness and lower quality of radar point-clouds, it is hard to
apply these existing LiDAR fusion methods on radar and vision fusion problems [16].

On the other hand, the literature on using radar point-clouds and RGB images for dense
depth estimation is quite limited. Lin et al. [16] proposed a two-stage framework for reduc-
ing noise in radar measurements and dense depth estimation. They used the coarse estima-
tion to learn a filtering process, which removes the outliers from the radar data in the first
stage, then a similar network is applied in the second stage for refinement. However, due to
the lack of depth ground truth in the dataset, LiDAR data is used to supervise the training.
Although LiDAR data contains more accurate and dense depth measurements, its shorter
sensing range could easily remove a significant amount of information in the radar signal,
and limit the valid detection range of the estimated depth maps.

2.2 Radar-Vision Fusion-based Object Detection

Another important line of work related to our method is radar-vision fusion for object de-
tection. Most of the previous works directly utilizes the sparse radar point-cloud as comple-
mentary information to the existing detection networks such as Faster R-CNN [26]. Nabati
et al. [20] introduced a radar-based region proposal network with pre-defined anchor boxes
to improve the detection accuracy. Furthermore, in [21], a middle-fusion approach was pro-
posed to generate object proposals by utilizing both radar and image features. Nobis et al.
[23] simply concatenated and fed the sparse radar data into a pre-trained VGG to learn which
level is most beneficial for object detection. Chadwick et al. [2] also proposed an additional
network to extract and concatenate the radar features to an image-based model for detecting
small objects. Yadav et al. [29] used an attentive feature pyramid network to highlight the
important radar features and fused with RGB images. Chang et al. [3] also generated an at-
tention matrix to control the information flow within vision sensor. These existing research
demonstrate that radar and vision data are quite complementary. However, the sparsity and
noisiness of radar measurements still limits the fusion development. We can conclude from
the above that direct fusion of the noisy and abstract radar point-cloud with the dense RGB
images fails to fully exploit the complementary information of the sensors [30].
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Figure 1: Our proposed semantic-guided fusion framework. With jointly learning semantic
segmentation and depth estimation, the sparse and noisy radar point-cloud could be trans-
formed into a robust and reliable depth map, solving the limitation introduced by radar post
processing and allowing the model to fully exploit the information of different modalities.

3 Proposed Method
The goal of our proposed fusion scheme is to perform object detection and depth estimation
using both radar point-clouds and vision data as input. Our model can be separated into
two parts: cross-modal depth estimation and object detection framework. As illustrated
in Figure 1, during training, we use RGB images xrgb and the projected 2D radar point-
cloud xradar as inputs. The outputs from the proposed network are: the estimated depth map
ỹd and semantic segmentation ỹs. The first level model jointly learns depth and semantic
information by using a shared decoder, which is trained using LiDAR measurements yd
and guided by the semantic segmentation labels ys simultaneously. In the second level, our
cross-modal detection network uses the intermediate depth maps ỹd and vision data xrgb
as inputs, and outputs the detection results. We extract the features by two independent
feature extractors Fi and Fd . Finally, we merge the different modalities on multiple scales for
considering meaningful semantic and depth information from coarse to fine-grained features.

3.1 Cross-modal Depth Estimation
Depth Estimation In previous research, LiDAR measurements are typically treated as the
ground truth to supervise the depth estimation [16]; however, due to the shorter sensing range
of LiDAR, far targets detected by the radar in the scene would be easily ignored. Hence,
in order to preserve the long distance sensing information from radar data and estimate an
accurate depth map covering the maximal sensing range of radar, during model training we
propose to use LiDAR measurements and semantic information from RGB images instead
of using LiDAR as the only ground truth. Specifically, because the semantic segmentation
of the scene can recognize the far objects, we aim at leveraging the semantic information to
give the model a hint to estimate the depth of the far targets.

Inspired by [4], we use a shared decoder to learn depth estimation and semantic seg-
mentation concurrently with different task identity t (as shown in Figure 1) to control the
objective of training: fs(xrgb,xradar, t) = D

(
E
(
xrgb,xradar

)
, t
)
, where D, E are the decoder

and encoder. The task identity t is appended to the extracted feature maps from the en-
coder. According to the different assigned task identity t, we compute the depth estimation
loss Ldepth by assigning t = 1 with element-wise L1 loss: Ldepth =

∥∥ fs(xrgb,xradar,1)− yd
∥∥,

and compute the semantic segmentation loss Lseg by assigning t = 0 with cross-entropy CE:
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Lseg =CE
(

fs(xrgb,xradar,0),ys
)
. Thanks to this unified decoder, the two training objectives

share the same parameters and transfer the geometric projection and semantic information
across the different modalities.

Semantic Guidance For reinforcing the semantic awareness when estimating depth of
long distance targets, we further introduce a guidance loss function Lgd . In order to en-
courage the depth map to preserve the far and small targets and to be locally smooth, we
do not only consider the original RGB images [7, 8, 16] but also the semantic segmentation
results concurrently to develop a regularization term:

Lgd =
(
|∂xỹd |e−|∂xxrgb|+

∣∣∂yỹd
∣∣e−|∂yxrgb|

)
+φ (ỹs)�

(
|∂xỹd |e−|∂x ỹs|+

∣∣∂yỹd
∣∣e−|∂y ỹs|

)
(1)

where � denotes element-wise multiplication, and ∂x(·) and ∂y(·) indicate the gradients in
two different directions. Different from other methods [7, 8, 16], we additionally involve the
edge-aware constrains from the semantic segmentation. However, due to the semantic seg-
mentation output ỹs being also learned by the model during the training, unified weightings
between the RGB images and semantic information constrains might mislead the network
to over-smooth the regions with less confidence. Hence, for proper weighting the seman-
tic awareness cost, we propose a confidence map φ(ỹs) to reallocate the guidance priority,
where φ(ỹs) is composed of the highest confidence values at each location of the segmenta-
tion map ỹs predicted by the model. Specifically, if the model can recognize the objects with
high confidence, the regularization term will put more emphasize on the constraints from the
recognized objects in the semantic segmentation outputs, and vice versa.

During training, the depth estimation model is trained independently from scratch using
the following objective function:

Lds = Ldepth +αsegLseg +αgdLgd (2)

where αseg and αgd are the weights for each loss. During the inference, the model takes radar
point-clouds and monocular images to produce dense depth maps or semantic segmentation
maps by manipulating the task identity manually.

3.2 Cross-modal Object Detection Framework
Multi-scale Fusion In the second part, we further combine monocular RGB images and
radar point-clouds in a multi-scale scheme, called FusionYOLO. Since the modalities have
different physical properties and meanings of a single pixel (RGB values and projected 2D
radar point-clouds), it is not straightforward to train the network by directly combining in-
formation from different modalities. Instead of directly applying the projected 2D radar
point-clouds to the network with vision data [2, 3, 23, 29], we propose to use the estimated
dense depth maps and RGB images as inputs to perform object detection for fully exploiting
the potential of the complementary information from the previous level. Similar to the orig-
inal feature extractor Fi for RGB images, we introduce an additional extraction network Fd
for learning the depth information as illustrated in Figure 1. In order to stabilize the training
process and prevent over-fitting problem, we propose to use independent model parameters
to build the feature extractors Fi and Fd , still relying on the same network architecture.

Furthermore, for leveraging the features from low to high levels, we follow YOLOv3
[25] to extract the features from depth maps at three different scales and fuse with image
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features. Different from the other methods [2, 3, 23, 29], we propose to use dense depth
maps from the first part providing more details of the scenes than the sparse and noisy radar
point-cloud data to assist FusionYOLO to recognize the objects. In addition, we propose to
perform the training of depth estimation and detection models simultaneously. Specifically,
the depth maps used by the detection model are also improved by considering the object
location and classification labels. Moreover, several possible fusion methods are conducted
to compare their performance. According to the experiments, feature concatenation has best
performance. Therefore, we adopt concatenation at different scales as our network design.

Learning of the Proposed Framework During training, we separately train the depth
estimation and object detection models from scratch and fine-tune the whole network end-
to-end. However, finding the optimal weightings of the models with numerous tasks is time-
consuming and difficult. Therefore, we balance the two models by learning the weightings
as [13]:

Ltotal = e−w1Lds + e−w2Ldet +∑
i

wi (3)

where Ldet is the objective loss of the detection network, which contains bounding box
regression, classification and confidence losses, and w1, w2 are learned automatically by the
network to balance the two models for achieving higher performance.

4 Experiments

4.1 Dataset and Implementation Details
Dataset In this paper, we use the newly released nuScenes dataset [1] to evaluate our per-
formance. In this dataset, 6 cameras, 5 FMCW radars and 1 LiDAR were used, covering
nearly 360 degree of view. The FMCW radar used in this dataset can detect up to 250m,
and the LiDAR only can reach 70m from the ego-vehicle. This dataset contains 1000 road
scenes recorded in different conditions. For each scene, they synchronized the sensors and
released the official tool for sensor coordinate calibration as well as 2D/3D annotation con-
version. Annotations of 850 scenes are freely available. In all of our experiments, we rely
on official codes to split the data into 700 scenes for training and 150 scenes for testing and
project the radar point-clouds to 2D image. In addition, we use samples from the front and
rear view of cameras and all the radars for training and evaluation. Furthermore, there are
23 different classes in the dataset, and we follow settings from [20, 21] to condense them
into 6 classes: Car, Truck, Person, Bus, Bicycle, and Motorcycle. We also follow [16] to
use LiDAR measurements as the ground truth. In addition, because nuScenes dataset [1]
did not release the semantic segmentation annotations of the vision data, we introduce the
state-of-the-art model [27] to build the pseudo-labels for training.

Implementation In the depth estimation model, for fairly comparing with the reference
method of [16], we follow most of their settings and use their first stage network architecture,
which is composed of the standard ResNet18 [10] and UpProj [14], to develop our model
(only half size of model parameters [16]). We append an additional task identity t during
training to the feature maps from the encoder to control the outputs. In the object detection
model, we follow the original architecture of the feature extractor to build an additional sub-
network Fd for learning the depth information. All the models are trained using a batch size
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Table 1: Depth estimation performance comparison. It is worth noting that our model can
achieve comparable results by only using half size of the state-of-the-art model parameters
[16] by leveraging the semantic information of vision data.
Methods δ1 ↑ δ2 ↑ δ3 ↑ RMSE ↓ MAE ↓ REL ↓ MAElog ↓

BTS [15] 0.872 0.948 0.976 5.561 2.391 0.123 0.048
Sparse-to-dense [19] 0.876 0.949 0.974 5.628 2.374 0.115 0.047
PnP [28] 0.863 0.948 0.976 5.578 2.496 0.128 0.050
Lin et al. (single-stage) [16] 0.884 0.953 0.977 5.409 2.270 0.112 0.045
Lin et al. (two-stage) [16] 0.901 0.958 0.978 5.180 2.061 0.100 0.040
Ours (RGB only) 0.870 0.948 0.976 5.597 2.499 0.126 0.050
Ours 0.895 0.958 0.978 5.209 2.104 0.104 0.040

of 16 and the SGD optimizer with a learning rate of 0.001 and a momentum of 0.9 for 100
epochs. Please refer to Supplementary Materials for details of our network architecture.

4.2 Quantitative Results
Depth Estimation In order to demonstrate the effectiveness of our depth estimation model,
we compare the performance with the monocular depth estimation method [15] and other ex-
isting fusion methods [16, 19, 28]. The results are shown in Table 1. We adopt mostly used
metrics from previous works to evaluate our performance [4, 5, 19]. For fair comparison, we
follow [16] to use the same settings and codes as our baseline to develop our model. Also,
because of the lack of accurate scene measurements, we follow [16] to use the LiDAR mea-
surements as the ground truth. A fair and comprehensive comparison should also consider
far targets (> 70m) in the scene. However, LiDAR has only about 70m sensing range, which
is much shorter than radar (∼ 250m). Hence, considering the qualitative results shown in
Section 4.3 is necessary.

As we can observe in Table 1, the LiDAR + RGB fusion methods [19, 28] could not
achieve higher performance when we simply replaced LiDAR data with the sparse radar
point-cloud. Furthermore, we also compare our performance with the state-of-the-art method
from [16]. It is worth noting that we only use half size of their two-stage model parameters
to achieve comparable results. Specifically, since we leverage the semantic information of
vision data, our model can estimate accurate depth map with less model parameters. In
addition, our method can also preserve the far radar detection to combine with semantic
awareness from vision data to estimate the dense depth map with enhanced visibility of far
targets. This enhanced information can assist our next level object detection model to detect
far targets. Further details are shown in the next section.

Object Detection We further compare the performance of object detection with the RGB
baseline and other fusion methods [20, 21]. We leverage the standard COCO [17] metrics
to quantitatively evaluate the performance of the proposed method. AP50 and AP75 denote
the threshold of IoU as 0.50 and 0.75, and AP denotes mean average precision where the
threshold of IoU takes values from 0.50 to 0.95, with the step size of 0.05.

As we can find in Table 2, the two-stage baseline Faster-RCNN [26] can achieve higher
performance than the single-stage YOLOv3 [25], especially on the strict AP75 performance.
The trend is similar to COCO dataset [17] results shown in [25]. Due to the different at-
tributes of the single- and two-stage models, such as the network architecture, it is hard
to fairly compare with each other but we still list their performance as references. When
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Table 2: Quantitative results of object detection on the nuScenes dataset. We also replace the
depth maps produced by the monocular depth estimation method [15] and the fusion method
[16] to train YOLOv3 [25] and our FusionYOLO to demonstrate the effectiveness of our
estimated depth maps.

Methods Input data AP AP50 AP75

Two-stage object detection methods
Faster R-CNN [26] RGB 34.95 58.23 36.89
RRPN [20] RGB + Radar 35.45 59.00 37.00
Nabati et al. [21] RGB + Radar 35.60 60.53 37.38

One-stage object detection methods
YOLOv3 [25] RGB 34.69 64.31 33.33
YOLOv3 [25] w/ [15] depth maps RGB 33.10 63.12 32.08
FusionYOLO w/ [15] depth maps RGB 34.94 64.82 35.53
FusionYOLO w/ [16] depth maps RGB + Radar 35.54 65.12 35.83
FusionYOLO w/ our depth maps RGB + Radar 35.95 65.77 35.84

Table 3: Object detection results comparison for different sizes on the nuScenes dataset.
Methods Input data APSmall APMedium APLarge

YOLOv3 [25] RGB 25.10 27.61 38.31
FusionYOLO w/ [16] depth maps RGB + Radar 26.60 28.21 38.43
FusionYOLO w/ our depth maps RGB + Radar 27.00 28.85 38.68

introducing the radar data, we observe that our method outperforms other two-stage-based
methods [20, 21] in terms of AP and AP50. However, although our proposed method do im-
prove the detection performance, we still behind the two-stage based methods [20, 21] on the
strict AP75 performance. We attribute the performance gap to the different types of baseline
models. In addition, in order to demonstrate the effectiveness of our estimated depth maps,
we replace the depth maps produced by the monocular depth estimation method [15] and the
fusion method [16] to train YOLOv3 [25] and our FusionYOLO. The results show that our
depth maps successfully assist our object detection network and achieve significantly better
performance than the others.

Moreover, we have also conducted an additional experiment to demonstrate the capa-
bility of detection among different target sizes. For fair comparison, we only compare the
performance with the single-stage-based methods, and the definition of target sizes are the
same as in the COCO dataset [17]. In Table 3, we can see that our proposed model achieves
higher performance, especially on small and medium targets. Specifically, although it is hard
to separate the targets by their absolute distance from the sensors, we still can observe the
similar trends in the size of bounding boxes. The results show that our depth estimation
method successfully enhances the visibility of far (small) targets and successfully assists our
detection model (FusionYOLO) in object detection. We have also conducted further experi-
ments, such as nighttime/daytime performance, different extraction backbones comparison,
and per-class performance analysis. The results are provided in Supplementary Materials.

4.3 Qualitative Results

In Figure 2, we provide the qualitative results of our method, and also show the results of
[16, 25] for comparison. One can easily notice that our model produces excellent results
with clear edges and less false positives. Especially for the far region in the scene, false
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Figure 2: Example results comparisons. Our model performs favorable results with clear
edges and less false positives, especially in far regions of the scenes. Even when occlusions
cause semantic information loss, our method still estimates depth maps of decent quality.

Table 4: Ablation study of our proposed method on object detection on the nuScenes dataset.
The baseline model is our proposed network architecture without radar data and learning
semantic segmentation. We evaluate the model with or without our proposed components to
verify the improvements.
Methods Input data Lseg Lgd φ(ỹs) AP AP50 AP75

YOLOv3 [25] RGB 34.69 64.31 33.33
Ours - Baseline RGB 34.71 64.34 33.41
Ours RGB X 34.94 64.57 33.69

RGB + Radar 34.97 64.87 34.51
RGB + Radar X 35.47 65.21 35.38
RGB + Radar X X 35.87 65.64 35.67
RGB + Radar X X X 35.95 65.77 35.84

positives of depth values might mislead the object detection model to focus on the wrong
regions and also make the inconsistent edges with the vision data. Compared to [16], our
method provides a smoother surface without ambiguous predictions. In addition, it is worth
noting that even when the occlusions or noise of RGB images cause the loss of the semantic
information (see the last row in Figure 2), our method still can estimate depth maps of decent
quality. It could be attributed to the proposed confidence map φ(ỹs) in the equation 1. The
low confidence scores would suppress the smoothing strength from the semantic awareness,
allowing the model to pay more attention on the supervised depth estimation loss Ldepth.
However, we also notice that if the objects are not recognized by both the depth estimation
and semantic prediction simultaneously, it might be ignored by the FusionYOLO easily, even
the RGB camera successfully captured the objects. (Please refer to the 4th row of Figure 2)
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Figure 3: Ablation study of our proposed method on depth estimation.

4.4 Ablation Study

In order to demonstrate the impact of our proposed methods, we conduct ablation studies
and show the results in Table 4 and Figure 3. Our contribution of multi-task learning and
semantic guidance is evaluated by showing the qualitative results and AP. We use the depth
estimation model without using radar point-cloud data and learning semantic information as
the baseline, and apply the supervised semantic segmentation loss Lseg, semantic guidance
loss Lgd , and the confidence map φ(ỹs) to show the differences.

First, we evaluate the contribution of semantic segmentation without radar data. In Ta-
ble 4, considering that we do not introduce any other supervision method, such as left-right
viewpoint consistency [4], there is only a marginal improvement when semantic segmenta-
tion loss Lseg is applied. When the radar data and semantic information are both taken into
account, our model can make a greater improvement. Next, we evaluate the performance
with and without semantic guidance loss Lgd and the confidence map φ(ỹs) to verify the
effectiveness. Both of them successfully improve the performance by taking advantage of
the semantic segmentation map. Finally, the model with all the proposed components sys-
tematically outperforms the baseline model with significant improvement on the detection
performance and the qualitative results. Our proposed method not only suppresses the false
positives in the depth maps, but also enhances the visibility of objects. Moreover, the detec-
tion performance also verifies the improvement of the depth maps. The model with all the
components achieves the best performance among all the combinations.

5 Conclusion

In this paper, we proposed a novel semantic-guided fusion scheme to combine the radar and
vision data to perform depth estimation and 2D object detection. We rely on semantic un-
derstanding of vision data to alleviate the limitations of the radar point-cloud, and generate
the accurate dense depth maps to enhance the visibility of far targets in the scene, with our
proposed semantic guidance loss and unified multi-task architecture. In addition, we com-
bined the vision and estimated depth information in a multi-scale scheme to perform object
detection. Quantitative and qualitative results on the public nuScenes dataset confirm that
our depth estimation results are on par with the state-of-the-art method, and object detec-
tion results compare favourably to the baseline and other models. Our ablation studies also
clarify the effectiveness of the proposed components.
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