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Abstract

The body misalignment problem resulted from various factors, e.g., scale and pose
variation, occlusion, etc., has always been a great challenge in person re-identification.
It is intuitive to model individual body parts and match them through pose estimation or
human parsing, which, however, requires additional annotations and training, and may
fail with occlusion. Some recent studies employ self-attention mechanisms to discover
the Discriminative Clues (DCs) on the body. But, unlike the body parts, the DCs are
not naturally aligned properly. To this end, we propose a Discriminative Clue Alignment
Network (DCANet), along with a discriminant constraint, to automatically identify vari-
ous DCs and then align them into a fixed pattern, without explicitly analyzing body parts.
Moreover, such an alignment scheme makes the temporal aggregation of features from
video frames extremely simple, because the DCs are effectively aligned across frames.
Therefore our method can be easily applied to video-based person re-identification as
well. Experiments on several popular public benchmarks show that DCANet can achieve
state-of-the-art performance on both image- and video-based re-identification tasks.

1 Introduction
Person Re-IDentification (ReID) has drawn significant attention due to its wide applications
in tracking people across cameras, searching people in a large gallery, or grouping personal
images, etc. The fundamental problem of ReID is to compare a pair of images or videos,
each depicting a person’s body appearance, possibly taken by different cameras at different
times, and determine whether they belong to the same person. In the past decade, many
methods [23, 27] have been proposed to improve ReID by addressing various difficulties.
With the rapid development of deep learning, training a deep neural network to generate the
appearance representations in an end-to-end fashion has dominated the recent ReID studies.
Although a large variety of network architectures along with various metric learning loss
functions have been proposed, and great progress has been made, the new methods still
suffer from the same problems.

The body misalignment problem resulted from various factors, e.g., scale and pose vari-
ation, occlusion, etc., has always been one of the most difficult challenges. For example,
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Figure 1: The first row illustrates the misalignments due to inaccurate detection (a), body de-
formation (b), and occlusion (c). In the second row, the conventional stripe-based method (d)
cannot ensure the body part clues of two images are aligned, hence we propose to automat-
ically extract the hidden DCs (highlighted with white masks) i.e., head, body, and arrange
their features into an ordered pattern (e).

the person may appear in different locations and scales in the bounding box given by the
detection algorithms (Fig.1(a)); pose variation and non-rigid body deformation may lead to
completely different configuration of the body parts (Fig.1(b)); the occlusion of body parts
may introduce irrelevant context (Fig.1(c)), etc. Therefore, directly training a feature model
without considering the spatial structures can easily cause mismatch of the feature vectors.

Many ReID methods have tried to address this problem. Some approaches divided the
whole image into multiple grid cells [15] or horizontal stripes [16, 19] to represent the body
parts, which oversimplify the body part configuration and the matching procedure, as shown
in Fig.1(d). Others [17, 35] employ the self-attention mechanisms to discover the Discrimi-
native Clues (DCs), e.g., the context of body parts, the attributes, some inexplicable cues, on
the body and strengthen them in the final features. These DCs are more sophisticated than
the cells or stripes, but, unlike the body parts, the DCs are not naturally aligned properly.
Some recent studies attempted to generate the part-aligned or DC-aligned features under the
guidance of pose estimation [34] or human parsing results [5], which, however, require ad-
ditional annotations and heavily rely on the accuracy of the pose estimator or the human
parsing model.

Some researchers started to move on to video-based ReID [10, 25, 30, 39], because
videos naturally contain more poses of the same person and therefore cover larger pose vari-
ation than images do. Occlusion may also appear only in part of the videos, hence may
become a smaller problem. In video-based ReID, the features of the person are extracted
from an image sequence/video to aggregate more information along the time axis to gen-
erate more robust global representations. However, most of the existing video-based ReID
methods mainly focus on exploiting the temporal relations among the video frames, e.g.,
[7, 11, 32], or the spatio-temporal clues, e.g., [3, 29]. Due to the nature of such methods,
they cannot be applied to image-based ReID and have limited applications.

We argue that even if we do not have sophisticated human parsing models to extract the
body parts, or videos to cover larger pose variation, we can still align the DCs for image-
based ReID. Moreover, if we align the DCs in images effectively, the frame-wise features
extracted by our model can be easily aggregated (e.g., through simple temporal averaging)

*Rui Huang is the correspondence author. This work is supported in part by funding from Shenzhen
Institute of Artificial Intelligence and Robotics for Society, and Shenzhen NSF JCYJ20190813170601651.
© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Subramaniam, Chatterjee, and Mittal} 2016

Citation
Citation
{Sun, Zheng, Yang, Tian, and Wang} 2018

Citation
Citation
{Varior, Shuai, Lu, Xu, and Wang} 2016

Citation
Citation
{Tay, Roy, and Yap} 2019

Citation
Citation
{Zhao, Li, Zhuang, and Wang} 2017{}

Citation
Citation
{Zhao, Tian, Sun, Shao, Yan, Yi, Wang, and Tang} 2017{}

Citation
Citation
{Guo, Yuan, Huang, Zhang, Yao, and Han} 2019

Citation
Citation
{Li, Bak, Carr, and Wang} 2018

Citation
Citation
{Xu, Cheng, Gu, Yang, Chang, and Zhou} 2017

Citation
Citation
{Zhang, Ma, Liu, and Huang} 2017

Citation
Citation
{Zhou, Huang, Wang, Wang, and Tan} 2017

Citation
Citation
{Hou, Chang, Ma, Shan, and Chen} 2020

Citation
Citation
{Liu, Yuan, Zhou, and Li} 2019

Citation
Citation
{Zhang, Lan, Zeng, and Chen} 2020{}

Citation
Citation
{Fu, Wang, Wei, and Huang} 2019{}

Citation
Citation
{Zhang, Li, Sun, Ge, Luo, Wang, and Lin} 2019{}



HU ET AL.: DISCRIMINATIVE CLUE ALIGNMENT NETWORK 3

to achieve promising performance on video-based ReID as well. To this end we propose a
Discriminative Clue Alignment Network (DCANet) to automatically identify various DCs
and then align them into a fixed feature pattern. Specifically, we treat the feature vector of
an image as a fixed pattern and propose a Discriminative Clue Alignment Module (DCAM)
to extract multiple semantic DCs that are filled into the corresponding parts of the feature
pattern. The main idea is illustrated as Fig.1(e). Thus the semantic DCs are inherently
aligned for the calculation of the feature distance, without the dynamic DC matching process
[12, 28]. Besides, we further introduce a Discriminant Loss (DL) to ensure that different DCs
are discovered, and the parts of the feature pattern are distinguishable. More details will be
discussed in Sec.3.

In summary, the main contributions of this work are three-fold. (1) As traditional DC-
based methods cannot ensure that DCs are aligned in the feature space, we propose DCAM,
which adopts the multi-attention mechanism, to extract and align DC features into a fixed
pattern. (2) We further design a discriminant loss to diversify the focuses of multiple atten-
tion blocks in DCAM, so that each part of the final feature vectors has its own semantics.
(3) We show that the proposed method can be easily and effectively extended to video-based
ReID. In Sec.4, both quantitative and qualitative results are presented to prove its effective-
ness in both image- and video-based ReID.

2 Related Works
Image-based ReID methods for misalignment. Different categories of methods have been
proposed to tackle the misalignment problem. Some studies attempted to split the images or
feature map into small patches [15] or stripes [16, 19], thereby the local features are extracted
from these patches or stripes using the hand-crafted descriptors [16] or neural networks[19].
However, the semantics of the stripes in the query and gallery images are not aligned ex-
plicitly. Other methods [5, 8, 13, 34] applied a pose estimator or human parsing model
to accurately extract the features of body parts. With the generated body part mask, these
methods were able to compute the part-aligned representations. However, additional accu-
rate parsing models are required to ensure high ReID performance for these methods. Some
studies proposed to dynamically calculate the shortest distance of the local features as a
supervision signal to train the model [12], or dynamically match the local features when cal-
culating the global distance [28], yet the exhaustive calculation results in high computational
burden. The attention-based approaches [20, 35] used the attention modules to suppress the
identity irrelevant context while strengthening the DCs in the final representations, however
the DCs are not aligned in nature.
Video-based ReID methods. As videos provide richer spatial appearance and temporal
cues, video-based ReID has become more and more prevalent. Apparently, the misalign-
ment problem is less severe in this task, since one can aggregate more pose information into
a single feature vector. For example, Zhang et al. [30] proposed to temporally align the
human gaits by extracting the walking cycles from the videos. Many recent methods devote
a large amount of effort on highlighting the DCs with the attention mechanisms [10, 33].
The works like [25, 26] employed the recurrent neural network to extract the features from
the sequential frames, and some other approaches [7, 11] learned a temporal attention mod-
ule to adaptively assign different importance scores to the video frames when aggregating
the features. However, these models obviously cannot be directly trained on image-based
datasets and applied to image-based Re-ID. Our work, instead, is competitive in both image-
and video-based ReID.
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3 Approach

In this section, we present our simple yet effective DCANet. As shown in Fig.2, it mainly
consists of a backbone network with the DCAMs inserted into different stages. In line with
previous works, we employ ResNet50 as the backbone. Our DCANet takes as input a single
image I or a video (frame sequence) V = {I1, I2, . . . , IT} to extract the frame-wise features
f or { f1, f2, . . . , fT}. The final video representation is aggregated by the average pooling,
f = 1

T ∑t=1:T ft . For conciseness, we will describe the feature extraction for a single frame
in Sec.3.1. Moreover, to ensure that different DCs can be identified by the DCAM, unlike
previous methods [3, 8, 29] that utilize self-attention mechanism, we also propose a super-
vision constraint, or discriminant loss, as explained in Sec.3.2.

DCAM DCAM Avg

MaxKx1

f (l)

Spatial Attention Blocks

Discrimination Loss

fch
(l)

Softmax Softmax Softmax Softmax

Softmax

Ach, 1

Softmax

Ach, 2

Softmax

Ach, k

Softmax

Ach, K

Channel Attention Blocks

Conv1x1 
C => C/k 

fsp
(l)

DCAM

CE

TL

Discrimination Loss

fsp,1
(l)

fsp,2
(l)

fsp,K
(l)

fsp,k
(l)

Asp, 1 Asp, 2 Asp, k Asp, K

fch, 1
(l)

fch, K
(l)

Figure 2: The architectures of the proposed DCANet and its components.

3.1 Aligned feature extraction

As shown in Fig.2, the input image is first passed to the shallow layers of the backbone
to generate the semantic features f (l) ∈ RC×H×W , where l denotes the l-th stage of the
backbone. These will then be passed to DCAM, which strengthens the DCs and aligns
them thereby. Different from [10, 35], which compute the attentions of DCs merely along
spatial dimension, DCAM adopts dual multi-attention module to identify various DCs and
align them along both spatial and channel dimensions. Specifically, in the spatial module
of DCAM, K spatial attention blocks followed by the So f tmax operation are introduced to
compute K attention distributions {Asp,k|Asp,k ∈ RH×W ;k ∈ 1, . . . ,K}, where the subscript
sp, k indicates the spatial attention from the k-th block. Each attention block focuses on
its own DCs spatially with two 1× 1 convolutional layers and one ReLU activation in be-
tween. Thus the feature f (l)sp,k ∈ RC×H×W with the DCs highlighted by spatial attention Asp,k
is represented as:

f (l)sp,k(c,x,y) = f (l)(c,x,y)×Asp,k(x,y) (1)

Unlike previous method [10] which applies maximum pooling on { f (l)sp,k| f
(l)
sp,k ∈RC×H×W ;k =

1, . . . ,K} along the attention axis, we stack them vertically, followed by the operation of
maximum pooling MaxpoolK×1 with the kernel size of K× 1 to preserve the salient infor-
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mation. The final spatially aligned feature f (l)sp ∈ RC×H×W is therefore computed as:

f (l)sp = MaxpoolK×1([ f
(l)
sp,1| f

(l)
sp,2, · · · , | f

(l)
sp,K ]) (2)

where | denotes the concatenation operation along the vertical axis. As a result, each at-
tention block has its own focused DCs, and the position of each DC is fixed, e.g., the DCs
found by the first block are presented in the first part of f (l)sp , and the second part contains
some other fixed DCs found by the second block, etc. Thereby the semantics of the features
are aligned.

Similar to most of previous approaches, e.g., the studies [16, 19, 20], we also preserve
the channel dimension in the final image representation. Hence, to align the features directly
for distance calculation, we further propose a channel multi-attention structure in DCAM,
which functions as the spatial attention to find the DCs and then align them along the chan-
nel axis. Specifically, K channel attention blocks take as input f̂ (l)sp = f (l)sp ⊕ f (l) under the
skip connection structure, where ⊕ is the element-wise summation. These will be used to
generate K channel attention score vectors. f̂ (l)sp is first passed through a 1×1 channel reduc-
tion convolutional layer to generate f (l)ch ∈ RC/K×H×W , then a maximum pooling Maxpool
and an average pooling Avgpool operations followed by K two-layer fully connected blocks
FCk are applied to compute K channel attention vectors {Ach,k|Ach,k ∈ RC/K ;k = 1, . . . ,K},
so Ach,k is expressed as:

Ach,k = So f tmax(FCk(Maxpool( f (l)ch ))⊕FCk(Avgpool( f (l)ch ))) (3)

Similar to spatially aligned features, channel weighted features { f (l)ch,k| f
(l)
ch,k ∈RC/K×H×W ;k=

1, . . . ,K} are derived as:
f (l)ch,k(c,x,y) = Ach,k(c)× f (l)ch (c,x,y). (4)

We concatenate those K channel weighted features f (l)ch,k along the channel dimension to

obtain the channel aligned feature f̂ (l)ch ∈ RC×H×W . The output of the overall network, i.e.,
the final image representation is attained by applying a spatial average pooling operation on
f̂ (l)ch . In this representation, DCs found by the channel attention blocks are already aligned.

3.2 Objective functions
Discriminant loss It is noticeable that the DCANet aligns the features under the assumption
that different attention blocks can identify different DCs. Therefore, instead of using the
self-attention mechanism without any constraints, we propose to impose a DL on the dual
multi-attention modules to diversify their focuses. Ideally, different f (l)sp,k or f (l)ch,k contain
the features of different DCs, which are discriminative. To achieve this goal, we apply two
cross entropy objective functions on the training of the spatial and channel multi-attention
modules, respectively. Specifically, the spatial dimensions of each f (l)sp,k and f (l)ch,k are reduced
to 1 first by an average pooling operation. Then we use two fully connected layers as two
discriminators to classify f (l)sp,k and f (l)ch,k into K classes, meaning that each f (l)sp,k or f (l)ch,k is from
one of the K attention blocks. Consequently, K attention blocks are capable of identifying
different and distinguishable DCs.

For spatial attention, let P( j| f (l)sp,k) denotes the probability that f (l)sp,k is from the j-th block,
so the loss function is written as:

Lsp =
K

∑
k=1

K

∑
j=1
−y j log(P( j| f (l)sp,k)) (5)
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where y j equals to 1 if j = k, otherwise it is 0. We also design a loss function Lch with the
same idea on the channel attention module. Hence the discriminant loss Ldis is the sum of
Lsp and Lch.
Other ReID Losses In addition to the proposed DL used to constrain the attention modules,
we further introduce the cross entropy loss for person identity classification and the triplet
loss in the training process, following previous works[12, 16].

4 Experiments

4.1 Datasets and metrics
Datasets Unlike previous studies that adopt only Image-based ReID (IReID) datasets [5,
12, 31, 35] or Video-based ReID (VReID) datasets [6, 29] as benchmarks, we evaluate our
DCANet on both to verify its effectiveness and the generalization ability.

IReID: CUHK03, DukeMTMC-ReID, and MSMT17 datasets are adopted as the image-
based benchmarks. CUHK03 dataset contains 14,097 images of 1,467 pedestrians, and we
split it into training (767 identities) and testing (other 700 identities) sets following the more
challenging protocol [38]. The manually labeled bounding boxes are used in the evaluation.
The DukeMTMC-ReID includes 36,411 labeled images from 1,404 identities, where 16,522
images of 702 identities are selected as the training set, and the rest are split into query
and gallery sets as the testing set. MSMT17 is the most challenging and large-scale dataset,
which consists of 126,441 bounding boxes from 4,101 pedestrians captured by 15 cameras.

VReID: The VReID datasets we adopt include MARS, DukeMTMC-VideoReID, and
iLIDS-VID. MARS dataset is one of the largest public datasets, consisting of 20,715 se-
quences including 3,248 distracting tracklets, and it contains 1,261 pedestrians captured by
at least 2 cameras, out of 6 cameras. DukeMTMC-VideoReID is another large-scale dataset
which is composed of 4,832 tracklets from 1,812 pedestrians captured in outdoor scenes.
For these two datasets, we follow the original protocols to split the training and testing sets,
ensuring that no overlaping identities exist. iLIDS-VID is a small but typical dataset which
consists of 600 videos from 300 identities. We randomly split the probe/gallery identities to
construct the training and testing sets following the protocol of [22].
Metrics To quantitatively evaluate our approach, we adopt the widely-used evaluation pro-
tocols [1]. The matching process performs the similarity calculation between query and
gallery images first, and then sorts the gallery images according to the similarities. The per-
formances are evaluated by the Cumulative Matching Characteristic (CMC) curve, which is
an estimate of the expectation of finding the correct match in the top n matches. The mean
Average Precision (mAP) scores are also reported.

4.2 Implementation details
The experiments are implemented on Pytorch platform with one Nvidia GeForce RTX 2080Ti
GPU. There are 8 identities in each batch, and 4 samples of each identities are included. The
images or video frames are resized to 256×128, following by a random horizontal flip op-
eration for data augmentation. We adopt the Adam optimizer with weight decay 0.0005 to
update the parameters. The learning rate is initialized to 3× 10−4, and decreased by ×0.1
every 60 epochs, and there are 130 epochs in total. The weight for the DL is set to 0.5 for all
datasets. When training the VReID model, we randomly sample 4 frames with a stride of 8
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frames from each tracklet to extract the frame-wise features, and the average feature along
the temporal axis is used to represent the video clip. In the testing process, the final video
representation is the averaged feature of all frames.

4.3 Ablation study
For notation convenience, we use DI, DV, and BS to represent the DukeMTMC-ReID, DukeM
TMC-VideoReID, and the baseline model (ResNet50) in the rest of this paper, respectively.
The bold-type and the underlined numbers indicate the best and second best results in each
table, respectively.

Impact of the positions to place the DCAM As mentioned before, the proposed DCAM
can be inserted behind any stages of the backbone, hence we study influence of the positions
with K = 8 in this part. Table 1 compares the results of inserting the DCAMs into different
stages, where stagel denotes the DCAM is inserted behind the stage l. It can be seen that
adding the DCAMs into any stages of the backbone can improve the performance by a large
margin, compared to BS. Moreover, the improvements by +stage3 are greater than that of
+stage2 and +stage4 among the results of single stage insertion. It is likely that the low-
level features in +stage2 are insufficient to provide precise semantic information, thus the
attention blocks can not identify the DCs precisely. In contrast, the spatial dimension of the
features in stage4 is small, so the spatial cues found are limited.

Methods CUHK03 DI MSMT17
R1 mAP R1 mAP R1 mAP

BS 73.7 69.8 85.9 71.8 73.8 47.2
+stage2 78.4 75.8 88.7 78.1 79.2 56.7
+stage3 81.9 77.6 89.2 78.3 79.3 56.3
+stage4 79.3 75.7 87.9 76.1 76.9 52.7

+stage2,3 79.7 76.7 89.0 78.1 79.9 57.5
+stage3,4 79.4 76.8 89.3 78.1 79.6 56.2

+stage2,3,4 81.4 78.1 89.9 78.7 79.9 57.6

Table 1: Impacts of inserting DCAMs into different stages.

Compared to the single stage insertion, the multi-stage insertion achieves better overall
performance, especially at stage2,3,4. This is due to the fact that multi-grained features are
exploited as the network inference proceeds, and the coarse-to-fine DCs are aligned during
this process, thus the final representations are more discriminative. However, this is not
always consistent. For example, the rank-1 accuracy of +stage2,3,4 is slightly lower than
that of +stage3 on CUHK03 dataset. This might be because the number of attention blocks
K is identical for all the DCAMs in different stages, whereas the feature maps have different
sizes and channel dimensions. Hence there is a possibility that varying K according to the
stages of DCAMs, or even the types of the attention modules (spatial or channel), may lead
to greater improvements. We will use +stage3 as a basis in the following analysis.
Impact of the attention block number To investigate the influence of K, we experiment
on the IReID datasets with the structure of stage3, while varying K from 2 to 16. From
Table 2, we can observe that as K is increased from 2 to 8, the performances are getting
better, since the network is able to discover more DCs. Furthermore, DL enforces multiple
attention blocks to focus on different DCs, and the attention maps are independent, hence
the attention magnitudes on the DCs will be stronger as K increases. When K is sufficiently
large, e.g., K = 8, the network will reach the maximum performance. However, an overlarge
K may hurt the performance, since the sizes of feature maps in deep backbone layers are
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small, the information exploited by each attention block become more and more limited as
K increases.

K CUHK03 DI MSMT17
R1 mAP R1 mAP R1 mAP

2 78.8 75.6 88.8 78.0 78.7 55.8
4 79.5 76.1 89.0 78.1 79.0 56.2
8 81.9 77.6 89.2 78.3 79.3 56.3

16 80.4 77.0 89.1 77.8 79.2 56.2
Table 2: The results using different number K of attention blocks.

Methods iLIDS-VID DV MARS
R1 R1 mAP R1 mAP

AlignReID 72.0 83.5 80.7 77.9 64.5
DuATM - - - 81.2 67.7

MGN 82.7 90.2 88.9 85.7 77.5
BS 82.7 90.6 89.7 80.8 74.0

BS + DCAM 88.7 95.6 95.1 89.0 83.9
DCANet (Ours) 90.7 96.6 95.9 89.6 84.5

Table 3: The results of image-based methods and DCANet on VReID benchmarks

Generalization performance of DCANet To verify the generalization ability of the DCANet
and its components, we implement other two popular IReID methods, a dynamically matching-
based method AlignReID [12] and a part-based method MGN [21], on the VReID bench-
marks with the same testing manner as that of DCANet. Table 3 lists the performances of
these methods, along with the reported results of an attention-based method DuATM [14].
It can be observed that our DCANet surpasses the traditional image-based methods on all
three VReID datasets. Although our DCANet is proposed to align frame-wise features as
AlignReID and MGN, it is also suitable for VReID task with the average temporal feature
integration. Moreover, the improvements by introducing DCAM alone and both of DCAM
and DL further verify the effectiveness of the proposed DCAM and DL.

Figure 3: Visualization of the spatial attention blocks with K = 4 (the first row) and K = 8
(the last two rows). In each sample, the leftmost image is the input image, and the left K
images present the attention maps of K blocks, each block has its own focused clues.

Visualization analysis The attention maps from K(= 4,8) spatial attention blocks are visu-
alized as Fig.3, and the number above each image represents the maximum attention score.
It can be seen that different blocks can focus on different cues, and each block has its own in-
terests. For example, in the case of K = 4, the second block tends to discover the accessories,
e.g., bags, the third one focuses on the human head, etc. In the case of K = 8, the third, the
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sixth, and the eighth blocks pay attention to the body, head, and feet, respectively. In our
DCANet, all these found cues are filled into an ordered pattern to attain the well-aligned fea-
tures. Furthermore, the last three blocks prone to capture the identity-relevant cues, therefore
their maximum attention scores are higher than that of the first block, which produces the
dispersed attentions on the background.

4.4 Comparisons with related approaches
Comparisons on the IReID datasets Table 4 summarizes the comparisons with the IReID
state of the arts, where AlignReID [12] is a Dynamic alignment method, PCB [16], MGN[21],
Pyramid[37], HPM [4] belong to the Part-based methods, DSA-reID[18], SAN[8], P2-Net
[5], PGFA[13] are classified into the Human pose or part parsing-based (H-based) methods,
and DuATM [14], Mancs[20] are the Attention-based (A-based) methods. Our DCANet
achieves the highest performances on all datasets among the A-based methods. Unlike
Mancs which learns the salient information from only the channel dimension, our DCANet
employs the dual multi-attention strategy to identify different DCs from both spatial and
channel dimensions, and then aligns them into a fixed pattern. Thus the features from our
method are more representative. Furthermore, our method also surpasses other two kinds of
methods on almost all the metrics except for the mAP on the DI dataset, even though the
H-based methods require additional pose or part annotations.

Methods CUHK03 DI MSMT17
R1 mAP R1 mAP R1 mAP

AlignReID(D) 61.5 59.6 82.1 69.7 69.8 43.7
PCB(P) 63.7 57.5 83.3 69.2 - -
MGN(P) 68.0 67.4 83.3 69.2 - -
HPM (P) 63.9 57.5 86.6 74.3 - -

Pyramid(P) 78.9 76.9 89.0 79.0 - -
P2-Net(H) 78.3 73.6 86.5 73.1 - -
PGFA(H) - - 81.9 65.3 - -

DSA-reID(H) 78.9 75.2 86.2 74.3 - -
SAN (H) 80.1 76.4 87.9 75.5 79.2 55.7

DuATM(A) - - 81.8 64.6 - -
Mancs (A) 69.0 63.9 84.9 71.8 - -

DCANet(A) 81.9 77.6 89.2 78.3 79.3 56.3

Table 4: Comparison with state-of-the-arts on IReID datasets.
Comparisons on the VReID datasets In Table 5, we further compare our method with the
VReID state of the arts, which include the Temporal-sequence based (T-based)methods,
e.g., Snippet[2], STA[3], SCAN [29], GLTR[9], VRSTC[6], MG-RAFA[32], TCLNet [7],
and the Image set based (I-based) methods, e.g., EUG[24], AttDriven [36], on the VReID
datasets. The results show that our DCANet outperforms all the I-based methods on all
datasets consistently. Compared with the T-based methods, our method can still achieve
the best result on iLIDS-VID, and the second best results on the DV dataset. Whereas the
accuracies of our DCANet on the DV and MARS datasets are lower than that of TCLNet,
because our method dose not exploit the temporal cues among the frames. Nevertheless, the
competitive performances achieved can still verify the effectiveness of our approach, and the
importance of the feature alignment in both IReID and VReID tasks.
Qualitative results To qualitatively verify the superiority of our DCANet, we visualize the
top-5 retrieval results of the stripe-based method, MGN [21], human parsing-based method,
P2-Net [5] and our approach in Fig.4. The images in the first column of each sub-figure are
the query images, and the last five columns are the top-5 similar images to each query image.
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Methods iLIDS-VID DV MARS
R1 R1 mAP R1 mAP

Snippet(T) 85.4 - - 86.3 76.1
STA(T) 85.3 96.2 94.9 86.3 80.8

SCAN(T) 88.0 - - 87.2 77.2
GLTR(T) 86.0 96.3 93.7 87.0 78.5

VRSTC(T) 83.4 95.0 93.5 88.5 82.3
MG-RAFA(T) 88.6 - - 88.8 85.9

TCLNet(T) 86.6 96.9 96.2 89.8 85.1
EUG(I) - 83.6 78.3 80.8 67.4

AttDriven(I) 86.3 - - 87.0 78.2
DCANet(I) 90.7 96.6 95.9 89.6 84.5

Table 5: Comparison with state-of-the-arts on VReID datasets.

The number above each image indicates the identity of the person. It can be seen that the
top-1 results of MGN and P2-Net are all failure cases, due to the occlusion (the first row for
MGN, the second row for P2-Net), the similar appearance (the second row for MGN, the
first row for P2-Net). In contrast, our DCANet successfully retrieves the correct images for
all these challenging query images, due to its ability to discover and align DCs.

Figure 4: The retrieving results of different methods. The first two rows show the compar-
isons between the proposed DCANet and a stripe-based method, MGN. The last two rows
compare DCANet with P2-Net, which utilizes additional human parsing results.

5 Conclusions
Body misalignment is a great challenge in both image- and video-based ReID tasks. Al-
though many attempts have been made to tackle the problem, these methods have limi-
tations and usually cannot work well on both tasks. In this paper, we propose a flexible
network, DCANet, to extract and align the frame-wise discriminative features with a dual
multi-attention strategy. Extensive experiments, including the ablation studies and the com-
parisons with the state-of-the-art methods, on both IReID and VReID benchmarks, have been
carried out to demonstrate the effectiveness of our approach.
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