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Abstract

Fueled by the recent breakthroughs in quantum theory and hardware, it has been
demonstrated that computer vision (CV) tasks can be solved in quantum computers
via the emerging quantum machine learning (QML). In contrast to classical computing,
quantum computing relies on the entanglement between qubits to communicate. While
many conventional machine learning (ML) tasks have been well-studied, there are still
ML problems to be solved on quantum data. One of this challenges is the domain shift
on quantum data. In this work, we aim to understand the role of entanglement in mitigat-
ing the domain shift in a quantum domain. We formulate quantum unsupervised domain
adaptation (QUDA) for the first time and, to address the domain shift existing in quantum
data, propose quantum adversarial domain adaptation (QADA). Limited by the capacity
of the current quantum devices, we lay the groundwork for a computation-efficient quan-
tum system that implements QADA in a simple manner. QADA integrates two quantum
neural networks (QNNs), including a quantum classifier and a quantum discriminator.
Two QNNs are trained in a hybrid classical-quantum platform with an adversarial strat-
egy. We evaluate QADA on unsupervised domain adaptation tasks between the MNIST
and SVHN image datasets under a quantum setting. Our simulated experiments show
that QADA can be used to mitigate the domain shift in a quantum device, which fur-
ther validates that the entanglement in a quantum circuit model can be used to achieve
QUDA.

1 Introduction
Albert Einstein described entanglement [38] as a spooky phenomenon in quantum physics.
The entanglement between two quantum bits, or qubits, cannot be implemented by any clas-
sical computers, which makes the entanglement a characteristic feature of quantum com-
puting. In the era of near-term noisy intermediate-scale quantum (NISQ) computing [36],
quantum machine learning (QML) [6, 39] has gained increasing attention. As an emerging
research area in its early stage, the goal of QML is to understand or develop machine learn-
ing (ML) models on quantum hardware [13]. So far, there have been exploratory studies
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using quantum neural networks (QNNs) to solve simple ML tasks, such as image classifica-
tion [3, 10, 15, 22, 32]. QNNs are quantum circuit models consisting of parametric quantum
gates. A QNN can be viewed as a variational quantum circuit (VQC) [37] in the quantum
physics literature. Although the quantum gates in VQC are unitary i.e. linear transforma-
tions, it has been proven that VQC can approximate nonlinear functions [7, 33]. The input
to QNNs are qubits, where semantic information is encoded as quantum states. Similar to
classical NNs, a forward pass in a QNN is equivalent to manipulate the qubits via sequen-
tial quantum gates. Meanwhile, the loss can be back-propagated [24] by approximating the
gradients for the parametric quantum gates. In the near term, the optimization of VQC is
implemented via a hybrid quantum-classical (HQC) framework [37], where the computing
tasks can be decomposed into two sub-tasks. The first sub-task is to apply quantum gates to
manipulate qubits in a quantum computer and the second sub-task optimizes the parameters
of quantum gates in a classical computer.

Previous quantum studies assume that the training and test set come from the same un-
derlying distribution, which does not consider the scenarios that two sets are collected from
different data distributions, namely the source domain and the target domain. In practice,
the source and the target domain may have significant distributional divergence, which is
referred to as the domain shift. The domain shift is a practical challenge in CV as it causes
misalignment in feature space when the model learned from the source domain is directly
applied to the target domain, thus leading to a performance drop in the target domain. In clas-
sical ML, this problem has been investigated under the term unsupervised domain adaptation
(UDA) [4], for scenarios where the labels of the target domain are inaccessible during the
training. Although large progress has been made in UDA [16, 20, 27, 28, 29, 40, 41, 42, 44],
how to address domain shift in the quantum domain remains an open question. We define
this new problem as quantum unsupervised domain adaptation (QUDA). Note

In this work, we make the first attempt to address QUDA by proposing quantum ad-
versarial domain adaptation (QADA). In classical adversarial domain adaptation (ADA)
[16, 20, 29, 41, 42, 44], there are two complementary NNs. Take image classification as
an example, ADA consists of a classifier and a discriminator. The two NNs play a mini-
max game [17], where the discriminator is trained to discriminate the difference between the
source and the target domain and the classifier is trained to learn domain-invariant represen-
tations for the classification task. In the quantum domain, simply introducing an auxiliary
QNN analogous to ADA, is not possible due to the following three challenges: 1) we can
not physically access the intermediate quantum states within a QNN as only the measure-
ment outcomes of the qubits are observable; 2) the common feature vectors of classical NNs
are ill-defined in the tensor product Hilbert space; and 3) due to the No-Cloning Theorem
[43], quantum states can not be copied. The first two challenges require that the system can
easily manipulate the quantum representations. The third challenge encourages the efficient
use of the quantum data, as the cost of quantum state preparation (i.e. preparing quantum
data) could be easily ignored in simulated QML studies [2]. To bridge the aforementioned
challenges and facilitate QUDA, we present our solution QADA. The overall workflow is
illustrated in Fig. 1. Note that, instead of having two separate NNs as in ADA, two QNNs
in QADA are integrated into one system. This novel design not only mitigates the above
drawbacks but also gains system efficiency for practical implementations. Considering that
QADA relies on entangling gates to connect multiple qubits, equivalently, the question of
interest in this work can be rephrased as: does entanglement help?

To empirically validate this theoretical concept, we leverage a CPU-supported simulated
HQC platform. We adapt a classical ADA task to the quantum setting to evaluate QADA,

Citation
Citation
{Bausch} 2020

Citation
Citation
{Cong, Choi, and Lukin} 2019

Citation
Citation
{Farhi and Neven} 2020

Citation
Citation
{Kerenidis, Landman, and Prakash} 2020

Citation
Citation
{McClean, Boixo, Smelyanskiy, Babbush, and Neven} 2018

Citation
Citation
{Romero and Aspuru-Guzik} 2019

Citation
Citation
{Cao, Guerreschi, and Aspuru-Guzik} 2017

Citation
Citation
{Mitarai, Negoro, Kitagawa, and Fujii} 2018

Citation
Citation
{LeCun, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{Romero and Aspuru-Guzik} 2019

Citation
Citation
{Ben-David, Blitzer, Crammer, and Pereira} 2007

Citation
Citation
{Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, and Lempitsky} 2016

Citation
Citation
{Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, and Darrell} 2018

Citation
Citation
{Long, Cao, Wang, and Jordan} 2015

Citation
Citation
{Long, Zhu, Wang, and Jordan} 2017

Citation
Citation
{Long, Cao, Wang, and Jordan} 2018

Citation
Citation
{Tzeng, Hoffman, Zhang, Saenko, and Darrell} 2014

Citation
Citation
{Tzeng, Hoffman, Saenko, and Darrell} 2017

Citation
Citation
{Wang, Jing, Ni, Dong, Xie, and Xing} 2020

Citation
Citation
{Zhang, Liu, Long, and Jordan} 2019

Citation
Citation
{Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand, and Lempitsky} 2016

Citation
Citation
{Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, and Darrell} 2018

Citation
Citation
{Long, Cao, Wang, and Jordan} 2018

Citation
Citation
{Tzeng, Hoffman, Saenko, and Darrell} 2017

Citation
Citation
{Wang, Jing, Ni, Dong, Xie, and Xing} 2020

Citation
Citation
{Zhang, Liu, Long, and Jordan} 2019

Citation
Citation
{Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, and Bengio} 2014

Citation
Citation
{Wootters and Zurek} 1982

Citation
Citation
{Bang, Dutta, Lee, and Kim} 2019



DONG ET AL.: QUANTUM UNSUPERVISED DOMAIN ADAPTATION 3

where the source and target datasets are MNIST [24] and SVHN [35] respectively. We utilize
a classical-to-quantum embedding network to encode qubits with classical semantic infor-
mation. The experimental results not only show that QADA can be used to mitigate domain
shift in the quantum domain, but also validate that the entanglement, as the fundamental
element of QNNs, can play an important role in QUDA.

Note, the main purpose of this work is to solve UDA on quantum data, instead of using
quantum computing to solve UDA. Our contributions can be summarised as follows. 1) To
the best of our knowledge, we are the first to formulate the problem of QUDA. 2) We propose
QADA, the first method for QUDA. 3) We design and develop the proposed quantum circuit
model in a simulated HQC platform. 4) We simulate the quantum domain shift environment
with classical datasets and empirically evaluate QADA.

2 Related Work

2.1 Adversarial Domain Adaptation

Inspired by generative adversarial networks (GANs) [17], ADA utilizes a discriminator to
learn domain-invariant representations for the classifier. Among these seminal ADA meth-
ods [16, 20, 29, 41, 42, 44], DANN [16] and ADDA [41] are the most related to this work.
DANN proposes a gradient reverse layer where the classifier is trained to classify the cat-
egories and confuse the discriminator at the same time. ADDA instead, consists of three
stages. In the first stage, a source feature extractor and a feature classifier are trained. Then,
a target feature extractor and the discriminator are trained jointly to make the discriminator
unable to distinguish the representations extracted from the source and the target domain.
Finally, the feature classifier is placed after the target feature extractor to produce the com-
plete image classifier for the target domain. Compared to DANN, ADDA requires additional
memory footprint, which might not be an economic solution for QUDA. Note, quantum
data is different from classical data, which makes QUDA different from UDA fundamen-
tally. Although the state-of-the-art UDA performance has been achieved by many classical
methods, these methods can not be applied to quantum data. Thus, we do not compare with
state-of-the-art UDA methods in Sec. 5.

2.2 Quantum Generative Adversarial Networks

Normally, a quantum system can generate data with statistics beyond the capacity of a clas-
sical system [13, 25]. This phenomenon is also known as quantum supremacy [1, 36] or
quantum advantage [25]. It has been shown that quantum generative adversarial networks
(QGANs) [8, 12, 37, 45] can exhibit quantum advantages for deep generative modeling. We
want to highlight that QADA is not an extension of QGANs. QGANs usually have two quan-
tum systems (or one quantum system and one classical system), which can not be adapted
for QUDA. It it worth mentioning that, for QGANs with two separate quantum systems, the
output of one QNN cannot be transferred or copied to the other QNN as the input. This is
determined by the nature of quantum measurement. As a comparison, QADA only has one
quantum system where two QNNs are linked and circumvent this problem.
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Figure 1: The quantum embedding network hψ (green) projects a classical image xxx into a
quantum state vector |xxx〉, which is described in Sec. 4.1. The quantum classifier fθ (blue)
takes |xxx〉 as input and predicts the class of |xxx〉 via the readout qubit (horizontal blue line),
which is described in Sec. 4.2. The quantum discriminator gφ (red) acts on the output quan-
tum state vector of fθ and classify whether xxx is from the source domain via the readout qubit
(horizontal red line), which is described in Sec. 4.3.

3 Problem Formulation
Following previous discussions [3, 13, 14, 26, 32] on QNNs, we constrain the problem to be
a binary image classification task and we constrain the input to be a quantum state vector.
We consider a (N + 2)-qubit quantum system as the composite of two systems, namely a
N-qubit input register and a 2-qubit output register. Let DS = {(|xxx j〉 ,y j)}nS

j=1 denote the
labeled dataset sampled from the source domain S andDT = {|xxx j〉}nT

j=1 denote the unlabeled
dataset sampled from the target domain T . n denotes the number of examples for a given
dataset. |xxx〉= |x1〉⊗|x2〉 · · · |xN〉 is a N-qubit quantum state for the input register, where |x〉=
α |0〉+β |1〉 ,α,β ∈ C, |α|2 + |β |2 = 1. y j ∈ {−1,1} is a binary label for the corresponding
|xxx〉. In contrast to previous works, there are two qubits for the output register in this work. In
addition to y, we assume that there is an auxiliary binary label d ∈ {−1,1} indicates whether
the corresponding |xxx〉 is sampled from S or not. Following classical UDA [4, 5, 16], the goal
of the learning algorithm is to build a classifier f : |xxx〉 7→ y with a low target risk

RDT ( f ) = P(|xxx〉,|y〉)∼T [ f (|xxx〉) 6= y], (1)

with only label information of DS. Note, with the definition of Eq. 1, the generalization
bound [4, 44] for classical UDA still holds for QUDA.

4 Method
For consistency, we use for QADA the same notational conventions as in ADA. The quan-
tum classifier is denoted as fθ with parameters θ and the quantum discriminator is denoted
as gφ with parameters φ . In addition to the classifier and the discriminator, there is an-
other quantum embedding network hψ with parameters ψ , which projects classical images
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to quantum state vectors. Note, we simulate quantum data via hψ as we do not have access
to real quantum data at the moment. The overall framework is shown in Fig. 1.

4.1 Quantum Embedding
Ideally, the real quantum state vector |xxx〉 for a QNN should contain the same amount of in-
formation for the image of interest as its classical counterpart xxx for a classical NN. However,
current quantum computers can not store the pixel-level information of a classical image
xxx due to hardware limitations and we do have access to real quantum data in this study.
Therefore, we adopt a common practice in QML, which is to assume that |xxx〉 is a quantum
embedding of the semantic information of the image of interest xxx [21, 31]. Let hψ be a quan-
tum embedding network, which consists of two core parts. We use hψ to simulate quantum
data based on classical data. The first part is a classical feature extractor that takes a classical
image as input and outputs a feature vector. The second part is a linear classical-to-quantum
projection network [31], which projects a high-dimensional feature vector to a N-qubit quan-
tum state vector. We use hψ to encode classical semantic information into a quantum state
vector. Given a well-trained hψ , we can have the simulated quantum data |xxx〉 formulated in
Sec. 3. Although, we can simulate quantum data in this way, the simulated quantum data
may not fully reflect the characteristics of real quantum data.

4.2 Quantum Classifier
For the image classification task, the readout qubit for fθ is prepared as |1〉. So the input
quantum state vector to fθ is |1,xxx〉 = |1〉⊗ |xxx〉. Here, we require that fθ has full entangle-
ment [13] on (N + 1) qubits, i.e. each data qubit in |xxx〉 and the readout qubit are entangled
via entangling gates. With full entanglement, we only have to measure the readout qubit to
infer the learning outcome, which is a computation-efficient design in quantum computing.
Mathematically, each quantum gate can be represented as a unitary matrix. Thus, fθ can
be viewed as a large unitary matrix which maps |1,xxx〉 from C2(N+1)

to C2(N+1)
in the Hilbert

space. Under this definition, we can also represent fθ as a parametric unitary matrix Uθ . The
forward pass of the input state |1,xxx〉 via fθ is equivalent to applying an affine transformation
Uθ on |1,xxx〉. The output state is Uθ |1,xxx〉. As we are only interested in the readout qubit, the
readout qubit is measured by a Pauli operator1in this work, which is a Hermitian matrix. As
the measurement outcome on the readout qubit will be binary (either −1 or 1) with uncer-
tainty. The prediction is defined as the expectation of the observed measurement outcomes
if the output state Uθ |xxx,1〉 is prepared and measured for multiple times. We have

f 0
θ (xxx) = 〈1,xxx|U

†
θ
|Z⊗ I⊗ I⊗·· ·⊗ I︸ ︷︷ ︸

N

|Uθ |1,xxx〉 , (2)

where−1≤ f 0
θ
(xxx)≤ 12. We use the superscript 0 in f 0

θ
(xxx) to denote the measurement on the

readout qubit and we have f 0
θ
(xxx) : C2N 7→ [−1,1]. Given the logit f 0

θ
(xxx) and the binary label

y, we can now define the hinge loss as

L( f 0
θ (xxx),y) = max(0,1− y · f 0

θ (xxx)). (3)

1The common Pauli operators: Z =

[
1 0
0 −1

]
, X =

[
0 1
1 0

]
, I =

[
1 0
0 1

]
.

2† denotes the adjoint operation, i.e. the complex conjugate of the transpose.
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Figure 2: Demonstration of the network architecture of a 2-layer QNN with 4 data qubits and
1 readout qubit. The top line represents the readout qubit. The following four lines represent
4 data qubits respectively. The vertical bold line represents the entanglement between two
qubits. The white boxes are quantum gates. θ jk stands for the parameter of the quantum gate
operated between the readout qubit and the kth data qubit at the jth layer.

Similar to the logit defined in Eq. 2, we also want to define the representations learned
by fθ . Unlike classical NNs, it is impractical to extract features from any hidden layers
of QNNs due to the physical implementation. To access the representations of QNNs, we
project the features in the Hilbert space onto the Euclidean space via measurement on the
data qubits transformed by fθ (Uθ |1,xxx〉) and have

f 1···N
θ (xxx) = 〈1,xxx|U†

θ
|I⊗Z⊗Z⊗·· ·⊗Z︸ ︷︷ ︸

N

|Uθ |1,xxx〉 , (4)

where the subscript 1 · · ·N denotes the data qubits.

4.3 Quantum Discriminator

Similar to the image classification task, we can formulate the domain classification task in
the same way. Without loss of generality, gφ can be represented as Uφ in the matrix form.
As the goal is to learn domain-invariant representations, the input state to gφ should be
the representations from the image classification task. As mentioned above, the quantum
process applies on the whole system. So, for simplicity, we use U{1,··· ,N}

θ
|xxx〉 to denote the

transformation on the N data qubits alone. The readout qubit for gφ is prepared as |1〉. So
the input state of gφ is |1〉⊗U{1,··· ,N}

θ
|xxx〉 and the output state is Uφ |1〉⊗U{1,··· ,N}

θ
|xxx〉. Again,

we only measure on the readout qubit

g0
φ ( fθ ,xxx) = 〈1|⊗ 〈xxx|U

{1,··· ,N}†
θ

|U†
φ
|Z⊗ I⊗ I⊗·· ·⊗ I︸ ︷︷ ︸

N

|Uφ |1〉⊗U{1,··· ,N}
θ

|xxx〉 , (5)

where −1 ≤ g0
φ
( fθ ,xxx) ≤ 1. Similar to Eq. 3, we can define the hinge loss for the domain

classification as

L(g0
φ ( fθ ,xxx),d) = max(0,1−d ·g0

φ ( fθ ,xxx)). (6)
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4.4 Network Architecture

Two QNNs are set to have the same network architecture in this work as a regularization [34].
We limit our choices of the building elements of QNNs in the range of single-qubit quan-
tum gates and two-qubit entangling gates. A two-qubit entangling gate builds entanglement
between two qubits but the two qubits are not necessarily neighboring. A single-qubit quan-
tum gate acts on a single qubit. Without entangling gates, there is no interaction between
qubits i.e. entanglement is the core of QNNs. Here, we adopt a seminal QNN architec-
ture proposed by [14], which only utilizes Z-parity gates (ZZθ = e−iθZ⊗Z), X-parity gates

(XXθ = e−iθX⊗X ), and Hadamard gates (H = 1√
2

[
1 1
1 −1

]
). According to ZX-calculus [9],

any nonlinear function can be ε-approximated by combining these three quantum gates. It
has been shown that this architecture represents a generic family of QNNs and can be used
to illustrate the effect of entanglement [13]. The network architecture is illustrated in Fig. 2.
Analogous to classical NNs, each block of parity gates can be considered as a layer in QNNs.
There are an X-parity layer and a Z-parity layer in Fig. 2.

4.5 Optimization

With all components defined above, we introduce the optimization procedure of QADA.
Although the capacity of current quantum computers limits the number of qubits in real
quantum applications, we choose a gradient-based optimization method for QNN which can
scale up to a larger number of parameters in the long term. Following [13, 21], we use the
parameter shift rule [11] to approximate the quantum gradient. Formally, let θ j and φk be
the jth and kth parameters of the parameter sets θ and φ . The gradient of θ j in Eq. 3 is

∇θ jL( f 0
θ (xxx),y) =

L( f 0
{θ |θ j→θ j+

π
2 }
(xxx),y)−L( f 0

{θ |θ j→θ j− π
2 }
(xxx),y)

2
, (7)

where {θ |θ j→ θ j +
π

2 } denotes that the parameter θ j is updated to θ j +
π

2 and other param-
eters in θ are unchanged. Similarly, for the gradient of φk in Eq. 6, we have

∇φkL(g
0
φ ( fθ ,xxx),d) =

L(g0
{φ |φk→φk+

π
2 }
( fθ ,xxx),d)−L(g0

{φ |φk→φk− π
2 }
( fθ ,xxx),d)

2
. (8)

We adopt a similar alternating optimization strategy as in [30]. The training procedure
for fθ and gφ is described in Algo. 1. With fθ fixed, we first train gφ to discriminate the
domain of the input state |xxx〉. Then, with gφ fixed, we train fθ to classify the input state |xxx〉
while making the output state U{1,··· ,N}

θ
|xxx〉 indiscriminate by gφ , i.e. encouraging fθ to learn

domain-invariant representations. The quantum embedding hψ can be acquired either in a
supervised fashion (e.g. hψ can be jointly optimized with fθ in a supervised classification
task to learn such an embedding) or an unsupervised fashion [26]. We assume hψ is given in
Algo. 1, so |xxx〉 is given as stated in Sec. 3.
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Algorithm 1: Minibatch stochastic gradient descent training of QADA. The num-
ber of steps to apply to gφ , k is a hyperparameter. The hyperparameter λ controls
the weight of the adversarial loss.
• Initialize fθ , gφ .
for number of training iterations do

for k steps do
• Sample minibatch of N/2 images from DS and N/2 images from DT .
• Update φ by minimize L(g0

φ
( fθ ,xxx),d).

end
• Sample minibatch of N/2 images from DS and N/2 images from DT .
• Update θ by minimize L( f 0

θ
(xxx),y)−λL(g0

φ
( fθ ,xxx),d).

end

5 Experiments

5.1 Experimental Setup
5.1.1 Environment

Limited by the hardware, the simulated experiments were conducted on a classical computer
with an Ubuntu 18.04 LTS system. The CPU is an Intel® Xeon® Processor E5-2686 v4 @
2.30 GHz with 45 MB cache with 64GB RAM.

5.1.2 Datasets

We used two public datasets for UDA in the classical domain. The MNIST dataset [24]3

contains grayscale images of ten handwritten digits (0 to 9). Each image has a fixed reso-
lution of 28×28. The SVHN dataset [35]4 contains character-level digits cropped from the
RGB house number images collected in the street. Each digit belongs to one of ten classes (0
to 9) and each image has a fixed resolution of 32×32. Following [3, 14, 15], we only choose
digit 3 and digit 6 as the classes of interests. We used MNIST and SVHN as the source and
target datasets and investigated UDA performance both ways, e.g. M→ S denotes that the
source dataset is the training set of MNIST and the target dataset is the test set of SVHN.

5.1.3 Implementation

We use a ResNet18 [18] pre-trained on ImageNet [23] as the fixed feature extractor. The
linear classical-to-quantum projection network in Sec. 4.1 consists of two linear projections.
The first linear projection is to project a 512-dimensional feature vector into a N-dimensional
feature vector. This dimension reduction step can be achieved via an autoencoder [19] in
an unsupervised fashion. The second linear projection is to transform a classical feature
vector into a N-qubit quantum state vector. Each element of the classical feature vector is
transformed into an angle ω (radian) for the corresponding single-qubit Y gate Ry(ω) =[

cos(ω

2 ) −sin(ω

2 )
sin(ω

2 ) cos(ω

2 )

]
, Note, quantum embedding in this step is equivalent to rotate a qubit

3http://yann.lecun.com/exdb/mnist
4http://ufldl.stanford.edu/housenumbers
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Method M→M M→ S S→ S S→M
SL 0.9106 - 0.6987 -
TL - 0.4686 - 0.5005

QADA - 0.5733 - 0.6768

Table 1: Binary accuracy for QADA where the quantum classifier is a 2-layer QNN.

|0〉 in an initial state along with Y axis by ω (radian). Given a real number r j in the classical

feature vector, we have the corresponding ω j =
er j−e−r j

er j+e−r j ·
π

2 . Two QNNs are implemented as
in Sec. 4.4. We use the 2-layer QNN (XX-ZZ) as the baseline model. The batch size is 4.
For simplicity, we use a fixed learning rate of 10−4 for both QNNs and λ is set to be 0.001.

5.2 Empirical Results

5.2.1 Main Finding

As one of the contributions, we demonstrate that QUDA is necessary when the domain shift
exists in the quantum data. Here, we denote the standard supervised learning as SL, where
the training and test sets come from the same distribution. We denote transfer learning as
TL, which directly applies the model trained on the source domain to the target domain.
As shown in Table 1, there is a severe performance drop when the training and test sets
come from two different distributions. As a comparison, QADA can efficiently alleviate
the downside of domain shift. Based on the fact that the qubits are connected only via
entangling gates, we conclude that the entanglement does play an important role in QUDA.
A physical interpretation of a quantum circuit model is that quantum gates rotate qubits
in a XY Z axis system. Let the readout qubit be a ball with a directional pole and the binary
decision boundary is on the sphere. The optimization process is expected to rotate the readout
qubit to ensure that the pole points in the right region of the sphere. Thus, the process of
QADA can be understood as using the quantum discriminator to regularize the rotation of
the readout qubit of the quantum classifier.

5.2.2 Ablation Studies

We examine the impact of the number of data qubits N and the depth (the number of layers
L) of QNNs on QADA in Tables 2 and 3 respectively. For the first experiment, we use the
same 2-layer QNN architecture above but with a different number of qubits in the system. As
shown in Table 2, the increase in N does not necessarily improve the performance of QUDA.
Intuitively, more qubits should embed more information of classical features. However, the
number of data qubits N in QNNs is not equivalent to the number of features in classical
NNs and QNNs do not rely on features for binary classification. Instead, QNNs utilize the
entanglement (multi-qubit interaction) to propagate information. More qubits might increase
the difficulty of the entanglement-based information exchange across qubits. Another rea-
sonable hypothesis is that some information is redundant for quantum classification. This
hypothesis can be linked with learning domain-invariant representations by maximizing the
cross-domain mutual information [27, 40] in classical UDA. Similarly, for the second ex-
periment, we fix N = 4 but include multiple XX-ZZ blocks (each block has 2 layers) in the
QNNs. The results in Table 3 imply that increasing the depth of QNN may not always help
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N M→ S S→M
4 0.5733 0.6768
8 0.5797 0.6982

16 0.5682 0.6402

Table 2: Impact of N on QADA.

L M→ S S→M
2 0.5733 0.6768
4 0.5655 0.6499
6 0.5516 0.6331

Table 3: Impact of the depth of QNNs on QADA.

in QADA. This finding contrasts with the observations in classical ML, where classical NNs
rely on deep layers to extract semantics features. The impact of N and the depth of QNNs
are still inconclusive. Unfortunately, the current mathematical tools can not support a formal
analysis on QNNs as we often do in classical NNs, i.e. QNNs are still black-boxes at the
current stage. Here, we just want to share the empirical findings and provide the intuitive
insights. Both findings suggest that QUDA is different from UDA, and QADA could be an
interesting research direction.

5.2.3 Limitations

Since only simulated experiments are possible at this stage, any results on a real quantum
device could be slightly different from those presented here. When simulating the quantum
process with large N and L, the memory limit of classical computers can be easily exceeded;
the training time is also long. Thus, the behavior of QADA for advanced experimental
setups, such as (1) more complex QML tasks, (2) large N and L, or (3) large-scale datasets, is
inconclusive and requires more than just further investigation: it awaits further development.
This work serves merely as exploratory work as we can only adopt a simple setting.

6 Conclusions
In this work, we formulate and discuss the problem of QUDA, which addresses the domain
shift problem on quantum data for the first time. We propose QADA, a computation-efficient
solution leveraging QNNs and adversarial training. The empirical results not only demon-
strate that QADA could be applied to practical QML tasks but also validate that the entan-
glement can be used for QUDA. In the future, QADA could be facilitated beyond the current
hardware limitations by a joint effort in quantum theory and engineering.
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