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Abstract

The most competitive noisy label learning methods rely on an unsupervised classi-
fication of clean and noisy samples, where samples classified as noisy are re-labelled
and "MixMatched" with the clean samples. These methods have two issues in large
noise rate problems: 1) the noisy set is more likely to contain hard samples that are in-
correctly re-labelled, and 2) the number of samples produced by MixMatch tends to be
reduced because it is constrained by the small clean set size. In this paper, we introduce
the learning algorithm PropMix to handle the issues above. PropMix filters out hard
noisy samples, with the goal of increasing the likelihood of correctly re-labelling the
easy noisy samples. Also, PropMix places clean and re-labelled easy noisy samples in
a training set that is augmented with MixUp, removing the clean set size constraint and
including a large proportion of correctly re-labelled easy noisy samples. We also include
self-supervised pre-training to improve robustness to high noisy label scenarios. Our
experiments show that PropMix has state-of-the-art (SOTA) results on CIFAR-10/-100
(with symmetric, asymmetric and semantic label noise), Red Mini-ImageNet (from the
Controlled Noisy Web Labels), Clothing1M and WebVision. In severe label noise bench-
marks, our results are substantially better than other methods. The code is available at
https://github.com/filipe-research/PropMix.

1 Introduction
Deep neural network models reached promising results in several computer vision applica-
tions recently [1, 14, 39]. Nevertheless, the superior performance depends on the availability
of well-curated large-scale training sets with clean annotations [32]. The labeling process
can produce noisy labels due to human failure, low-quality data, and challenging labelling
tasks [11]. The problem is that noisy labels in the training set harms the learning process
by reducing model generalization [56]. Developing methods that are robust to label noise is
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important to deal with real-world applications, where noisy annotations is often part of the
training set.

A common approach to address this challenge is based on semi-supervised learning
(SSL) methods [10, 30, 41, 42], based on a 2-stage process formed by an unsupervised
learning method to classify training samples as clean or noisy, followed by SSL that "Mix-
Matches" [4] the labelled set formed by the samples classified as clean, and the re-labelled
samples from the noisy set. There are two issues with such approach. First, samples classi-
fied as noisy can be easy or hard to be re-labelled, where the hard samples are unlikely to be
correctly re-labelled, which can bias the training process. Second, MixMatch [4] relies on a
one-to-one sampling between the clean and noisy sets, where the total number of samples is
constrained by the clean set size. However, the clean set tends to be smaller and the noisy set
tends to have more incorrectly re-labelled samples for larger noise rates–such fact impairs
the robustness of SSL methods for large noise rate problems. We hypothesise that by filtering
out hard noisy samples, we can reduce the risk of over-fitting those samples. Furthermore,
by re-labelling the easy noisy samples and mixing them with the clean set with MixUp [57]
for training a classifier, we not only remove the constraint on the clean set size, but also use
a noisy set with better chances to have correctly re-labelled samples, allowing the method to
be more robust to large noise rate problems.

In this paper, we propose a new learning algorithm called PropMix that addresses the
two points above. PropMix filters out hard noisy samples via a two-stage process, where
the first stage classifies samples as clean or noisy using the loss values, and the second stage
eliminates hard noisy samples using their classification confidence. Then, by re-labelling
the easy noisy samples with the model output, adding these samples to the training set,
and running a regular classification training with MixUp [57], we show that PropMix is
robust to a wide range of noise rates. To improve the feature representation and model
confidence in high noise scenarios, we also add a self-supervised pre-training stage [6, 7, 12,
19]. Empirical results on CIFAR-10/-100 [25] under symmetric, asymmetric and semantic
noise, show that PropMix outperforms previous approaches. For high-noise rate problems in
CIFAR-10/-100 [30] and Red Mini-ImageNet from the Controlled Noisy Web Labels [52],
PropMix presents the best results in the field by a substantial margin.

2 Prior Work
Recently proposed noisy label learning methods rely on the following strategies: robust loss
functions [36, 48, 50], sample selection [16], label cleansing [21, 55], sample weighting
[45], meta-learning [15], ensemble learning [38] and semi-supervised learning (SSL) [4].
The most successful approaches use SSL, combined with other methods [22, 30, 33].

SSL methods [30, 41] first classify samples as clean or noisy, where the noisy samples are
re-labelled by the model, and these clean and noisy sets are combined with MixMatch [4]. As
mentioned before, SSL methods have two issues: 1) the training set size for the MixMatch
stage is limited by the clean set size that reduces with increasing label noise, and 2) the noisy
sample re-labelling accuracy also reduces with increasing label noise. Although the first
point is not addressed by SSL methods, the second point is mitigated by replacing the cross
entropy (CE) loss by the Mean Absolute Error (MAE) loss to fit the noisy samples. Although
MAE has been shown to be robust to label noise [13], it tends to underfit the training set [36].

An alternative way to reduce the risk of overfitting incorrectly re-labelled noisy samples
is by rejecting them altogether [16, 44], but such rejection ignores the information present
in noisy samples, which can decrease the effectiveness of the approach. Moreover, in high
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noise rate scenarios, the filtered clean set can be too small to train the model. The noisy
set can be used after re-labelling the noisy samples [30, 41, 49], which works well for low
noise rate problems, but as the noise rate increases, this approach is not effective given
that the incorrectly re-labelled noisy samples tend to bias the training. The use of clean
validation sets in a meta-learning approach [2] can reduce this issue, but the existence of
a clean validation set may be infeasible in real world applications. SELFIE [47] proposes
label correction to a subset of samples that present consistent prediction, while discarding
samples that are less consistent. The main issue with SELFIE is that the classification of
clean samples is based on a loss threshold that might include some relabeling in the predicted
clean set, producing false positives. Our method proposes a hybrid approach. We claim that
hard noisy samples are unlikely to have their label corrected, mainly in a high noise scenario.
On the other hand, we can find easy noisy samples that are likely to be correctly relabelled
and used in a supervised training. The main difference of existing filtering methods and
our approach is that we filter out hard noisy samples, while keeping easy noisy samples to
be relabelled and included in the training process. We show in the experiments that easy
noisy samples can be relabelled correctly with high accuracy, whereas hard noisy samples
are unlikely to be correctly relabelled and therefore should be removed from training.

3 Method

3.1 Problem Definition

Consider the training set be denoted by D = {(xi,yi)}|D|i=1, with xi ∈ S ⊂ RH×W×3 being the
ith RGB image of size H×W , and yi ∈ {0,1}|Y| denoting a one-hot vector representing the
given label, with Y ∈ {1, ..., |Y|} denoting the set of labels, and ∑c∈Y yi(c) = 1. The hidden
true label ŷi can differ from the given label yi that is a result of noise process, represented
by yi ∼ p(y|xi,Y, ŷi), with p(y( j)|xi,Y, ŷi(c)) = η jc(xi), where the j,c ∈ Y are the classes,
η jc(xi) ∈ [0,1] the probability of flipping the class c to j, and ∑ j∈Y η jc(xi) = 1. There
are three common types of noise in the literature: symmetric [24], asymmetric [43], and
semantic [27]. The symmetric noise is a noisy type where the hidden label are flipped to a
random class with a fixed probability η , where the true label is included into the label flipping
options, which means that η jc(xi) =

η

|Y|−1 ,∀ j ∈Y, such that j 6= c, and ηcc(xi) = 1−η . The
asymmetric noise has its labels flipped between similar-looking object categories [43], where
η jc(xi) depends only on the classes j,c ∈ Y , but not on xi. Finally, the semantic noise [27]
is the noisy type where the label flipping depends both on the classes j,c ∈ Y and image xi.

3.2 PropMix

The proposed PropMix algorithm (Fig. 1) starts with a self-supervised pre-training [6, 7,
12, 19]. Then, we perform a supervised training, with a new filtering step to identify clean
samples, easy noisy samples, and hard noisy samples, which are removed from training. The
easy noisy samples are re-labelled and proportionally combined with clean samples using
MixUp [57] for supervised training.

The self-supervised pre-training estimates φ of the feature representation fφ : S → Z ⊂
Rd , by minimizing the contrastive loss [6, 7, 19]:

`i, j =−log
exp(sim(zi,z j)/τ)

∑
2N
k=11[k 6=i]exp(sim(zi,zk)/τ)

(1)
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Figure 1: Our proposed PropMix has a self-supervised pre-training stage [6, 7, 12, 19],
followed by a supervised training stage, where we first warm-up the classifier with a clas-
sification loss, using the pre-trained weights. Then, using the classification loss, we train
a GMM to separate the samples into clean and noisy. Next, using classification confidence
for the noisy set, we train a second GMM to separate the easy and hard noisy samples. The
clean and easy noisy samples are proportionally combined in the MixUp for training.

with N denoting mini-batch size, z = fφ (x) represents the features extracted from input x,
with zi and zj being the feature vectors from two views of the same image (these views are
obtained via different data augmentations of the same image), 1[k 6=i] ∈ {0,1} being an in-
dicator function, τ denoting the temperature parameter, and sim(.) representing the cosine
similarity. Following [12], we then learn a clustering classifier pθ (.| fφ (x)). More precisely,
we form an initial set of K nearest neighbours (KNN) in Z for each training sample, pro-
ducing the set Nxi = {x j}K

j=1 (for x j ∈ D) for each sample xi ∈ D . We train pθ (.| fφ (x))
with [12]:

`CLU = `N +λe`e, (2)

with `N = − 1
|D| ∑

|D|
i=1 ∑x j∈Nxi

q(z ji) log
(

pθ (.| fφ (xi))
>pθ (.| fφ (x j))

)
, q(z ji) = 1 if xi and x j

have the same classification result (i.e., argmaxc∈Y pθ (c| fφ (xi))= argmaxc∈Y pθ (c| fφ (x j))),
and `e =

1
|D| ∑c∈Y ∑x∈D pθ (c| fφ (x)) log pθ (c| fφ (x)) that maximises the entropy of the aver-

age classification and is weighted by λe. The weights from the feature map fφ (x) are also
updated in the clustering process using backpropagation.

After the pre-training, we warm-up the classifier by training it for a few epochs on the
(noisy) training data set with the cross-entropy (CE) loss. The clean and noisy sets, X ,U ⊆
D, are formed with [3, 23, 27, 30]:

X = {(xi,yi,wi) : wi = p(clean|`i,γ)≥ τ} , U = {(xi,yi,wi) : wi = p(clean|`i,γ)< τ} ,
(3)

with τ denoting a classification threshold, `i =−y>i log pθ (.| fφ (xi)), and p(clean|`i,γ) being
a function that estimates the probability that (xi,yi) is a clean label sample. The function
p(clean|`i,γ) in Eq.3 is a bi-modal Gaussian mixture model (GMM) [30], where γ denotes
the GMM parameters and the larger mean component is the noisy component whereas the
smaller mean component is the clean component. Next, we obtain the sets of easy and hard
noisy samples UE ,UH ⊆ U , as follows:

UE =
{
(xi,yi) : p

(
hard|pθ (c∗i | fφ (x)i),γ

)
< τ

′} ,
UH =

{
(xi,yi) : p

(
hard|pθ (c∗i | fφ (xi)),γ

)
≥ τ

′} , (4)

with c∗i = argmaxci∈Y pθ (ci| fφ (xi)), p
(
hard|pθ (c∗i | fφ (xi)),γ

)
being a function that esti-

mates the probability that (xi,yi) is a hard noisy label sample, and τ ′ denoting the hard
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noisy sample threshold. The function p
(
hard|pθ (c∗i | fφ (xi)),γ

)
in Eq. 4 is a GMM, where γ

denotes the GMM parameters and the smaller mean component is the hard noise component
whereas the larger mean component is the easy noise component. We assume hard noisy
samples have wrong label and wrong prediction, so we remove them from training.

Next, we perform M data augmentations based on geometrical and visual transforma-
tions to increase the number of samples in X and UE , generating the augmented sets X ′ =
{(x̂i, ŷi)}|X

′|
i=1 and U ′E = {(ûi, q̂i)}

|U ′E |
i=1 , with x̂i and ûi being the augmented samples from X

and UE , respectively, and ŷi and q̂i the label estimations defined as follows:

ŷi = TempShrp(wiyi +(1−wi)pb;T ), q̂b = TempShrp(qb;T ) (5)

with pb =
1
M

M
∑

m=1
pθ (.| fφ (x̂i,m)), qb =

1
M

M
∑

m=1
pθ (.| fφ (ûi)) , and TempShrp(.) being a temper-

ature sharpening [30].
The linear combination between the clean and easy noisy samples rely on MixUp [57]

data augmentation, which is different from the SOTA SSL approaches [30] that use Mix-
Match [4] which has a training set size restricted by the clean set size. In particular, MixMatch-
based methods select BU ′ = |X ′| samples from the noisy set and BX ′ = |X ′| samples from
the clean set, so the MixUp proportion of samples from the noisy set is ζ =

BU ′
BX ′+BU ′

= 0.5,
and the size of the MixMatch training set is |X ′|. In our approach, we re-label the easy
noisy samples in U ′E and place them together with the clean samples in X ′ for the MixUp
data augmentation withD′ =X ′∪U ′E . This operation enables us to obtain the proportionally
mixed set D̂= MixU p(D′,shuffled(D′)) where the proportion of samples from the noisy set,
denoted by ζ =

|U ′E |
|X ′|+|U ′E |

, will be larger than 0.5 for high noise rate problems.
To optimise the classification term we rely on the regularised CE loss [30]:

L= `CE +λr`r, (6)

with `CE = − 1
|D̂| ∑(x̃,ỹ)∈D̂ ỹ> log pθ (.| fφ (x̃)) and `r = KL

[
π|Y|

∣∣∣∣∣
∣∣∣∣∣ 1
|D̂| ∑(x,y)∈D′ pθ (.| fφ (x))

]
,

where λr weights the regularisation loss, and π|Y| denotes a vector of |Y| dimensions with
values equal to 1/|Y|. Different from SOTA semi-supervised methods [30, 40], we do not
have an additional loss for the noisy set because we assume that most of the samples in
the noisy set have correct predictions (this is empirically shown in Sec. 4.3). A positive
outcome from not using such additional loss for the noisy set is that we no longer need to
manually set hyper-parameter values that depend on the noise rate of the problem, as is done
by DivideMix [30]. The pseudo-code for the training of PropMix is shown in Algorithm 1
in the supplementary material.

4 Experiments

4.1 Data sets
We conduct our experiments on the data sets CIFAR-10, CIFAR-100 [25], Controlled Noisy
Web Labels (CNWL) [23], Clothing1M [51] and WebVision [31]. CIFAR-10 and CIFAR-
100 have 50k training and 10k testing images of size 32×32 pixels, where CIFAR-10 has 10
classes and CIFAR-100 has 100 classes and all training and testing sets have equal number
of images per classes. As CIFAR-10 and CIFAR-100 data sets originally do not contain label
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noise, we follow the literature [30] and add the following synthetic noise types (see Sec. 3.1):
symmetric (with noise rate η ∈ {0.2,0.5,0.8,0.9}, as defined in Sec. 3.1), asymmetric (using
the mapping in [30, 43], with η jc = 0.4), and semantic [27] (with noisy labels based on a
trained VGG [46], DenseNet (DN), and ResNet (RN)).

The CNWL dataset [23] is a benchmark to study real-world web label noise in a con-
trolled setting. Both images and labels are crawled from the web and the noisy labels are
determined by matching images. The controlled setting provide different magnitudes of label
corruption in real applications, varying from 0% to 80%. We study the red Mini-ImageNet
that consists of 50k training images and 5k test images, with 100 classes. The original
84×84-pixel images are resized to 32×32 pixels. The noise rates are 20%, 60% and 80%,
as used in [52].

Clothing1M consists of 1 million training images acquired from online shopping web-
sites and it has 14 classes. As the images from the data set vary in size, we resized the
images to 256× 256 for training, as used in [17, 30]. The data set provide additional clean
sets for training, validation, and testing of 50k, 14k and 10k images, respectively. For our
experiments we do not use any of the clean training or validation sets, but we use the clean
test set for evaluation.

WebVision contains 2.4 million images collected from the internet, with the same 1000
classes from ILSVRC12 [9] and images resized to 256×256 pixels. It provides a clean test
set of 50k images, with 50 images per class. We compare our model using the first 50 classes
of the Google image subset, as used in [5, 30].

4.2 Implementation
For CIFAR-10 and CIFAR-100 we used a 18-layer PreaAct-ResNet-18 (PRN18) [18] as our
backbone model [30]. The models are trained with stochastic gradient descent (SGD) with
momentum of 0.9, weight decay of 0.0005 and batch size of 64. For the self-supervised
pre-training learning task, we adopt SimCLR [6] with a batch size of 1024, SGD optimiser
with a learning rate of 0.4, decay rate of 0.1, momentum of 0.9 and weight decay of 0.0001,
and run it for 800 epochs. This pre-trained model produces feature representations of 128
dimensions. Using these representations we mine K = 20 nearest neighbours (as in [12]) for
each sample to form the sets {Nxi}

|D|
i=1, defined in Sec. 3.2. In the supervised training stage,

the model is trained with SGD with momentum of 0.9, weight decay of 0.0005 and batch size
of 64. The learning rate is 0.02 which is reduced to 0.002 in the middle of the training. The
WarmUp and total number of epochs is defined according to each data set, as defined in [30].
For CIFAR-10 and CIFAR-100, PRN18 is trained with a WarmUp stage of 30 epochs for
CIFAR-10 and 10 epochs for CIFAR-100, and 300 epochs of final training. In our training,
we also use a co-teaching approach, as in [16, 30, 33]. We estimate noise rate with |U|/|D|,
defined in Eq. 3 – if this ratio is larger than 50%, we use strong data augmentation with
cutout [8], otherwise, we use standard augmentation (i.e., crop and flip).

For the semantic noise from [27], we use DenseNet-100 [20] as backbone, follow-
ing [27]. The pre-training stage uses the same parameters as in CIFAR, except that we
use a batch size of 512. In the supervised stage, we use the same protocol as [27], which
uses SGD with momentum 0.9, weight decay 10-4 and learning rate of 0.1 that is divided
by 10 after epochs 40 and 80 for CIFAR-10 (which runs for 120 epochs in total), and after
epochs 80, 120 and 160 for CIFAR-100 (runs for 200 epochs in total). The WarmUp epochs
is the same as CIFAR-10/CIFAR-100.

For red Mini-Imagenet we use PRN18 as backbone, following [52]. For the self-supervised
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pre-training task, we adopt SimCLR [6] with batch size 128. All other parameters for the
self-supervised pre-training are the same as described for CIFAR. For the supervised stage,
we adopt the implementation of [52], where we train for 300 epochs, relying on SGD with
learning rate of 0.02 (decreased by a factor of ten at epochs 200 and 250), momentum of 0.9
and weight decay of 5e-4.

For Clothing1M, we use ResNet-50 as backbone, following [30]. In this protocol, a
ResNet-50 with ImageNet [9] pre-trained weights is used and we decided to not use the self-
supervised stage for this experiment because the model is already pre-trained. The ResNet-
50 is trained for 80 epochs, including a WarmUp stage of 1 epoch, with a batch size of 32,
SGD with a learning rate of 0.002 (divided by 10 at epoch 40), momentum of 0.9 and weight
decay of 0.0001.

For Webvision, we use InceptionResNet-V2 as backbone, following [30]. For self-
supervised pre-training, we adopt MoCo-v2 (4-GPU training) [7], trained with 100 epochs,
with a batch size of 128, SGD with a learning rate of 0.015 (divided by 10 at epoch 50),
momentum of 0.9 and weight decay of 0.0001, and run it for 100 epochs with a WarmUp
stage of 1 epoch. The feature representations learned from this process have 128 dimensions.
All the other parameters were the same as described above for CIFAR.

4.3 PropMix Analysis
Fig. 2 shows the PropMix hard noisy sample filtering process for CIFAR-100 with 80%
symmetric noise, at epoch 150 (i.e., half of the training epochs). The left histogram shows the
clean and noisy classification from Eq. 3, while the right one shows the easy and hard noisy
sample classification from Eq. (4). As can be seen, the use of confidence in Eq. (4), instead
of the loss from Eq. 3, is an effective way to remove noisy samples with wrong prediction.
We also evaluated the quality of the filtering stage using PropMix for CIFAR-100 under
different symmetric noise rates. Fig. 3(a) and (b) show the precision and recall of the hard
noisy sample filtering as a function of training epochs. These graphs show that the larger
the noise, the higher the precision. For example, for 90% noise, the hard noise classification
reaches 80% at the end of training. Fig. 3(c) shows the size of the noisy sample set during
training. Fig. 3(d) compares the easy noise set re-labelling accuracy by PropMix with a
baseline that does not filter out hard noisy samples. We can see that PropMix is substantially
more accurate, which enables a more successful training with the easy noisy samples. We
also evaluated the impact of the parameters τ and τ ′ in the training. Fig. 4 shows the PropMix
accuracy for CIFAR-10 (a-b) and CIFAR-100 (c-d) under different symmetric noise rates,
varying the parameters τ , which is related to the clean/noisy filtering from Eq. 3, and τ ′,
which related to hard noise filtering, from Eq. 4. Fig. 4(a,c) vary τ while fixing τ ′ = 0.5, and
Fig. 4(b,d) vary τ ′ while fixing τ = 0.5. We can see that τ ′ does not have a strong impact on
the accuracy, which motivated us to use τ ′ = 0.5 independently of the noise rate and data set.
The parameter τ is shown to decrease accuracy at higher values. In PropMix we use τ = 0.5
as in other works [30].

4.4 Comparison with State-of-the-Art
For CIFAR-10 and CIFAR-100, we evaluate our model using symmetric label noise ranging
from 20% to 90%, and 40% asymmetric noise. We report both the best test accuracy across
all epochs and the averaged test accuracy over the last 10 epochs of training, similar to [30].
Tab. 1 shows that for CIFAR-10 and CIFAR-100 data sets, our method obtains the best results
for almost all evaluated noisy rates.
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Figure 2: PropMix classification of easy and hard noisy samples. From the (normalized)
loss of all samples, PropMix uses GMM to split clean and noisy samples, and then, using
the largest classification confidence, it uses another GMM to split the hard and easy noisy
samples. This example was run on CIFAR-100, 80% noise rate at epoch 150.
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Figure 3: Evaluation of hard noisy sample filtering, for CIFAR-100, with 50% to 90% sym-
metric noise. Graphs in (a,b) show the precision and recall of the classification of hard noisy
samples (i.e., noisy samples that are incorrectly labelled by the model), Graph (c) shows
the estimated noise set size, and (d) shows the classification accuracy of the re-labelled easy
noisy samples, compared to the baseline that does not filter out hard noisy samples.
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Figure 4: Evaluation of the parameters τ (clean sample threshold) and τ ′ (hard noisy sample
threshold), for CIFAR-10 and CIFAR-100, with 20% to 90% symmetric noise. Graphs in
(a,b) show the best accuracy when training using PropMix with CIFAR-10, and graphs (c,d)
show results for CIFAR-100, at different values of τ and τ ′. Graph (a,c) vary the parameter
τ , while fixes τ ′ at 0.5. Graph (b,d) vary the parameter τ ′ while fixes τ at 0.5.

Tab. 2 shows the results for semantic noise [27], which is harder and more realistic than
the synthetic noise, where PropMix shows significantly more accurate results than any of the
methods in [27]. In Tab. 4, we show that PropMix improves the SOTA by a large margin on
the Red Mini-ImageNet semantic noise experiment from [23].

We also evaluate PropMix on the noisy large-scale datasets WebVision [31] and Cloth-
ing1M [51]. Tab. 5 shows competitive results compared to SOTA. As Clothing1M experi-
mental protocol uses ImageNet pre-trained weights, the training could not benefit from Prop-
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dataset CIFAR-10 CIFAR-100
Noise type sym. asym. sym.

Method/ noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

Cross-Entropy [30] Best 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
Last 82.7 57.9 26.1 16.8 72.3 61.8 37.3 8.8 3.5

Coteaching+ [54] Best 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
Last 88.2 84.1 45.5 30.1 - 64.1 45.3 15.5 8.8

MixUp [57] Best 95.6 87.1 71.6 52.2 - 67.8 57.3 30.8 14.6
Last 92.3 77.3 46.7 43.9 - 66.0 46.6 17.6 8.1

PENCIL [53] Best 92.4 89.1 77.5 58.9 88.5 69.4 57.5 31.1 15.3
Last 92.0 88.7 76.1 58.2 88.1 68.1 56.4 20.7 8.8

Meta-Learning [29] Best 92.9 89.3 77.4 58.7 89.2 68.5 59.2 42.4 19.5
Last 92.0 88.8 76.1 58.3 88.6 67.7 58.0 40.1 14.3

M-correction [3] Best 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3
Last 93.8 91.9 86.6 68.7 86.3 73.4 65.4 47.6 20.5

MentorMix [23] Best 95.6 - 81.0 - - 78.6 - 41.2 -
Last - - - - - - - - -

MOIT+ [42] Best 94.1 - 75.8 - 93.3 75.9 - 51.4 -
Last - - - - - - - - -

DivideMix [30] Best 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
Last 95.7 94.4 92.9 75.4 92.1 76.9 74.2 59.6 31.0

ELR+ [34] Best 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4
Last - - - - - - - - -

PropMix (Ours) Best 96.44 95.77 93.94 93.48 94.89 77.41 74.56 67.34 58.57
Last 96.09 95.53 93.77 93.20 94.64 76.99 73.71 66.75 58.32

Table 1: Test accuracy (%) for all competing methods on CIFAR-10 and CIFAR-100 under
symmetric and asymmetric noises. Results from related approaches are as presented in [30].
Top methods within 1% are in bold.

Data set CIFAR-10 CIFAR-100

Method/ noise ratio DenseNet (32%) ResNet (38%) VGG (34%) DenseNet (34%) ResNet (37%) VGG (37%)

D2L + RoG [26] 68.57 60.25 59.94 31.67 39.92 45.42
CE + RoG [26] 68.33 64.15 70.04 61.14 53.09 53.64

Bootstrap + RoG [26] 68.38 64.03 70.11 54.71 53.30 53.76
Forward + RoG [26] 68.20 64.24 70.09 53.91 53.36 53.63

Backward + RoG [26] 68.66 63.45 70.18 54.01 53.03 53.50
PropMix (Ours) 84.25 82.51 85.74 60.98 58.44 60.01

Table 2: Test accuracy (%) for the semantic noise benchmark [26], where baseline results
are from [26]. The results with (*) were produced by locally running the published code
provided by the authors. Top methods (±1%) are in bold.

Mix strategy. Tab. 3 shows the Top-1/-5 test accuracy using the WebVision and ILSVRC12
test sets. Results show that PropMix is slightly better than the SOTA for WebVision test set.
This suggests that our approach is also effective in large-scale, low noise rate problems.

4.5 Ablation Study
We show the ablation study of PropMix with CIFAR-10 and CIFAR-100 under symmetric
and asymmetric noises at several rates. In Tab. 6, we show Self-superv. pre-train, which has
the result from self-supervised training (with SCAN [12]), where the result is the same across
different noise rates because it never uses the noisy labels for training. SSL (DivideMix) [30])
is current SOTA in noisy label learning, but it has worse accuracy in high noise rate problems
(> 80% noise) than SCAN. Self-superv. pre-train+SSL (DivideMix) pre-trains DivideMix
with SCAN to improve accuracy in high-noise rate problems, without affecting low-noise
rate results. Just removing the MSE loss in Self-superv. pre-train+SSL (DivideMix) w/o
MSE does not help much because the noisy samples from DivideMix is not accurately re-
labelled. Adding our hard noisy sample filtering in Self-superv. pre-train+SSL (DivideMix)
+ filtering with MSE does not improve accuracy because DivideMix still uses MSE loss to
train the easy noisy samples, which is unnecessary given that these samples are accurately
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Method/ noise ratio 20% 40% 60% 80%

Cross-entropy [52] 47.36 42.70 37.30 29.76
MixUp [57] 49.10 46.40 40.58 33.58
DivideMix [30] 50.96 46.72 43.14 34.50
MentorMix [23] 51.02 47.14 43.80 33.46
FaMUS [52] 51.42 48.06 45.10 35.50
PropMix (Ours) 61.24 56.22 52.84 43.42

Table 4: Test accuracy (%) for Red Mini-
ImageNet [23]. Results from baseline
methods are as presented in [52]. Top
methods (±1%) are in bold.

Method Test Accuracy

Cross-Entropy [30] 69.21
M-correction [3] 71.00
PENCIL[53] 73.49
DeepSelf [17] 74.45
CleanNet [28] 74.69
DivideMix [30] 74.76
PropMix (ours) 74.30

Table 5: Test accuracy (%) for Cloth-
ing1M [51] by methods trained with 80
epochs. Baselines come from [30]. Top meth-
ods within 1% are in bold.

re-labelled and can be trained with the CE loss. PropMix can achieve better results for high
noise rates, using a simpler loss function (uses only CE loss) with less hyper-parameters, and
removing hard noisy samples.

dataset CIFAR-10 CIFAR-100

Noise type sym. asym. sym.

Method/ noise ratio 20% 50% 80% 90% 40% 20% 50% 80% 90%

Self-superv. pre-train [12] 81.6 81.6 81.6 81.6 81.6 44.0 44.0 44.0 44.0
SSL (DivideMix) [30] 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
Self-superv. pre-train + SSL (DivideMix)* 96.2 94.8 93.9 92.2 93.3 77.4 74.7 66.7 56.2
Self-superv. pre-train + SSL (DivideMix)* w/o MSE 96.2 95.2 91.4 85.1 93.3 77.2 73.9 62.6 52.1
Self-superv. pre-train + SSL (DivideMix)* + filtering with MSE 96.3 95.3 93.8 91.6 93.0 77.3 75.3 66.7 55.7
PropMix (Ours) 96.4 95.8 93.9 93.5 94.9 77.4 74.6 67.3 58.6

Table 6: In this ablation study we show the test accuracy (%) on CIFAR-10 and CIFAR-
100 under symmetric and asymmetric noise problems. First, we show the results of self-
supervised pre-training with SCAN [12]. Then we show the current SOTA SSL learning for
noisy label DivideMix [30]. Next, we show the results of DivideMix pre-trained with SCAN.
Then, we remove the MSE loss to train DivideMix re-labelled noisy samples, and add the
hard noisy filtering stage (but keeping the MSE loss) to the pre-trained DivideMix. The last
row shows our PropMix . The top results within 1% are highlighted.

5 Conclusion and Future Work

Method Top-1 Top-5

F-correction [43] 61.12 82.68
Decoupling [37] 62.54 84.74
D2L [35] 62.68 84.00
MentorNet [22] 63.00 81.40
Co-teaching [16] 63.58 85.20
Iterative-CV [5] 65.24 85.34
MentorMix [23] 76.00 90.20
DivideMix [30] 77.32 91.64
ELR+ [33] 77.78 91.68
PropMix (Ours) 78.84 90.56

Table 3: Test accuracy (%) for WebVi-
sion [31] by methods trained with 100
epochs. Baselines come from [30].
Top methods within 1% in bold.

We presented PropMix, a noisy label training algo-
rithm to filter out hard noisy samples, remove sam-
ples with incorrect label and incorrect prediction
from noisy set with the goal to keep the easy noisy
samples that have a higher chance to be correctly re-
labelled. PropMix reduces noisy-dependent param-
eters, while promoting the use of the entire filtered
noisy set in a fully supervised training, with propor-
tional MixUp data augmentation on the clean set.
Our results on CIFAR-10/100, Red Mini-ImageNet,
and WebVision outperform the SOTA methods, also
demonstrating robustness to over-fitting in several
noise rates with substantial improvement in high
noise problems.
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