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Abstract

We present an innovative two-headed attention layer that combines geometric and
latent features to segment a 3D scene into semantically meaningful subsets. Each head
combines local and global information, using either the geometric or latent features, of a
neighborhood of points and uses this information to learn better local relationships. This
Geometric-Latent attention layer (Ge-Latto) is combined with a sub-sampling strategy
to capture global features. Our method is invariant to permutation thanks to the use
of shared-MLP layers, and it can also be used with point clouds with varying densities
because the local attention layer does not depend on the neighbor order. Our proposal
is simple yet robust, which allows it to achieve competitive results in the ShapeNetPart
and ModelNet40 datasets, and the state-of-the-art when segmenting the complex dataset
S3DIS, with 69.2% IoU on Area 5, and 89.7% overall accuracy using K-fold cross-
validation on the 6 areas.

1 Introduction
Robotics, autonomous driving, and related areas rely heavily on information captured by 3D
sensors like RGB-D cameras, stereo cameras, and LiDARs. This information provides to
the agent (robots or cars) the 3D location of their surroundings, which can be processed and
used in tasks like scene understanding, path planning, navigation, among others [4, 5, 25].
One of the most used approaches to detect objects in 3D space is point cloud segmentation.
A point cloud is a set of points in 3D, usually unordered and sparse; some regions can be
densely populated and others empty. This type of non-grid structured data is difficult to be
used with convolution operators with the same efficiency as their 2D counterpart.

Various approaches have been proposed to handle such data. Some approaches project
the 3D raw data into a regular structure (e.g. voxels) where 3D convolutions can be used
[10, 17, 22, 23, 31, 39]. Other approaches use multilayer perceptrons (MLP) to process
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point clouds directly [19, 20, 29]. A third approach is to project the points to an intermediate
grid structure where 2D convolutions can be used [9, 15, 35]. Lately, with the success of
transformers and attention mechanisms in the area of natural language processing (NLP)
[30], these methods are starting to be used for 3D point cloud problems [6, 21].

This paper proposes a multi-head attention layer called Geometric-Latent Atten-
tion (Ge-Latto) to segment and label subsets of the point cloud. Ge-Latto is a two-headed
local attention layer that evaluates a patch inside the point cloud and tries to find good re-
lationships between the neighbor points. Unlike other works that combine all the features
indiscriminately [13, 38], each attention head focuses on a specific type of feature. One head
is in charge of finding good geometric relations and the other in finding relationships among
the latent features of the network. Similar to [15], we use an encoder-decoder network with
residual connections. Each layer of the encoder sub-samples the input points, groups the
points into neighborhoods, and uses our Ge-Latto layer to find local-spatial relationships
from the latent and geometric features of neighbor points. The neighbors are found using ra-
dius neighborhoods instead of k-nearest-neighbors (kNN). The network increases this radius
in each layer to increase the field of view and find relationships in bigger neighborhoods.
In the decoder part, we up-sample the points using tri-linear interpolation. To ensure that
in each sampled layer the network learns useful features, we add auxiliary losses similar to
PSPNet [37] and RetinaNet [14]. In other words, the network predicts the segmentation for
each sample size as seen in Figure 1. Our approach is also invariant to permutation because
all the layers are shared MLPs.

The main contributions of this paper are: a) A novel two-headed attention layer
that is able to combine efficiently the geometric and latent information of unordered point
clouds with variable densities for semantic segmentation and shape classification. b) A pyra-
mid-based encoder-decoder architecture with multi-resolution outputs and auxiliary losses to
leverage feature patterns at different resolutions. c) State of the art performance on the com-
plex dataset S3DIS. Not only in the area 5, but also in the k-fold cross-validation overall
accuracy, as well as competitive results in the ShapeNetPart and ModelNet40 datasets.

2 Related Work
Recent works focus on how to handle unordered 3D points and find spatial relationships
between them to better segment a point cloud. This section briefly reviews these methods
and groups them into 4 categories.
Volumetric-based methods. These methods quantize an unordered point cloud in a uniform
structure like voxels. Some approaches use 3D convolutions to find local relationships be-
tween closer groups of points [17, 39]. However, the amount of memory required to compute
these convolutions makes them unfeasible to process a large number of points. Methods like
OctNet [22] and O-CNN [31] save computation time by using octrees to avoid processing
empty spaces. [10] and [23] use Kd-tree and Hash structures instead. [26] uses sparse 3D
convolutions rather than efficient data structures. Although these implementations reduce
the computation required to train a 3D CNN, quantizing the points comes with the cost of
losing important fine-grained information.
Point-based networks. These are networks capable of using irregular point clouds without
projecting or quantizing them into regular grids. Their main characteristic is the use of
shared MLP layers, also known as point-wise or 1D convolutional layers. PointNet [19] is a
milestone of this kind of network. This approach uses MLP layers as permutation-invariant
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functions to process each point of a point cloud individually, and a max-pooling layer to
aggregate them. The performance of the network is limited because they do not consider
local spatial relationships in the data. PointNet++ [20] addresses this issue by sampling
the points, grouping them in clusters, and applying PointNet on the clusters. SO-Net [12]
uses a similar hierarchical structure adding self-organizing maps (SOMs) to capture better
local structures. Other approaches like PointConv [32], PointCNN [13] and KPConv [29]
construct kernels based on the input coordinates to be used as convolution weights.
Projection-based approaches. Some works project local neighborhoods into tangent planes
and process them with 2D convolutions. The tangent plane parameters can be found using
point tangent estimation [27], or approximated [9, 15, 35]. The downside of these approaches
is that they lose the information of 1 dimension given that they project the points to a local
2D plane.
Self-attention and transformers. Self-attention and transformers have revolutionized the
area of NLP [24, 30]. This has lead the 3D segmentation field to investigate these techniques
[6, 21, 38]. In the point cloud domain, self-attention networks can be seen as an improve-
ment of the MLP networks, where instead of capturing local relationships by using pooling
layers or weighting the features of the neighbors using hard-coded scores [16], they learn
these relationships through an attention layer which estimates a score function to weight the
contribution of each neighbor. The self-attention architecture resembles the encoder part
of the transformers. One of the attempts to apply transformers to point clouds is PCT [6].
They replace the MLP layers from PointNet++ with transformer layers and the output fea-
ture of each layer is enriched with a discrete Laplacian operator. There are two differences
between PCT and ours. The first one is that they aggregate the points inside a neighborhood
by applying maxpooling. We use self-attention instead, which allows the information from
all the neighbors to be passed, rather than only using the neighbor with the highest feature
value. The second difference is that they use global attention and we use local attention. This
means that their method attends to all points, while ours attends to a local cluster of points.
In terms of computation, their memory requirements are quadratic [N ×N] while ours is
[K×N] where N is the number of points and K the number of neighbors in the local cluster.
[21] uses geometric features to add extra information to semantic features, and self-attention
and maxpooling are used to do the local aggregation. The same operation is performed at
different scales and the results are combined using another self-attention layer.

The goal of 3D point cloud segmentation is to find good local relationships. Most of
the methods use pooling operations [19, 21] to extract the important features inside a patch.
However, this loses some information about the neighbors because these operations either
return the maximum or average value of a group of points. The neighborhood information
can be preserved better by using an attention mechanism, which helps the network to learn
how much each neighbor contributes to the local patch. Although there are approaches
that use self-attention [6, 20, 21], the type of attention they use is scalar. The problem
with scalar attention is that it uses the same learned score for all the feature channels of a
neighbor point. Our network instead uses vector attention [38], which computes a score for
each channel individually, bringing more flexibility to the layer. We extend this flexibility by
introducing a two-headed self-attention layer, where one head focuses on geometric features
and the other on semantic features. Even though there are works [15, 21] that use geometric
and latent features, they treat them indistinguishably, losing the individual contribution of
each feature. Our method can also be considered as one of the closest implementations to
transformers for point cloud segmentation because, unlike previous research, we adapted one
of the key properties of transformers, which is the multi-head attention structure.
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Figure 1: The encoder-decoder architecture receives as input xyz coordinates and RGB. The
figure shows the effect of the sub-sample process on the xyz values and the output features of
each encoder layer. The encoder consists of ResNet blocks, which have our Ge-Latto layer
(see Figure 3). The decoder consists of up-sampling layers which are concatenated with their
respective encoder features using residual connections and combined with an MLP.

3 Proposed Method
Ge-Latto extracts two types of information from the point cloud: The geometric informa-
tion obtained from the Cartesian coordinates of the points and the latent feature information
learned by the network each time the point cloud is sub-sampled. The first part of this sub-
section describes the network architecture and sampling strategy. The second part describes
the two-headed attention layer and explains how latent and geometric information is used.

3.1 Network and Sampling
The network has an encoder-decoder architecture and receives as input the xyz coordinates
and RGB color. Those features are projected to a higher dimension using a shared MLP
layer1 (see Figure 1). The encoder reduces the number of points and extracts high-level
features from a neighborhood of points. For this, each layer sub-samples the number of
points of its input. Therefore Nl > Nl+1 where N is the number of points and l is the layer.
The encoder has 4 layers that are designed like bottleneck ResNet blocks [7] with Ge-Latto
replacing the 2D convolutions. Using Thomas et al. [29] configuration, the input features of
a ResNet block are processed by an MLP layer followed by batch normalization and ReLU.
The other MLPs of the block are only followed by batch normalization (see Figure 3).

Given the sparse nature of a point cloud, the choice of the sampling method is not trivial.
The sampled points have to represent a group of points and be beneficial for the information
“aggregation” of its neighbors. Here, we chose Farthest Point Sampling (FPS) because it
outputs a more uniform-like distribution which is a desired property for point cloud semantic
segmentation [29].

The next step groups each point pi from the input set Pl (of size Nl) with their neigh-
bors to find local-spatial relationships. The points can be either grouped by kNN or radius
neighbors. We use the latter because it is more robust with non-uniform sampling settings
like point clouds [29]. Therefore, for each representative point pi ∈ Pl , K points inside the
given radius are randomly picked. We use Qi to represent the grouped neighboring points
of pi in the rest of the paper. It is important to note that Qi ⊆ Pl−1, the only exception is in
the second ResNet block, where Qi ⊆ Pl because no sampling is carried out; Figure 2 and

1In the paper, we use the word MLP to refer to a shared MLP layer with 1 hidden dimension.
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Figure 2: Clustering process inside ResNet blocks. The first image shows the input points of
the layer. The grouping criteria of Block 1 and 2 are shown in the second and third image.
Block 1 groups the input points using the sampled points as centers with a radius r1, whereas
Block 2 does the grouping on the sampled points with a bigger radius r2.
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Figure 3: ResNet Blocks. The first block sub-samples the point cloud and finds nearest
neighbors inside a radius between the sampled points and the input points. Because of the
sampling, the residual connection has a maxpooling layer to match the input with the output
size. The function of the second block is similar to the first one, but without sub-sampling.

Figure 3 show an example. The network also increases the receptive field by doubling the
radius at every layer.

For segmentation, the decoder up-samples the number of points until it recovers the size
of the input of the network. The up-sampling of the features is done via tri-linear interpola-
tion following Lin et al. [15]. The interpolated features are concatenated with the features
from the corresponding encoder stage thanks to the residual connections (see Figure 1). The
final and auxiliary outputs of the decoder are feature vectors for each point in the input point
set. An MLP is used to map these features to the final logits, whose feature dimension is
the number of classes. The size of the auxiliary outputs corresponds to the number of points
their respective layers have. The network has 4 auxiliary outputs, one for the last encoder
layer, and three for the following decoder layers. For classification, global average pooling
is used over the last encoder features to get a global feature vector of the point cloud. This
feature is passed to an MLP to obtain the classification logits.

3.2 Two-headed Attention
We claim that our two-headed attention layer finds better features by combining geometric
and latent information in each layer of the encoder (Figure 4). The geometric features that
are used are the absolute position of the representative points pi ∈R3, the K neighbor points
Qi ∈ RK×3, and the relative position of the neighbors Qi−Kpi ∈ RK×3, where the operator
K replicates the vector K times. The latent information are the features learned by the hidden
layers of the network. Each Ge-Latto layer uses those that belong to each centroid or repre-
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Figure 4: The two-headed Ge-Latto layer computes the local-attention for the geometric and
latent features individually and then combines them using fi MLP layers.

sentative point ri ∈RD, the features of the neighbors Si ∈RK×D, and the difference between
the K neighbors and centroids features Si−Kri ∈ RK×D, where D is the dimensionality of
the features, which is the number of feature planes shown in Figure 1. The feature values
are mapped linearly using an MLP layer fi. The combined geometric and latent features are
represented by Gi ∈ RK×D and Hi ∈ RK×D respectively, and are computed as follows (see
Figure 4): First, the latent features ri and Si−Kri are transformed by MLPs and combined
by vector addition: Hi = fr(Kri)+ frs(Si−Kri).

Then, the geometric features are combined. From Eq. 1, fp(Kpi) and fq(Qi) encode the
global geometric context in 3D space of the representative points and its neighbors. Mean-
while fpq(Qi −Kpi) represents the local geometric context. We augment the geometric
context by adding and projecting the latent featureHi.

Gi = fp(Kpi)+ fpq(Qi−Kpi)+ fq(Qi)+ fhg(Hi) (1)
In the same way, the latent features are combined and augmented by adding the projected

geometric feature Gi. As Eq. 1 encodes the geometric context, Eq. 2 encodes the latent con-
text. fr(Kri) and fs(Si) represent the global latent information and frs(Si−Kri) represents
the local latent information.

H′i =Hi + fs(Si)+ fgh(Gi) = fr(Kri)+ frs(Si−Kri)+ fs(Si)+ fgh(Gi) (2)

The resultant features Gi and H′i are each projected by another MLP layer: G′′i = fgg(Gi)
and H′′i = fhh(H′i). Then, self-attention is used to combine the features inside the neighbor-
hood patch (Eq. 3 and Eq. 4). The attention part consists of an MLP layer followed by a
normalization function (Softmax) φ to obtain the weights of the neighbor features. Here,
vector attention is used instead of scalar attention. This allows the network to “attend” to
individual feature channels [38]. The dimension of the attention weights, the geometric fea-
tures G′′i and latent features H′′i is [K ×D]. Finally, to aggregate the local features, each
neighbor feature gk ∈ G′′i and hk ∈ H′′i is multiplied element-wise by its respective weight
and then all the neighbors k are summed; the outputs Gi and Hi have dimension D. In the
supplementary material we show how our local aggregation is similar to a Graph NN [2].

Gi =
K

∑
k=1

(φ( fgatt (gk))�gk) (3)

Hi =
K

∑
k=1

(φ( fhatt (hk))�hk) (4)
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The output Oi of the layer is obtained by concatenating and projecting the geometric and
latent features: Oi = fo([Gi;Hi]), where [Gi;Hi] ∈ R2D and fo : R2D 7→ RD.

In the transformers literature [24, 30], the geometric features fp(Kpi) and fpq(Qi −
Kpi), from Eq. 1, can be seen as absolute and relative positional encodings, respectively.
Therefore, Eq. 1 provides information about the absolute position of the points, and the
relative position of the neighbor points with respect to the representative (centroid) points.
Similarly, frs(Si−Kri) from Eq. 2 can be seen as the key and query components in the
transformers settings, where instead of using dot product as similarity function to obtain
the relationship between two vectors, the values are subtracted. Each head in our attention
mechanism can also be considered as a multi-head attention layer with number of heads n =
D or feature dimension D′ = 1 for each head; see supplementary material for demonstration.

4 Experiments
Our method was evaluated using 3 datasets: ShapeNetPart [33] for 3D object part segmen-
tation, Stanford Large-Scale 3D Indoor Spaces (S3DIS) [1] for 3D scene segmentation, and
ModelNet40 [36] for 3D shape classification.

Implementation details: The implementation was built using the public library PyTorch
[18]. Adam is used as optimizer with learning rate 1e−4, β1 = 0.9, β2 = 0.98, and ε = 1e−9.
Cross-entropy with label smoothing is used as loss function for all the outputs. The final loss
consists of the sum of 4 auxiliary losses and the main loss: L= α1 ∗Laux1 +α2 ∗Laux2 +α3 ∗
Laux3 +α4 ∗Laux4 +Lmain. The influence of the auxiliary losses is weighted by αi because
we are only interested in the final prediction, which is optimized by the main loss. Following
the results of our ablation study, all the αi = 0.4 in the experiments. The encoder consists of
one layer with size N, to process the input features, followed by 4 layers with sizes: 4096,
2048, 512, and 128; as seen in Figure 1. The radius (receptive field) of the first encoder layer
with ResNet blocks is 0.10m and it doubles at every layer. The number of neighbors is 32
for all the layers except for the last one which is 16. This is because the last layer has fewer
points than the rest. All the MLP layers from the ResNet blocks (see Figure 3) are followed
by batch normalization and ReLU. The output layer before the prediction consists of an MLP
layer with batch normalization and ReLU followed by a dropout with a probability of 0.5.
All the experiments were done using a single RTX2080Ti with a batch size of 2. The data
augmentation consists of scaling, flipping, rotating, and perturbing the points. For S3DIS,
the color was augmented by switching the RGB channels and adding noise.

4.1 Scene Segmentation
The S3DIS [1] dataset was used to test the network for scene segmentation. The dataset con-
sists of six real large-scale indoor areas from three different buildings. Each area has rooms
whose points are labeled with 13 classes (e.g. ceiling, floor, chair) and have color informa-
tion. The number of points in one room varies between 0.5 million to 2.5 million, depending
on its size. Because the number of points of each room is large, each room was split into
blocks of size [2m×2m×height]. For training and testing, 6,144 points were randomly sam-
pled and used as input. However, for testing, 6,144 points are randomly sampled until all the
points inside a block are labeled. All the points are only sampled once, except when the total
number of points inside a block is not a multiple of 6,144, in that case, the Softmax outputs
are summed and the highest value is used as the predicted label. The evaluation metrics used
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Method mIoU mAcc ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [19] 41.1 49.0 88.8 97.3 69.8 0.1 3.9 46.3 10.8 59.0 52.6 5.9 40.3 26.4 33.2
SegCloud [28] 48.9 57.4 90.1 96.1 69.9 0.0 18.4 38.4 23.1 70.4 75.9 40.9 58.4 13.0 41.6
FPConv [15] 62.7 68.9 94.6 98.5 80.9 0.0 19.1 60.1 48.9 80.6 88.0 53.2 68.4 68.2 54.9
MinkowskiNet [3] 65.3 71.7 91.8 98.7 86.2 0.0 34.1 48.9 62.4 81.6 89.8 47.2 74.9 74.4 58.6
KPConv [29] 67.1 72.8 92.8 97.3 82.4 0.0 23.9 58.0 69.0 81.5 91.0 75.4 75.3 66.7 58.9
PCT [6] 61.3 67.6 92.5 98.4 80.6 0.0 19.4 61.6 48.0 76.6 85.2 46.2 67.7 67.9 52.3
Bilateral [21] 65.4 73.1 92.9 97.9 82.3 0.0 23.1 65.5 64.9 78.5 87.5 61.4 70.7 68.7 57.2
Ge-Latto (ours) 69.2 75.9 94.5 99.2 84.0 0.0 24.5 56.3 68.9 84.2 92.4 82.8 70.9 76.9 64.6

Table 1: S3DIS Area 5 results. The reported metrics are the mean class segmentation
(mIoU), mean of class-wise accuracy (mAcc), and IoU for each class.

Method OA mIoU mAcc ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [19] 78.5 47.6 66.2 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2
PointCNN [13] 88.1 65.4 88.1 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
SPGraph [11] - 62.1 73.0 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 45.9 8.7 52.9
RandLA-Net [8] 88.0 70.0 82.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 69.4 76.4 60.0 64.2 65.9 60.1
KPConv [29] - 70.6 79.1 93.6 92.4 83.1 63.9 54.3 66.1 76.6 64.0 57.8 74.9 69.3 61.3 60.3
Bilateral [21] 88.9 72.2 83.1 93.3 96.8 81.6 61.9 49.5 65.4 73.3 72.0 83.7 67.5 64.3 67.0 62.4
Ge-Latto (ours) 89.7 71.4 81.3 95.3 95.1 82.3 69.2 51.9 64.8 73.3 77.3 59.6 71.1 63.0 67.4 57.9

Table 2: S3DIS dataset k-fold cross-validation comparison table.

are mean class-wise intersection over union (mIoU), mean of class-wise accuracy (mAcc),
and overall accuracy (OA). The dataset was evaluated in two ways: 1) Area 5 is used as test
set and the network is trained using the other areas. 2) 6-fold cross-validation. Ge-Latto
outperforms prior models in both evaluations. On area 5, it is 2.1% better than KPConv [29]
in mIoU (Table 1), the qualitative results are shown in Figure 5. Meanwhile, on the k-fold
cross-validation, it obtains the best OA (89.7%), surpassing the previous state of the art of
Qiu et al. [21] and obtaining better IoU in more objects (Table 2).

4.2 Object Part Segmentation
The performance of our network in object part segmentation is measured by using the
ShapeNetPart [33] dataset. This dataset is a collection of 16,681 3D point clouds with 16
categories, each with 2 to 6 part labels. We used the standard train/test splits provided by
the dataset. Category mean intersection over union (cat. mIoU) and instance mIoU are used
as evaluation metrics. For training, 4096 points are randomly picked and used as input. For
testing, the total number of points is used. The evaluation (Table 3) shows that our model is
only 0.9% behind the current state of the art in cat. mIoU. Some of the wrong classifications
are caused by noisy data, where some object components (e.g. rocket, motorbike, table) are
wrongly labeled which is penalized by the metric. Figure 6 shows some qualitative results.

4.3 Shape Classification
The ModelNet40 [36] dataset is used to study the performance of our network for shape
classification. The dataset consists of 12,311 3D meshes and their normal vectors classified

Method
ModelNet40 ShapeNetPart

OA cat. mIoU inst. mIoU
PointNet [19] 89.2 80.4 83.7
PointNet++ [20] 91.9 81.9 85.1
SO-Net [12] 90.9 81.0 84.9
KPConv [29] 92.7 85.1 86.4
PCT [6] 93.2 - 86.4
Ge-Latto (ours) 91.1 84.2 84.5
Ge-Latto (ours fine-tuned) 93.2 - -

Table 3: ModelNet40 and ShapeNet comparison table.
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Figure 5: S3DIS results.
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Figure 6: Our ShapeNetPart segmentation results.

into 40 categories. For the experiments, the data is processed similar to Section 4.2. For
training, 7,168 points are randomly picked as input, and for testing all the points are used.
The evaluation metric is overall accuracy. Our method achieves a competitive result of 91.1%
when using the same hyper-parameters and network structure as ShapeNet. If the parameters
are fine-tuned, the performance goes up to 93.2%, matching the current best result. More
details are given in the ablation study.

4.4 Ablation Study

Auxiliary losses. The auxiliary losses provide a boost in performance to the network. Here,
we consider that all weights αi of the auxiliary losses have the same value and vary them from
0 to 1. Table 4 shows that the best performance is obtained with αi = 0.4, being 1.8% (in
terms of mIoU) better than the network trained without auxiliary losses. The supplementary
material includes a more comprehensive study for different values of αi on each loss term.
Two-headed attention. Our proposed attention layer is evaluated using different variants:
only with the geometric head, only with the feature head, both heads, and no heads (baseline).
For the last one, an MLP+pooling layer replaces the attention mechanism. The experiments
reported in Table 4 show that only one head is enough to improve the baseline, and that the
combination of both heads helps the network in the segmentation task.
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Auxiliary losses Attention heads Number of neighbors Features per multi-head
Aux. weight αi mIoU mAcc Attention heads mIoU mAcc k mIoU mAcc N Feat. mIoU mAcc

αi = 0.0 67.4 73.2 Only geometric 66.3 72.0 8 64.5 71.8 1 69.2 75.9
αi = 0.2 68.5 74.4 Only features 66.5 72.3 16 66.4 72.1 2 68.2 74.3
αi = 0.4 69.2 75.9 Both 69.2 75.9 32 69.2 75.9 4 68.0 74.2
αi = 0.6 68.6 74.6 MLP+pooling 63.5 69.2 64 - - 8 68.0 74.1
αi = 0.8 68.3 74.3
αi= 1.0 68.1 74.0

Table 4: S3DIS ablation study experiments.

Number of neighbors. Three networks with different neighborhood size were trained to
find the number of neighbors that provide enough local information. The results from Table
4 show that when k ≤ 16, the number of neighbors might not be enough to provide a correct
representation of the local context; k = 64 could not fit in the GPU memory.
Features per multi-head. As shown in the supplementary material, each head (geometric
and latent) of our attention layer is a special case of a multi-head attention with number
of heads n = D or feature dimension D′ = 1 per head. For this experiment, the number of
features D′ per head was varied. More features per head means less heads (number of heads
n = D/D′). In other words, D′ features will be weighted by the same attention score. The
results from Table 4 demonstrate that the more features a head has (less number of heads),
the less flexible the network becomes. However, reducing the number of heads allows the
network to be lighter, because it has to compute only D/D′ attention scores.
Point cloud classification. The model presented in Section 4 had the same network param-
eters for all the datasets to show that the proposed method can obtain competitive results
without optimizing the hyper-parameters on each dataset. If the hyper-parameters are ad-
justed for a specific dataset, the performance of the network improves. In this section, the
number of sub-sampling points per layer were modified following [34], where they mainly
focus on point cloud classification. By sampling the points using the following values per
layer, N→ 1024→ 512→ 256→ 64, instead of N→ 4096→ 2048→ 512→ 128, the over-
all accuracy of our network increases from 91.1% to 93.2%, matching the state-of-the-art
result. This seems to be caused by the number of sampled points and the global average
pooling at the end of the encoder layer. Considering that the ModelNet40 dataset has objects
with similar parts, like plants with flower pots, if one region of the object is bigger than oth-
ers, this region will have more sampled points. Because the features of the sampled points
at the last layer of the encoder are averaged, if there are more points representing a specific
area, the averaged features will have a tendency to represent the wrong part of the object.
Work flow video. The video of our proposed method can be found at: https://youtu.
be/mjsttn3C89g. It shows how the point cloud is sampled during the encoder-decoder
phase, the auxiliary outputs, and the learned geometric and latent attention weights.

5 Conclusion

This paper proposes a novel two-headed attention mechanism capable of combining the ge-
ometric and latent information of neighbor points to learn richer features. This, combined
with the leverage provided by the auxiliary losses, allow our network to work with real data
and obtain the state of the art in the complex dataset S3DIS for 3D point cloud semantic
segmentation. It also gets competitive results in the ShapeNetPart and ModelNet40 datasets.

Citation
Citation
{Xiang, Zhang, Song, Yu, and Cai} 2021

https://youtu.be/mjsttn3C89g
https://youtu.be/mjsttn3C89g


CUEVAS-VELASQUEZ, FISHER, GALLEGO: GEOMETRIC-LATENT ATTENTION 11

References
[1] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer,

and Silvio Savarese. 3d semantic parsing of large-scale indoor spaces. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1534–
1543, 2016.

[2] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vini-
cius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro,
Ryan Faulkner, et al. Relational inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

[3] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets:
Minkowski convolutional neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 3075–3084, 2019.

[4] Hanz Cuevas-Velasquez, Nanbo Li, Radim Tylecek, Marcelo Saval-Calvo, and
Robert B Fisher. Hybrid multi-camera visual servoing to moving target. In 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
1132–1137. IEEE, 2018.

[5] Hanz Cuevas-Velasquez, Antonio-Javier Gallego, Radim Tylecek, Jochen Hemming,
Bart Van Tuijl, Angelo Mencarelli, and Robert B Fisher. Real-time stereo visual ser-
voing for rose pruning with robotic arm. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 7050–7056. IEEE, 2020.

[6] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang Mu, Ralph R Martin, and
Shi-Min Hu. Pct: Point cloud transformer. arXiv preprint arXiv:2012.09688, 2020.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[8] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki
Trigoni, and Andrew Markham. Randla-net: Efficient semantic segmentation of large-
scale point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11108–11117, 2020.

[9] Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkhouser, Matthias Nießner, and
Leonidas J Guibas. Texturenet: Consistent local parametrizations for learning from
high-resolution signals on meshes. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4440–4449, 2019.

[10] Roman Klokov and Victor Lempitsky. Escape from cells: Deep kd-networks for the
recognition of 3d point cloud models. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 863–872, 2017.

[11] Loic Landrieu and Martin Simonovsky. Large-scale point cloud semantic segmentation
with superpoint graphs. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4558–4567, 2018.



12 CUEVAS-VELASQUEZ, FISHER, GALLEGO: GEOMETRIC-LATENT ATTENTION

[12] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-organizing network for point
cloud analysis. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 9397–9406, 2018.

[13] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn:
Convolution on x-transformed points. Advances in neural information processing sys-
tems, 31:820–830, 2018.

[14] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss
for dense object detection. In Proceedings of the IEEE international conference on
computer vision, pages 2980–2988, 2017.

[15] Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, and
Xiaoguang Han. Fpconv: Learning local flattening for point convolution. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
4293–4302, 2020.

[16] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A closer look at local aggre-
gation operators in point cloud analysis. In European Conference on Computer Vision,
pages 326–342. Springer, 2020.

[17] Hsien-Yu Meng, Lin Gao, Yu-Kun Lai, and Dinesh Manocha. Vv-net: Voxel vae net
with group convolutions for point cloud segmentation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 8500–8508, 2019.

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc., 2019.

[19] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learn-
ing on point sets for 3d classification and segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 652–660, 2017.

[20] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413, 2017.

[21] Shi Qiu, Saeed Anwar, and Nick Barnes. Semantic segmentation for real point
cloud scenes via bilateral augmentation and adaptive fusion. arXiv preprint
arXiv:2103.07074, 2021.

[22] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger. Octnet: Learning deep 3d
representations at high resolutions. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3577–3586, 2017.

[23] Tianjia Shao, Yin Yang, Yanlin Weng, Qiming Hou, and Kun Zhou. H-cnn: spatial
hashing based cnn for 3d shape analysis. IEEE transactions on visualization and com-
puter graphics, 26(7):2403–2416, 2018.



CUEVAS-VELASQUEZ, FISHER, GALLEGO: GEOMETRIC-LATENT ATTENTION 13

[24] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position
representations. arXiv preprint arXiv:1803.02155, 2018.

[25] Nicola Strisciuglio, Radim Tylecek, Michael Blaich, Nicolai Petkov, Peter Biber,
Jochen Hemming, Eldert van Henten, Torsten Sattler, Marc Pollefeys, Theo Gevers,
et al. Trimbot2020: an outdoor robot for automatic gardening. In ISR 2018; 50th
International Symposium on Robotics, pages 1–6. VDE, 2018.

[26] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and Song
Han. Searching efficient 3d architectures with sparse point-voxel convolution. In Eu-
ropean Conference on Computer Vision, pages 685–702. Springer, 2020.

[27] Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, and Qian-Yi Zhou. Tangent convo-
lutions for dense prediction in 3d. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3887–3896, 2018.

[28] Lyne Tchapmi, Christopher Choy, Iro Armeni, JunYoung Gwak, and Silvio Savarese.
Segcloud: Semantic segmentation of 3d point clouds. In 2017 international conference
on 3D vision (3DV), pages 537–547. IEEE, 2017.

[29] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui,
François Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable con-
volution for point clouds. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 6411–6420, 2019.

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017.

[31] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-cnn:
Octree-based convolutional neural networks for 3d shape analysis. ACM Transactions
on Graphics (TOG), 36(4):1–11, 2017.

[32] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep convolutional networks
on 3d point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 9621–9630, 2019.

[33] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3d shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1912–1920, 2015.

[34] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and Weidong Cai. Walk
in the cloud: Learning curves for point clouds shape analysis. arXiv preprint
arXiv:2105.01288, 2021.

[35] Yuqi Yang, Shilin Liu, Hao Pan, Yang Liu, and Xin Tong. Pfcnn: convolutional neu-
ral networks on 3d surfaces using parallel frames. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 13578–13587, 2020.



14 CUEVAS-VELASQUEZ, FISHER, GALLEGO: GEOMETRIC-LATENT ATTENTION

[36] Li Yi, Vladimir G Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao Su, Cewu
Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. A scalable active framework
for region annotation in 3d shape collections. ACM Transactions on Graphics (ToG),
35(6):1–12, 2016.

[37] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid
scene parsing network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2881–2890, 2017.

[38] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Exploring self-attention for image
recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 10076–10085, 2020.

[39] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d
object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4490–4499, 2018.


