
VEMPARALA, FASFOUS, FRICKENSTEIN ET AL.: HW-AWARE IN-TRAIN QUANT. 1

Hardware-Aware Mixed-Precision Neural
Networks using In-Train Quantization

Manoj Rohit Vemparala*1

manoj-rohit.vemparala@bmw.de

Nael Fasfous*2

nael.fasfous@tum.de

Lukas Frickenstein*1

lukas.frickenstein@bmw.de

Alexander Frickenstein1

alexander.frickenstein@bmw.de

Anmol Singh1

anmol.singh@bmw.de

Driton Salihu2

driton.salihu@tum.de

Christian Unger1

christian.unger@bmw.de

Naveen Shankar Nagaraja1

naveen-shankar.nagaraja@bmw.de

Walter Stechele2

walter.stechele@tum.de

1 BMW AG
Munich, Germany

2 Chair of Integrated Systems
Technical University of Munich
Munich, Germany

Abstract

Fixed-point quantization is an effective method to reduce the model size and computa-
tional demand of convolutional neural networks, by lowering the numerical precision of
all layers down to a specific bit-width. Recent work shows assigning layer-wise specific
bit-widths has an advantage over uniform assignments, although requiring complex, post-
training search techniques and many GPU hours to identify the optimal bit-width strategy.
To alleviate this, we propose an in-train quantization method that can directly learn the
optimal bit-widths for weights and activations during the gradient-based training process.
We incorporate hardware-awareness into the gradient-based optimization to directly im-
prove the real hardware execution metrics. We replace the discrete and non-differentiable
hardware measurements with a differentiable Gaussian process regressor. This provides
accurate hardware predictions as an auxiliary loss to the gradient-descent optimizer, per-
forming hardware-friendly in-train quantization. Our hardware-aware mixed-precision
ResNet56 achieves an improvement of 1.3× in execution latency compared to the uniform
4-bit quantization with no degradation in accuracy. Finally, we highlight the effectiveness
of the in-train quantization method in the context of adversarial training, improving the
trade-off between prediction accuracy and robustness.
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1 Introduction
Convolutional neural networks (CNNs) deployed in real-time, computer-vision applications
are strictly constrained in terms of inference latency, energy consumption, and model size.
Model compression techniques such as quantization [3, 8, 17], pruning [9, 13, 23], and
knowledge distillation [14] reduce the memory footprint of CNN models and speed up
their computation. Quantization, in particular, has become a standard technique in both
industry [10, 24] and academia [3, 22], typically applied before deploying CNNs in embedded
settings. The benefits of quantization are manyfold, ranging from reducing the bit-width of
weights and activations to shrink the model’s size, to simplifying the arithmetic computation
units on hardware (HW) and lowering the energy consumed by on-chip and off-chip data
movement [2].

Quantization is typically applied as a post-training calibration method, which takes in
a full-precision pre-trained model and compresses it to a lower bit-width representation
with iterative steps of fine-tuning. Alternatively, quantization-aware training (QAT) methods
are capable of producing quantized CNNs during the training process [3, 30]. These are
typically uniform in terms of bit-width assignment, fixing the entire CNN’s representation
to a pre-determined number of bits. However, different layers contribute differently to the
accuracy and efficiency of a network [8], justifying the use of different quantization degrees
for different layers of the CNN. To obtain HW-friendly layer-wise quantization strategies,
post-training quantization methods use search techniques, such as reinforcement learning
(RL) [25] or evolutionary search (ES) [26], bringing back the costly post-training GPU hours.

In this paper, we reduce the execution metrics for model inference by searching for optimal
bit-widths directly during the training process and produce dominant solutions in terms of
prediction accuracy and model complexity, when compared to uniform bit-width assignments
and post-training methods. We summarize the key contributions of this work as follows:

1. We introduce a novel training scheme which jointly learns the model parameters and
the number of unique values required to represent weights and activations for all the
layers, thereby identifying optimal bit-width assignments. Compared to the uniform
4-bit quantization, our approach reduces the number of bit operations (BOPs) by 1.5×
for ResNet56 with minimal accuracy degradation on CIFAR-100 dataset.

2. We propose a novel gradient-based approach to append a differentiable auxiliary HW-
loss objective, constraining real hardware metrics such as latency and memory accesses,
using Gaussian process regression. With no degradation in task accuracy, our approach
reduces the inference latency by 1.3×, compared to a uniformly quantized ResNet56.

3. We show that our quantization scheme can be infused with adversarial training, im-
proving robustness by 1.4 pp and reducing the number of bit operations by 1.9×, when
compared to a uniformly quantized ResNet56.

2 Related Work

2.1 Quantization-Aware Training
By limiting the weights and activations of CNNs to a constrained set of values, it becomes
increasingly challenging to use the standard stochastic gradient descent (SGD) to update
the CNN parameters during backpropagation. DoReFa-Net [30] adopts the straight-through
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estimator (STE) [1] and bounds the magnitude of latent weights and activation between [0,
1]. The work in PACT [3] improves the training procedure of QNNs by learning the optimal
clipping level for the activations of each layer. The dynamic clipping function allows larger
representational capability than DoReFa-Net, thereby increasing the prediction accuracy. The
work in LSQ [7] parameterizes the step size instead of clipping point to further improve
the prediction accuracy. ABC-Nets [17] introduce multi-bit networks by approximating
a full-precision convolution using multiple bases of binary weights and activations. The
aforementioned methods use uniform quantization for all layers and do not directly consider
the latency benefits on target HW.

2.2 Mixed-Precision Compression
ReLeQ [6], HAQ [25] and AutoQ [19] propose reinforcement learning-based exploration
schemes to determine HW-aware layer-wise quantization strategies. ReLeQ searches for
optimal bit-widths only for the weights of each layer, while HAQ searches for both weights
and activations. AutoQ determines a fine-grained quantization strategy for each filter in every
layer. The reward function is evaluated after executing the inference of the quantized CNN on
a target HW. This involves finding a bit-width strategy in a large search space, demanding
high training effort due to the iterative fine-tuning of every solution during the exploration.
In this work, we find the optimal quantization strategy during the CNN’s training procedure,
circumventing the need for fine-tuning steps to evaluate different quantization strategies.

WaveQ [5] formulates a gradient-based optimization problem by introducing a sinusoidal
regularization loss, pushing the weights to optimal quantization levels. However, the quanti-
zation level of activations is set uniformly. Wu et al. [28] learns quantization levels through a
path selection-based neural architectural search formulation. This method is challenging to
scale for larger CNN models, as the super-network leads to larger search and training costs.
The work in LBS [18] alleviates the compute cost by devising a single-path scheme that
captures different quantization and filter pruning strategies using binary gates. The work in
[21] investigates a suitable parameterization of the quantization operation to learn bit-widths
and avoid unbounded gradient updates. In particular, the authors learn step-size and dynamic
range for quantized weights and activations to determine the optimal quantization strategy.
Different to [5, 18, 21, 28], we learn the number of unique values required to represent
weights and activations by progressively reducing the bit-widths using a differentiable loss
formulation, capturing HW-awareness in the process.

3 In-Train Mixed Precision Quantization
Without loss of generality, the activation feature map Al−1 ∈ RXi×Yi×Ci is considered as the
input to a convolutional layer l ∈ [1, ...,L], where Xi, Yi and Ci describe the dimensions of
width, height and input channels. A0 and AL are the input image and the prediction of the CNN,
respectively. The weight matrix W l ∈RKx×Ky×Ci×Co consists of kernels of shape Kx×Ky, and
Co output channels. A convolution operation of tensors W l and Al−1 results in the output
Al ∈ RXo×Yo×Co . The output features of the final layer AL can be used for the computation of
the task-specific accuracy ψ , by comparing it to the dataset labels.

Every layer l is associated with weight and input activation bit-widths, represented as bl
w

and bl
a respectively. The optimized CNN can be obtained by selecting the optimal quantization

tuple (bl
w,b

l
a) ∀ l. In this paper, we target two objectives: (1) reducing the bit-width of weights
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and activations during the training process to lower the computational complexity of a neural
network, and (2) improving the HW-awareness by directly finding the quantization strategy
based on real HW metrics, such as latency and memory accesses. Both can be efficiently
achieved by formulating a joint optimization problem as shown in Fig 1.

Original Neural Network

Quantize

Fine-Tuning

Search opt. Bit-width
(e.g. RL, GA)

Unified 
Training

Gradient Update:

Al-1
Q Yl

Wl: Latent Weights

e.g. Convolutional Layer

Forward Propagation Quantization/Compression Task

Conv

Quantized Neural Network

In-Train Quantization

Gaussian Process 
Regression

CNN 
Workload

Latency
Prediction

Scale

Round Clip

STE!

Wl
Q: Quantized Weights

Trainable unique
quantization values 

(e.g. bl
W = 2.32, |UW|=5)

Hardware Objective

Task-specific Objective

ScaleRound

Post-train Quantization In-train Quantization (Our approach)

bl
A 

Progressive
Quantization

Progressive
Quantization

Figure 1: Depiction of post-train quantization approaches (left) in comparison to the proposed
approach (right). Optimal precisions are determined through progressive quantization.

3.1 Trainable Bit-Widths for Mixed-Precision Quantization
We aim to obtain an efficient quantization strategy directly when training the network’s weights
W to circumvent any additional effort of post-train quantization search. More generally, b
is the bit-width of the quantized datatype, weights or activations. The real-valued data are
represented by 2b unique values in the fixed-point quantization domain. The mapping of a
data element x (weight or activation) onto a quantized value xq is expressed in Eq. 1. This is
similar to the linear quantization methods proposed in [3, 30]. Firstly, x is clipped between
[−c,+c], where c is a trainable variable for every layer and is determined by the task-specific
loss function of the CNN model [3]. Based on the determined c for a given datatype, we define
a scaling factor s = c/(2b−1−1). For activations, we clip the values between the range of
[0,+c], instead of [−c,+c], due to the non-linear activation function (ReLU). xq approximates
the continuous domain of x into the discrete values xq ∈ {0, s, 2s, 3s, ..., (2b−1) ·s}. During
backpropagation, the gradient of the Round operation vanishes, therefore we estimate it in
order to update the real-valued weights during the training phase. In the simplest case, the
estimated gradient gx could be obtained by replacing the derivative of Round with the identity
function (see Eq. 1). This is referred to as the straight-through estimator (STE) [1].

xq = Round(Clip(x,0,c) · (2
b−1)

c
) · c

(2b−1)
; gx

!STE
= gxq ·1x≤c (1)

Varying the number of bits b of each datatype, for every layer, can change the prediction
accuracy ψ by several percentage points. One way to determine the best configuration is to
perform exploration using an RL-agent or an evolutionary search algorithm [25, 26]. However,
this search could lead to excessive GPU hours, given the need for iterative fine-tuning for every
exploration step. This motivates learning the most efficient allocation of datatype precision of
each layer during the training process itself. There are challenges to achieve this task due to
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two important reasons: (1) Devising a training scheme which directly changes the bit-width
b could lead to sudden fluctuations in the discrete weight distribution, resulting in unstable
gradient updates, (2) The bit-width b only considers integer values, e.g. b ∈ [1,2,3, ...,8] for
an accelerator supporting maximum of 8-bit fixed-point multiplications. Using another STE
to round the parameters in the forward pass while retaining the original float values in the
backward propagation could lead to further gradient approximation, producing sub-optimal
prediction accuracies ψ . We tackle these challenges by determining the set of unique values
U required to represent all x, as shown in Eq. 2.

~xq = Round(Clip(x,0,c) · |U |
c

)× c
|U |

g|U |
!STE
= g~xq ·

( −c
|U |2
·Round(Clip(x,0,c) · |U |

c
)+

Clip(x,0,c)
|U |

) (2)

We avoid using another gradient approximation by allowing the cardinality |U | to be a
real-valued trainable parameter. Note that our approach in Eq. 2 differs from Eq. 1 by not
restricting the values to an integer number b in 2b, allowing |U | to have an arbitrary number
of unique elements to represent the trainable parameters. We introduce a hyperparameter
EQuant, Start which represents the epoch at which the learning process for the bit-widths is
started. This allows smooth, float-point values for the size of |U |, progressively lowering the
projected cardinality of U for each layer’s datatypes, until EQuant, Stop is reached. The number
of unique values |U | is updated by cross-entropy loss Lce based on the gradient g|U | as shown
in Eq. 2. The unique values in U required to represent x increases based on the rounding
error ( x·|U |

c −Round( x·|U |
c )). The HW loss objective LHW is captured by fractional bit-widths

(e.g. 3.5-bits) during the initial stages of training (i.e. between EQuant, Start and EQuant, Stop
epochs). This also leads to progressive quantization which lowers the gradient approximation
at the initial stages of the training, thereby improving the learning capability of the neural
network. We gradually determine the optimal bit-widths based on Lce and LHW objectives as
we approach the end of the training. We round the number of unique values |U | to the nearest
power-of-two in the middle of training process (EQuant, Stop), deriving the optimal bit-width b
as Round(log2 |U |).

We define the constrained loss function LHW as shown in Eq. 3, to account for HW-
specific compression objectives. b∗ and bmax represent constrained and maximum supported
bit-widths, respectively. The inference complexity of the CNN depends on the number of bits
assigned to the weights bw and activations ba for each layer l ∈ [1, ...,L]. We represent the
workload shape of layer l as lshape and HW inference complexity as a function of lshape, bl

w
and bl

a given as ϕl(lshape, bl
w,b

l
a). We use the scaling factor v to control the convergence speed

for the optimal quantization strategies {(b1
w,b

1
a), ..., (b

L
w,b

L
a)} during the training process. We

conduct an ablation study in Sec. 4.1 to determine the optimal scaling v.

Ltotal = Lce +Lreg + v×LHW

LHW = max
(∑

L
l=1(ϕl(lshape,bi

w,b
i
a)−∑

L
l=1 ϕl(lshape,b∗w,b

∗
a))

∑
L
l=1(ϕl(lshape,bmax

w ,bmax
a ))

,0
) (3)

Decreasing the number of bits bl
w and bl

a leads to a lower number of BOPs for a given layer l,
as defined in Eq. 4.

ϕ
l
BOPs = X l

o×Y l
o ×Kl

x×Kl
y×Cl

i ×Cl
o×bl

w×bl
a (4)
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3.2 Differentiable Hardware-Awareness

Many HW-aware compression works use hardware-in-the-loop setups and/or hardware-
measurement look-up tables to integrate the actual HW performance into the optimization
loop [13, 25, 26, 29]. Although this approach is valid for agents which require a simple
reward value for their NN optimization decisions, it cannot be extended to the gradient-
descent optimization used in this work for in-train quantization. For the training optimizer
to work seamlessly with HW-based loss minimization, the HW measurements need to be
provided through a differentiable function. By nature of a differentiable function providing
the HW-estimates, intermediate values for quantization can also be supported during the
in-train quantization’s progressive bit-width reduction. For example, 3.5-bits does not reflect
any executable computation bit-width on real HW. During smooth, progressive in-train quan-
tization, such bit-widths may appear as described in Sec. 3.1, which need to have a sensible
loss value associated with them to guide the gradient-descent-based training optimizer.

Gaussian process (GP) regression provides the means to construct a differentiable HW
estimator. This injects HW-awareness into the chain-rule for the SGD, allowing it to set the
layer-wise quantization values (bl

w,b
l
a) ∀ l. A GP prior is trained on measurements ϕHW

collected on real HW, with respect to different computation workloads ρ . Starting with
the covariance matrix K shown in Eq. 5, we use a squared exponential kernel, inspired by
the approach in [4]. σ and ` represent the amplitude and lengthscale of the GP’s kernel,
respectively. ρ indicates the workload features, i.e. the convolutional layer’s dimensions and
bit-widths. Considering a general matrix multiplication (GEMM) execution of a convolutional
layer, ρ is the vector of features representing rows, columns and inner product (depth) of the
matricies, as well as the bit-widths of weights and activations.

K(ρ,ρ ′) = σ
2exp(−||ρ−ρ ′||2

2`2 ), where ρ = (row,depth,col,bw,ba)

ϕHW ∼ GP(m(ρ),K(ρ,ρ ′))

(5)

Based on the GP prior in Eq. 5, a predictive function can also be described by a mean and
a covariance matrix. To guarantee the GP regressor is differentiable, we must assert that the
covariance function K is differentiable. This condition is fulfilled by our squared exponential
kernel, as shown in Eq. 6.

∂K(ρ,ρ ′)

∂ρ∂ρ ′
=

σ2

`4 (`2− (ρ−ρ
′)2)exp(−||ρ−ρ ′||2

2`2 ) (6)

The GP regressor’s HW predictions ϕHW can be used in the HW loss formulation LHW ,
presented in Eq. 3. The differentiable GP regressor provides ∂ϕ

∂ρ
during backpropagation,

which links in the chain-rule, allowing the in-train quantization SGD to manipulate the (bl
w,

bl
a) ∀ l through the ρ gradients, thereby minimizing the latency and/or DRAM accesses of

the inference execution on HW. In Fig. 2, we present the performance of the GP regressor on
unseen validation workloads from ResNet20-CIFAR and ResNet18-ImageNet, with varying
bl

w, bl
a. The high-accuracy of the HW measurement predictions can clearly guide the in-train

quantization algorithm to make decisions on minimizing the HW loss LHW , which reflect real
reductions in latency and DRAM accesses on the final HW accelerator.
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Figure 2: Validating the performance of the GP regressor on unseen CNN workloads from
ResNet20-CIFAR and ResNet18-ImageNet for prediction of HW latency and DRAM accesses.

4 Experiments

We evaluate the proposed in-train quantization technique on CIFAR-10, CIFAR-100 [15], and
ImageNet [16] datasets. We use ResNet20 and ResNet56 as baseline models for the CIFAR-
10, CIFAR-100 datasets, and ResNet18 as a baseline model for the ImageNet dataset. In all the
experiments, we set the first and last layer as 8-bit quantization. If not otherwise mentioned,
all hyper-parameters specifying the task-related training were adopted from ResNet’s base
implementation [12]. To train the GP regressor presented in Sec. 3.2, latency and DRAM ac-
cesses measurements were collected from two BISMO [22] bit-serial accelerators synthesized
on an FPGA board with a Z7020 SoC. For CIFAR-10 and CIFAR-100 experiments, an array
of 8×8 processing elements (PEs), with 256 lanes was synthesized. For ImageNet workloads,
we synthesize HW with 6×6 PEs and 256 lanes each. The collected measurements include
all layer shapes in the considered CNNs, and all possible bit-width combinations for weights
and activations. For Tab. 3 and 4, we report the DRAM accesses and latency by executing
the quantized CNN workloads directly on the BISMO accelerator.

4.1 Mixed-Precision Quantization

We investigate the effectiveness of our in-train quantization approach in Tab. 1, based on
different constraints ϕ∗ on the number of target BOPs. We perform in-train quantization
by constraining the number of BOPs to the complexity equivalent of uniform 4-bit (see
row 3, 4 in Tab. 1). By introducing trainable bit-widths for both weights and activations,
we produce 0.1 pp and 1.1 pp better prediction accuracy than uniform 4-bit quantization for
ResNet20 and ResNet56, respectively. We highlight the importance of the scaling factor v
(Eq. 3) for lower BOPs constraints ϕ∗ = 333, 1024. We observe that the target constraint ϕ∗

is only met when the scaling factor is increased. We observe a reduction in BOPs by 1.8×
and 1.5× with negligible accuracy degradation compared to uniform 4-bit quantization for
ResNet20 and ResNet56, respectively. Furthermore, we report the training cost required to
obtain the baseline and mixed precision models. Our in-train quantization scheme learns
optimal bit-widths with minimal overhead in training time, i.e. 6%, 3% extra cost compared
to uniformly quantized ResNet20 and ResNet56 respectively. We demonstrate the training
curves and weight distributions indicating the effectiveness of progressive quantization in the
supplementary material Sec.S1.

In Tab. 2, we compare our approach with state-of-the-art uniform quantization approaches,
such as PACT [3] and ABC-Net [17]. We also compare with works which produce variable bit-
widths for weights and activations such as HAQ [25], DNAS [28], and LBS [18]. HAQ [25]
determines layer-wise bit-widths using reinforcement learning. Such methods have a high
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Table 1: Influence of scaling factor v in LHW for BOPs-constrained in-train quantization.

Model/ Mixed Precision Scaling Avg. Bitwidth Constraint ϕ∗ Actual ϕ Top-1 Training Cost
Dataset Weight Activation Factor (v) Wbit Abit BOPs (M) BOPs (M) (%) (GPU hours)∗∗

R
es

N
et

20
C

IF
A

R
-1

0

7 7 - 8 8 - 2592 92.4 2hr 43min
7 7 - 4 4 - 666 92.2

3 7 1.0 4.0 4 666 679 91.0

2hr 53min
3 3 1.0 4.0 4.0 666 651 92.3

3 3 0.1 7.1 7.1 333 2028 92.3
3 3 0.5 2.9 4.8 333 575 92.3
3 3 1.0 2.3 3.7 333 376 91.5

R
es

N
et

56
C

IF
A

R
-1

00

7 7 - 8 8 - 8025 71.1 7hr 29min
7 7 - 4 4 - 2029 70.5

3 7 1.0 4.0 4 2029 2019 72.2

7hr 46min
3 3 1.0 3.7 5.1 2029 2123 71.6

3 3 0.5 3.7 4.8 1024 2201 71.9
3 3 1.0 3.7 4.5 1024 1739 71.3
3 3 2.0 2.6 3.2 1024 1311 69.9

∗∗ Training cost is measured on a NVIDIA TITAN-X GPU

Table 2: Comparison of our in-train quantization approach with state-of-the-art methods. ∗
indicates that the accuracy and BOPs measurements are reported from [18].

Model/ Method Mixed Precision BOPs Top-1
Dataset Weight Activation (M) (%)

R
es

N
et

20
C

IF
A

R
-1

00

PACT-8 [3] fixed fixed 2592 68.3
PACT-4 [3] fixed fixed 666 67.0
PACT-2 [3] fixed fixed 189 61.6
ABCNet-3x3 [17] fixed fixed 390 61.0

HAQ (RL)* [25] learned learned 653 67.7
DNAS* [28] learned learned 660 67.8
LBS* [18] learned learned 630 68.1

Ours learned learned 646 68.3

R
es

N
et

56
C

IF
A

R
-1

00

PACT-8 [3] fixed fixed 8025 71.1
PACT-4 [3] fixed fixed 2029 70.4
PACT-2 [3] fixed fixed 528 67.8
ABCNet-3x3 [17] fixed fixed 1153 68.4

HAQ (RL)* [25] learned learned 2015 71.2
DNAS* [28] learned learned 2035 71.2
LBS* [18] learned learned 1918 71.6

Ours learned learned 1739 71.3

computational search cost as the bit-width policy must be learned, involving iterative fine-
tuning/evaluation for different bit-width combinations at each episode. DNAS [28] and
LBS [18] determine the quantization strategy using gradient based optimization. DNAS
constructs a super net consisting of several parallel edges representing search convolution
operations with different quantization levels. LBS reduces the search complexity compared to
the multi-path DNAS and also exploits filter pruning to further extract compression benefits.
However, all the three approaches retrain the sampled quantized strategies obtained from the
search phase indicating higher GPU hours compared to our approach, which requires only
the regular training time of the CNN as shown in Tab. 1. Our quantization scheme produces
dominating solutions in the number of BOPs and prediction accuracy compared to HAQ and
DNAS. Compared to LBS, our ResNet20 model has slightly higher accuracy (0.2 pp), with
a slight increase in BOPs. We further benchmark our approach on a semantic segmentation
model, DeepLabV3+, in the supplementary material Sec. S2.
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4.2 In-train HW-aware Quantization
We investigate the effectiveness of the proposed in-train optimization scheme in Tab. 3, based
on pseudo-HW-aware constraints (BOPs), as well as real HW constraints, i.e. inference
latency. Using the GP regressor introduced in Sec. 3.2, our approach produces bit-widths
based on the target metric and target HW. We observe that constraining the number of BOPs
does not necessarily produce optimal latency benefits in all the three networks, making it a
pseudo-HW-aware metric. Our approach directly reduces the latency by 1.3× with respect
to all 4-bit CNNs, with negligible degradation in prediction accuracy (<1 pp). In case of
ResNet56 based latency constrained model, we obtain lower BOPs and prediction accuracy
than BOPs based optimization. This can be attributed to the strict latency constraint imposed
by the HW model demanding high compression ratios across several layers.

Table 3: Pseudo-HW-aware constraints and real HW constraints for various CNN models on
CIFAR-10, CIFAR-100, and ImageNet datasets.

Model/ Constraint BOPs Latency Top-1
Dataset (M) (KCycles) (%)

R
es

N
et

20
C

IF
A

R
-1

0 PACT-4 [3] 666 1135 92.2
PACT-2 [3] 189 769 89.5

Ours (BOPs) 448 951 91.3
Ours (Latency) 530 875 91.2

R
es

N
et

56
C

IF
A

R
-1

00 PACT-4 [3] 2029 3134 70.4
PACT-2 [3] 528 2025 67.8

Ours (BOPs) 1739 2753 71.3
Ours (Latency) 1498 2374 70.7

R
es

N
et

18
Im

ag
eN

et PACT-4 [3] 34714 39637 65.4
PACT-2 [3] 14984 28939 60.4

Ours (BOPs) 27424 36930 64.6
Ours (Latency) 35356 31112 64.5

To further demonstrate the effectiveness of the differentiable HW-awareness, we learn
optimal bit-width strategies which capture different scheduling schemes on the inference
HW. For the target BISMO bit-serial accelerator [22], we derive two scheduling schemes
namely, activation-reuse schedule (ARS) and weight-reuse schedule (WRS). We provide
more details on the formulation of these scheduling schemes in the supplementary material
Sec.S3. In Tab. 4, we observe that our quantization approach assigns higher bit-widths to the
favorable datatype being reused by the HW, thus learning to exploit the inherent efficiency
of the chosen schedule, without knowing its details. The average bit-width of weights in
the WRS-based mixed-precision strategy remains at the highest value (8-bits), while the
activations are quantized more aggressively, as they are costly and not reused by the WRS
schedule. Conversely, we observe higher average bit-width for activations in ARS-based
mixed-precision strategy. We also observe 1.33× and 1.01× reduction in DRAM accesses
for ARS and WRS-based quantization strategies in ResNet56, with 0.4 pp better accuracy.

4.3 Adversarially Robust Mixed-Precision CNNs
We demonstrate our proposed mixed-precision approach’s ability to achieve compressed
models with a balanced trade-off between natural accuracy and adversarial robustness. As
a baseline for adversarial training, we implement FastAT [27] with uniform quantization.
We augment our trainable quantization parameters in the FastAT defense method and report
the natural accuracy and PGD robustness [20] for our mixed precision strategies in Tab. 5.
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Table 4: Influence of quantization strategies based on the ARS and WRS compiler schedules.

Model/ Training Avg. bit-width ARS Mem WRS Mem Top-1
Dataset Scheme Weight Activation (MB) (MB) (%)

R
es

N
et

20
C

IF
A

R
-1

0 PACT-4 [3] 4 4 6.6 5.4 92.2
PACT-2 [3] 2 2 4.1 3.3 89.7

Ours (ARS-Opt) 2.3 5.3 5.0 6.3 91.8
Ours (WRS-Opt) 8.0 3.3 10.3 4.7 91.6

R
es

N
et

56
C

IF
A

R
-1

00 PACT-4 [3] 4 4 18.7 15.3 70.4
PACT-2 [3] 2 2 10.8 8.9 67.8

Ours (ARS-Opt) 2.1 4.2 14.0 19.2 70.8
Ours (WRS-Opt) 8.0 3.7 30.3 15.1 70.8

The PGD attack, referred as the “ultimate” first-order adversary [20], generates perturbations
using iterative multi-step optimization method. By considering random uniform initialization,
arbitrary starting points on the corresponding loss surface are ensured, thus resulting in worst-
case adversaries for the given image with respect to an underlying CNN model. For PGD
evaluation, we use a strength of 8/255, step size 2/255 for 20 iterations. We elaborate the
implementation details of in-train robust quantization in the supplementary material Sec.S4.
Existing work shows that low-precision models exhibit higher adversarial robustness due
to the discrete nature of the quantization operations [11]. Thus, we observe an increase in
adversarial robustness as the bit-width is reduced for the uniform PACT quantization. Our
in-train quantization approach improves the trade-off between the three objectives, namely
prediction accuracy, adversarial robustness, and BOPs reduction. The achieved robustness
is increased by 0.9 pp and 1.4 pp, while reducing the number of BOPs by 1.6× and 1.9×,
compared to adversarially trained uniform 4-bit ResNet20 and ResNet56, respectively.

Table 5: Adversarial Robustness of uniformly quantized and mixed precision CNNs.

Model/ Method Bitwidth BOPs Top-1 PGD-20
Dataset Wbit Abit (M) (%) (%)

R
es

N
et

20
C

IF
A

R
-1

0 PACT [3] 4 4 666 81.9 ± 0.04 40.6± 0.27
PACT [3] 2 2 189 76.0 ± 0.06 41.5 ± 0.32

Ours 3.5 2.9 427 81.7± 0.08 41.5± 0.31

R
es

N
et

56
C

IF
A

R
-1

0 PACT [3] 4 4 2029 85.3 ± 0.25 41.5± 0.72
PACT [3] 2 2 529 82.3± 0.58 47.3± 2.28

Ours 2.9 2.7 1049 84.7 ± 0.91 42.9± 0.21

5 Conclusion

In this work, we propose an in-train quantization technique, which eliminates the need
for computationally expensive model exploration time, typically required in post-training
compression methods. We directly optimize our quantization strategy by formulating a
HW-aware differentiable loss object using Gaussian process regression. Compared to state-
of-the-art mixed-precision approaches, we reduce the number of BOPs while improving
the prediction accuracy, producing dominating solutions. We show the applicability of our
mixed-precision quantization scheme to an adversarial training method, by improving the
trade-off between prediction accuracy, robustness, and the reduction in number of BOPs.
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