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Abstract

We study the problem of learning to assign a characteristic pose, i.e., scale and orien-
tation, for an image region of interest. Despite its apparent simplicity, the problem is non-
trivial; it is hard to obtain a large-scale set of image regions with explicit pose annotations
that a model directly learns from. To tackle the issue, we propose a self-supervised learn-
ing framework with a histogram alignment technique. It generates pairs of image patches
by random rescaling/rotating and then train an estimator to predict their scale/orientation
values so that their relative difference is consistent with the rescaling/rotating used. The
estimator learns to predict a non-parametric histogram distribution of scale/orientation
without any supervision. Experiments show that it significantly outperforms previous
methods in scale/orientation estimation and also improves image matching and 6 DoF
camera pose estimation by incorporating our patch poses into a matching process.

1 Introduction
Local feature representation lies at the heart of computer vision, and extensive research has
been conducted on detecting and/or describing local features [3, 4, 22, 38]. With the remark-
able advance of convolutional neural networks (CNNs) [15, 43, 46], the dense feature map
output of convolutional layers has largely replaced the classic hand-crafted feature represen-
tation in a wide range of tasks [2, 8, 9, 18, 34, 35]. However, since the convolutional feature
map is equivariant only to translation but not to the other common pose variations, e.g., scal-
ing and rotating, assigning a characteristic pose of an image or region of interest is required
to extract an accurate descriptor for many vision problems such as visual correspondence,
registration, retrieval, localization, and 3D reconstruction [1, 21, 22, 30, 33, 39, 40, 41]; e.g.,
the characteristic scale and/or orientation can be used to extract pose-normalized features
from images with different viewpoints or object poses.

Despite its apparent simplicity, the problem of learning to assign a characteristic pose,
i.e., scale and orientation, for an image region is non-trivial; it is hard to obtain a large-
scale set of image regions with explicit pose annotations that a model directly learns from.
To tackle the issue, recent methods [29, 31, 42, 49, 50] use an implicit learning approach
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with a surrogate objective where they treat scale and/or orientation as a latent variable; they
indirectly train a pose regressor by maximizing the similarity between image regions that are
aligned using the estimated pose values.
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Figure 1: Comparison of scale/orientation
estimation of SIFT [22] vs. ours. The size of
circles represents the scale, and the direction
of arrows means the orientation. At the bot-
tom, the green circle/arrow depicts the true
scale/orientation given the estimation of the
top and the numbers mean the errors in rela-
tive scale/orientation.

In this paper, we propose a self-
supervised explicit learning framework via
a histogram alignment technique. Instead
of implicit learning with a surrogate ob-
jective [29, 31, 42, 50], we generate self-
supervised pairs of image regions by ran-
dom scaling and rotating and then train a
model to predict pose value distributions
so that their relative difference is consis-
tent with scaling and rotating being used.
In contrast to the previous learning-based
methods, we advocate the histogram out-
put for pose, which is similar to SIFT [22],
and propose a histogram alignment tech-
nique for self-supervised learning. The
method learns a non-parametric and multi-
modal distributions of scale and orienta-
tion without any human annotations, effec-
tively resolving the challenge of defining
and annotating characteristic poses for im-
age regions. Experimental results show a
significant improvement over the previous
method both in scale and orientation estima-
tion on the proposed PatchPose dataset and
the HPatches [1] dataset, demonstrating the
effectiveness of our self-supervised learning
framework. Moreover, the image matching
result on HPatches [1] shows the patch extraction effect to mean matching accuracy (MMA)
using our method. The 6 DoF pose estimation results on IMC2021 [17] show the outlier
rejection effect by our scale and orientation. The code and models are publicly available at
[this link].

2 Related work
Scale and orientation estimation. The most representative is the scale-invariant feature
transform (SIFT) [22], where Lowe introduces gradient histograms for orientation estima-
tion and difference of Gaussians for scale estimation. Despite its success, it often fails when
geometric or photometric deformation is present. Bay et al. [3] improve SIFT by Hessian-
based descriptors and integral images. Rublee et al. [38] propose efficient measure of corner
orientation using intensity centroid [36] on the FAST detectors [37]. These classical methods
use handcrafted algorithms to obtain scale and orientation without learning. Recent research
has investigated learning-based methods to estimate characteristic scale and/or orientation
for image patches. Yi et al. [50] introduce a CNN that learns to predict the characteristic ori-
entation of an image patch. To avoid the difficulty of defining the characteristic orientation,
they train the CNN by minimizing the distance between orientation-normalized descriptors
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of two matchable patches. In the subsequent work of [31, 42], they integrate scale/orientation
estimation with feature point detection and description for image matching. More recent
studies [2, 10, 20, 32] aim to extract local descriptors that are invariant or covariant with
respect to geometric variations within a local region. The aforementioned learning-based
methods all share common strategies: (1) regression-based estimation, (2) implicit learn-
ing by improving descriptor matching, and (3) the use of matchable pairs obtained from
different datasets, e.g. phototourism [26, 45, 48], ScanNet [7] with depth information and
HPatches [1] with ground-truth homography. In contrast, our method uses (1) histogram-
based estimation, (2) self-supervised explicit learning, and (3) unsupervised datasets with
random transformation.

There also exists previous work on estimating more general transformation beyond scale
and orientation. For example, Mikolajczyk and Schmid [25] introduce a scale/affine-invariant
keypoints detector using an affine shape estimator based on the second moment matrix.
Mishkin et al. [29] propose to learn an affine-covariant region detector using the spatial
transformer network [16] and the triplet margin loss. In most cases of current image match-
ing applications, however, the use of scale and orientation only is still dominant.

Self-supervised learning. The task of orientation prediction has often been used as a pretext
task for self-supervised representation learning. Gidaris et al. [13] introduce a classification
task of predicting a rotated angle of an image for representation learning. Feng et al. [12]
propose to decouple the rotation discrimination from instance discrimination. While learn-
ing to estimate image orientation in a self-supervised manner, the predicted orientation from
these methods cannot be used for the characteristic orientation we consider in this work; they
assume a fixed and predefined canonical orientation (i.e., upright) for each object class and
simply predict the rotation from it by learning the class information, which cannot gener-
alize to arbitrary images to be aligned. In contrast, our method does not assume any prior
information about predefined object classes and their canonical orientations.

Invariant feature learning. Our approach to estimating characteristic scale and orientation
is also relevant to learning image relations for invariant feature representation [23, 24, 44].
Memisevic and Hinton [24] approximate a three-dimensional interaction tensor of a higher-
order Boltzmann machine via factorizing the tensor. They investigate how image transfor-
mations affect the filters of the proposed model in a visual analogy task. Memisevic [23]
proposes a conservative detector, called the subspace rotation detector, which generates a
content-independent representation. Sohn and Lee [44] extend the RBM to capture transfor-
mation between eigenfeatures of two images. With the predicted transformation, their model
extracts transformation-invariant features, which are beneficial in image classification.

The contribution of this paper is three-fold. First, we introduce a self-supervised learning
framework to estimate the characteristic scale and orientation for an arbitrary image patch.
Second, we propose a histogram alignment technique for learning to estimate multi-modal
distribution of scale/orientation. Third, experimental evaluation on scale/orientation estima-
tion benchmarks demonstrates the effectiveness of our approach, significantly outperforming
recent methods.

3 Method

In this section, we introduce the patch pose estimation network that learns to predict charac-
teristic scale and orientation of an image patch. We first describe the model architecture and
then explain our strategy for self-supervised learning.
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Figure 2: Overview of our self-supervised framework for learning a patch pose, i.e., ori-
entation and scale. Given a pair of image patches with rescaling/rotating, we feed them to
the patch pose estimation networks that output scale/orientation histograms for each image
patch. We compare the two histograms by the histogram alignment technique and compute
the loss, which is used for training the networks via backpropagation.

3.1 Patch pose estimation networks

The patch pose estimation networks are designed to predict the characteristic pose, i.e.,
orientation and scale, of a given image patch. We cast the patch pose estimation into the
problem of predicting a probability distribution over candidate pose values rather than that
of regressing a target pose value. The basic form of the architecture thus consists of a convo-
lutional feature extractor followed by MLPs with softmax output that produces a histogram
over a set of candidate pose values:

h = σ(MLP(CONV(I))) (1)

where σ(·) is the softmax function and h∈ {x ∈ R : 0≤ x≤ 1}B is the histogram distribution
of pose with B bins, i.e., either orientation or scale. Figure 2 shows the overall architecture
of our model.

orientationscale
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Figure 3: Histogram alignment for scale and ori-
entation. The histogram h is shifted by a ground-
truth ∆. For scale, the overlapping regions of the
shifted one and the other are used to compute the
loss. For orientation, the shift operation is cir-
cular so that the entire regions of histograms are
used.

The output histogram h, i.e., B bins
of discretized candidate pose values for
either orientation or scale, represents a
distribution over the pose values. In con-
trast to previous regression-based meth-
ods [29, 31, 42, 50], which predict
only a single pose, our histogram esti-
mator is able to naturally predict mul-
tiple plausible poses by a multi-modal
histogram distribution, and can be ef-
fectively trained with our self-supervised
objective. For scale estimation, in-
spired by the scale space of SIFT [22],
we create 13 bins over the log2 scale
space, i.e.,Bs = 13, which are centered
on {−2,− 5

3 , ...,0, ...,
5
3 ,2} so that each

bin covers the span of 4
Bs−1 in log2 scale

from its center. For orientation estimation, we create 36 bins over 2π , i.e.,Bo = 36, which
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are centered on {0, π

18 , ...,
35π

18 } so that each bin covers the span of 2π

Bo
in radians from its

center.
We train our model using a self-annotated dataset of image patch pairs that are generated

by transforming images with random rescaling/rotating. Let us assume such a dataset of
image patches D = {(In, I′n,∆n)}N

n=1, where ∆n denotes the ground-truth relative pose from
In to I′n. Note that we do not have a manually labeled pose for either of the two image
patches; the relative pose difference between them is the only supervisory signal we exploit.
To train our model using the limited self-supervision, we propose the histogram alignment
loss that aligns one histogram to the other and then measures the discrepancy between the
aligned histograms. In training, a pair of image patches, I and I′, from the dataset D are
fed into our model to predict pose histograms of the two patches, h and h′, respectively.
Figure 3 illustrates the concept of the histogram alignment losses, which will be detailed
subsequently.
Scale. We define the histogram shift operator T d (d ∈ R) that takes a histogram h on Z and
translates it to the left by d with a linear interpolation:

T dh(i) =

{
h
(
i+d

)
if d ∈ Z(

dde−d
)
h
(
i+ bdc

)
+
(
d−bdc

)
h
(
i+ dde

)
otherwise,

(2)

where b·c and d·e denotes the floor and the ceiling, respectively, and any other interpolation
can replace the linear one. This enables the shifting operator T d to cover a non-integer
number d in general.

Let us consider an image I and its scaled image I′ by ∆s in log2 scale. To align their scale
histogram outputs, hs and h′s, we shift h′s by (Bs−1)∆s

4 , since 4
Bs−1 is a single bin coverage per

log2 scale. Given the bins of hs, indexed by {0,1, ...,Bs−1}, the set of bins B that shares the

same scales with the shifted scale histogram T
(Bs−1)∆s

4 h′s is

B =

{
{i | 0≤ i≤ Bs−1−d (Bs−1)∆s

4 c)} if ∆s ≥ 0
{i | −d (Bs−1)∆s

4 c ≤ i≤ Bs−1} if ∆s < 0,
(3)

where d·c denotes the rounding to the nearest integer.
Finally, given the ground-truth scale shift ∆s from I to I′, the histogram alignment loss

for scale computes the distance between the shared parts of the two scale histograms aligned
by the histogram shift:

Ls(hs,h′s) =−∑
i∈B

hs(i) log
(
T

(Bs−1)∆s
4 h′s(i)

)
, (4)

where only the bins of shared scales contribute to the loss. We use the cross-entropy to
enforce the two histograms to match.
Orientation. To handle the circular property of orientation, we define the circular shift
operator T d

B on {0,1, ...,B−1}:

T d
B h(i) =

{
h
(
(i+d) mod B

)
if d ∈ Z(

dde−d
)
h
(
(i+ bdc) mod B

)
+
(
d−bdc

)
h
(
(i+ dde) mod B

)
otherwise,

(5)

where the modulo operation uses the floored division so that the output is a non-negative
integer. Note that this histogram shift can cover any rotation value of d ∈ R.
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Let us consider an image I and its rotated image I′ by ∆o in radians. To match their
orientation histogram outputs, ho and h′o, we circular-shift h′o by Bo∆o

2π
, since 2π

Bo
is a single bin

coverage per radian. As the result, the bins of each histogram, indexed by {0,1, ...,Bo−1},
are aligned to have the same orientation. Therefore, given the ground-truth orientation shift
∆o from I to I′, the histogram alignment loss for orientation computes the distance between
the two orientation histograms aligned by the circular shift:

Lo(ho,h′o) =−
Bo−1

∑
i=0

ho(i) log
(
T

Bo∆o
2π

Bo
h′o(i)

)
. (6)

These two losses allow us to train the scale and orientation estimators without charac-
teristic scale and orientation annotations, by defining the characteristic scale and orientation
of an image patch in a relative manner which are consistently estimated with the other cor-
responding patch. The overall training objectives for scale and orientation estimation are

Ls = Ls(hs,h′s)+Ls(h′s,hs), Lo = Lo(ho,h′o)+Lo(h′o,ho), (7)

where we use an additional term to make the objectives symmetric for the two histograms.

4 Experiments
50.0

79.9

159.6

269.4

29.5

1.00

1.59

2.52

4.00

5.03

Figure 4: Predicted rotation/scale
histograms for different inputs. The
numbers denote the estimated pose
values. For better visualization, we
suppress non-maximal values in the
histograms via softmax.

We conduct experiments to demonstrate the efficacy
of our method. In this section, we explain the imple-
mentation details, describe datasets with their eval-
uation metrics, and then show experimental results
with in-depth analyses.

4.1 Implementation details
We use the ResNet-18 [15] backbone as a feature ex-
tractor and train the whole networks from random
initialization. We use two separate models for scale
and orientation estimators. Both the estimators are
implemented with four-layer MLPs. We resize the
input patch size I ∈ R3×32×32. Our model yields
an orientation vector ho ∈ R36 and a scale vector
hs ∈ R13 as outputs. We use a batch size 64, a SGD
optimizer with a learning rate 3.0 and a momentum
0.9. We set the softmax temperature value to 20 for
stable learning.
Inference. We use a simple argmax function to con-
vert the histogram to a single pose value.

fs(I) = 2
4

Bs−1 argmaxi(hs(i)), fo(I) =
2π

Bo
argmax

i
(ho(i)), (8)

where Bs and Bo are the numbers of bins for scale and orientation, respectively. Figure 4 visu-
alizes predicted orientation/scale histograms for different input patches. While further non-
maximum suppression or smoothing schemes can also be adopted for the histograms [19],
we use the simple argmax function to determine the final pose in our work.
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4.2 Evaluation Benchmarks
We use three datasets, PatchPose, HPatches [1] and IMC2021 [17]. The PatchPose dataset is
constructed by us for learning and evaluation; our model is trained on its train split and tested
on its test split. HPatches [1] and IMC2021 [17] are employed to evaluate the transferability
of the learned model; they are used for evaluation only.
PatchPose dataset generation. The PatchPose dataset is synthetically generated from 1,793
images of SPair-71k [27] from PASCAL-VOC [11]. We extract 3 keypoints of an image
using SIFT [22], on which 64×64 patches are centered on to be cropped after transformed by
∆s,∆o ∈ R. We pair the source patch and its augmented patch for inputs to the network. The
dataset of patch pairs with relative pose annotation is generated without manual annotation.
The used rescaling and rotating degrees, ∆s and ∆o, are annotated for free. The values for
rescaling ∆s are distributed in the range of [2−2,22] and those for rotating ∆o are in the range
of [0,2π), covering wide ranges of scale and orientation changes. The dataset is split as train
: val : test = 3,947,054 : 40,276 : 40,278. For details, see the supplementary material.
Evaluation metric. To evaluate predicted poses of two image patches, we define accuracy
metrics. We first measure the errors using log2-scale and radian-orientation differences:

s(I, I′; fs,∆s) = | log2(
fs(I′)
fs(I)

)−∆s|, o(I, I′; fo,∆o) = |( fo(I′)− fo(I)) mod 2π−∆o|, (9)

where I and I′ are the image pair with known difference in scale ∆s and that in orientation
∆o. fs and fo are scale and orientation estimators, respectively. We then convert the errors to
accuracy values using some thresholds, i.e., { 1

6 ,
1
3 } for scale and { π

36 , π

18 } for orientation.
Transferability evaluation. We also use the HPatches [1] viewpoint variation for transfer-
ability evaluation. The HPatches viewpoint variation has 59 scenes; each scene has 6 images
with known homography matrices. The ground-truth scale and orientation are extracted from
homography A3×3 by

∆s =

√
(

A11

A33
)2 +(

A21

A33
)2, ∆o = arctan(

A21

A11
). (10)

We extract 25 patches centered on SIFT [22] and Harris [14] keypoints, and then extract
patches centered on the corresponding keypoints from the other image. As the result, we
sample 7,375 patch pairs used for the pose estimation evaluation on HPatches [1]. On the
other hand, we use the all 116 sequences (59 viewpoint, 57 illumination) of HPatches [1]
to evaluate our method on image matching. HPatches is an image matching benchmark
with ground-truth homography. We evaluate our patch extraction ability on image matching
pipeline compared to the existing methods [22, 28, 47]. For each sequence, we pair the first
image to 5 other images, so a total of 580 image pairs are used. To evaluate patch extraction
on the image matching, we use the number of matches and mean matching accuracy (MMA)
as evaluation metrics.

To demonstrate the effectiveness of our method on a more complex dataset, we use the
IMC2021 [17] wide-baseline matching benchmark. IMC2021 [17] consists of an uncon-
strained urban scene with large illumination and viewpoint variations; the validation set
of Phototourism and Pragueparks are used to evaluate our method. This benchmark takes
matches as input and measures the quality of 6 DoF pose estimation. We use our pre-
dicted patch scale/orientation for the outlier rejection [5] scheme in the image matching
pipeline [2, 5, 6, 22, 28] and measure the mean average accuracy (mAA) at 5◦and 10◦of the
pose estimation and the number of inliers as evaluation metrics.

1We measure the scores of OriNet [50], AffNet [29], LF-Net [31] and RF-Net [42] using official released code
by authors. SIFT [22] score is measured by modification of OpenCV model.
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methods
PatchPose HPatches

sca. (log2) ori. (radian) sca. (log2) ori. (radian)
± 1

6 ± 1
3 ± π

36 ± π

18 ± 1
6 ± 1

3 ± π

36 ± π

18
SIFT [22] 28.3 44.9 15.5 28.7 11.3 25.3 11.2 25.6

OriNet [50] - - 29.1 45.0 - - 15.8 29.8
LF-Net [31] 10.6 17.6 13.7 25.3 8.1 25.5 14.2 24.5
AffNet [29] - - 27.0 42.0 - - 14.0 23.9
RF-Net [42] 10.6 17.4 4.0 6.6 7.8 26.1 15.6 32.9

ours 57.9 78.2 80.5 97.9 29.0 53.0 52.0 69.2
Table 1: Accuracy of patch pose estimation on the PatchPose and the HPatches viewpoint
variation. The bold numbers indicate the best and the underlined ones are the second best.1

4.3 Patch Pose Estimation
We evaluate our method, which is trained using the PatchPose training split, and compare it
with the other methods [22, 29, 31, 42, 50] on the PatchPose test split and the HPatches [1]
viewpoint variation.
PatchPose. The left side of Table 1 shows patch pose estimation results on the PatchPose
test split compared to the existing methods [22, 29, 31, 42, 50]. Our method outperforms
the previous methods by a large margin at all thresholds in both scale/orientation estima-
tion. In particular, our orientation estimator achieves an almost perfect accuracy of 97.9%
at π

18 threshold. The regression-based learning methods [29, 31, 42, 50], which learn to
estimate scale/orientation implicitly by improving descriptor similarity, turn out to perform
significantly worse than ours.
HPatches. The right side of Table 1 shows the results on the HPatches [1] viewpoint vari-
ation. The orientation estimation results of RF-Net [42] on HPatches [1] performs better
than those on PatchPose; we find this is because (1) RF-Net is trained on the subset of
HPatches and (2) the limited range of RF-Net orientation prediction coincides more with the
true orientation range of HPatches. Note that the other methods [29, 31, 50], including ours,
have not been trained on this HPatches dataset. These results show that our self-supervised
model transfers well to unseen patches from a different domain with unseen transforma-
tions. For all the methods, the scores on HPatches are lower than those on PatchPose due to
the shear and/or tilt factors of transformation in image pairs from HPatches, which renders
scale/orientation prediction more challenging.

top-k sca. (log2) ori. (radian)
± 1

6 ± 1
3 ± π

36 ± π

18

SI
FT

top-1 29.3 44.9 15.5 28.7
top-2 55.4 65.2 29.4 44.3
top-3 68.6 74.8 41.6 57.1
top-4 78.0 84.7 59.3 75.6

ou
rs

top-1 57.9 78.2 80.5 97.9
top-2 76.4 84.8 99.0 99.4
top-3 83.4 88.8 99.8 99.9
top-4 87.8 93.4 99.9 100.0

Table 2: Recall of histogram-based meth-
ods on PatchPose using top-k candidates.

Multi-pose estimation. Unlike regression-
based methods [29, 31, 42, 50], the histogram-
based methods, ours and SIFT [22], can natu-
rally leverage multiple candidates of scale and
orientation for each image patch by selecting
multiple modes from the predicted histograms.
To observe the potential gain of using multiple
candidates, we select the top-k scale/orientation
candidates for each image patch and measure
whether a true pair of scale/orientation predic-
tions is present between two corresponding sets
of the top-k candidates. Table 2 shows the recall
performance on the PatchPose test split, where
we vary the number of candidates from 1 to 4.
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1 2 3 4 5 6 7 8 9 100.2

0.4

0.6

0.8
M

M
A

All variations

1 2 3 4 5 6 7 8 9 10

illumination

SIFT+HN
SIFT+HN+ours
SIFT+HN+ours(2)
SIFT+HN+ours(4)
SIFT+SN
SIFT+SN+ours
SIFT+SN+ours(2)
SIFT+SN+ours(4)

1 2 3 4 5 6 7 8 9 10

viewpoint methods M MMA
Det. + Des. Pose. 3px

SIFT+HN
[22, 28]

SIFT 148.9 0.45
ours 154.6 0.57

ours (top2) 153.8 0.59
ours (top4) 157.6 0.61

SIFT+SN
[22, 47]

SIFT 144.3 0.49
ours 158.8 0.62

ours (top2) 157.7 0.62
ours (top4) 160.1 0.64

Figure 5: Mean matching accuracy (%) with off-the-shelf keypoint detectors and descriptors
on HPatches. The number beside ours means the number of top-k candidates. ‘M’ denotes
the average number of matches. We fix the average number of keypoints all the same.

The results show that our method substantially outperforms the classical histogram-based
method, SIFT [22]. In particular, our model achieves 100% recall of orientation estimation
in top-4 selection at π

18 threshold. The use of multiple candidates allows effective image
matching in Sec. 4.4, which is not available for regression-based methods.

Bs
sca. (log2)

Bo
ori. (radian)

± 1
6 ± 1

3 ± π

36 ± π

18
7 22.5 22.5 9 26.5 26.5
9 37.3 37.3 18 48.7 48.7
13 57.9 78.2 36 80.5 97.9
17 19.7 35.6 72 9.7 15.4

Table 3: Accuracy of patch pose estima-
tion on PatchPose with different numbers
of bins B.

Effect of histogram sizes. Table 3 shows the
accuracy variations with different numbers of
bins Bs and Bo. As the number increases to
a proper value, the histogram becomes more
fined-grained and thus the prediction tends to be
more precise. However, when it increases fur-
ther (e.g., Bs = 17,Bo = 72), we find the training
process becomes unstable due to the increased
classes for prediction. We thus set the values as
Bs = 13 and Bo = 36.

4.4 Application to Image Matching

We validate our patch pose estimators by applying them to image matching. In the matching
pipeline, keypoints and their scale/orientation pose values are extracted from images by an
existing detector. Basically, we replace their pose values with our results for comparison.
Evaluation on HPatches. In this matching accuracy evaluation, two sets of image patches
are extracted from an image pair using detected keypoints and their estimated patch poses2

and then are matched via mutual nearest neighbors according to the similarity of patch de-
scriptors; SIFT [22] is used for keypoint detection while HardNet [28] and SOSNet [47] are
for patch description. In this matching pipleline, we use our pose estimation for image patch
extraction and evaluate its effect. To leverage our multi-pose estimation in matching, we
extract multiple patches for each keypoint using its top-k poses. Figure 5 shows the image
matching results on HPatches [1], where the use of our method for patch extraction consis-
tently improves over the baseline methods. Even without multi-pose estimation, our method
achieves better Mean Matching Accuracy (MMA) than all of the baselines. Our result with
the top-4 pose estimation improves both MMA and the number of matches. It shows that our
method transfers well to image matching without any fine-tuning on the target datasets.
Evaluation on IMC2021. In this 6 DoF camera pose estimation evaluation, we collect

2To avoid sampling patches from outside of the image, we exclude keypoints near boundaries, i.e. (w < 16)∨
(h < 16)∨ (w >W −16)∨ (h > H−16) where (W,H) denotes the image size and (w,h) is the keypoint coordinate.
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Det.+Pose. K Phototourism Pragueparks
Num. Inl. mAA(5◦) mAA(10◦) Num. Inl. mAA(5◦) mAA(10◦)

SIFT+AffNet [22, 29] 1,024 46.4 0.250 0.321 35.9 0.090 0.145
SIFT+ours 1,024 60.8 0.316 0.397 51.3 0.197 0.277
SIFT+AffNet [22, 29] 2,048 110.9 0.448 0.542 90.7 0.196 0.282
SIFT+ours 2,048 131.7 0.471 0.566 112.8 0.291 0.401
Key.Net [2] 1,024 75.4 0.319 0.409 175.9 0.422 0.562
Key.Net+ours 1,024 77.6 0.329 0.420 175.4 0.443 0.583
Key.Net [2] 2,048 167.5 0.431 0.537 368.8 0.514 0.660
Key.Net+ours 2,048 172.4 0.446 0.553 368.7 0.518 0.660

Table 4: Mean average accuracy (mAA; 5◦, 10◦) of 6-DoF pose estimation and the number
of inlier matches (Num. Inl.) on IMC2021 [17] validation set.

reliable feature matches and use them to estimate a camera pose3 via the standard structure-
from-motion method [40]. To obtain the set of reliable matches, we first obtain mutual
nearest neighbor matches via a standard feature extraction and matching process [22, 28, 29],
and then purify those matches using the outlier rejection method of AdaLAM [5] and the
robust model fitting of DEGENSAC [6]. In this pipeline, we use our estimated patch poses
for the outlier rejection step of AdaLAM [5]. For comparison, we use SIFT+AffNet [22,
29] and Key.Net [2] as two baselines for keypoint detection and patch pose estimation, and
evaluate the effect of replacing their orientation estimation with ours in the process of outlier
rejection. For all the methods, HardNet [28] is used for patch description. Table 4 shows
the results of 6 DoF pose estimation in the validation set of the IMC2021 stereo task [17].
Our method improves over SIFT+AffNet [22, 29] and Key.Net [2] in 6 DoF pose estimation
accuracy on both Phototourism and Pragueparks. The performance gain of our method on
Key.Net is smaller than that on SIFT+AffNet [22, 29]. We find this is due to the keypoint
selection scheme of Key.Net [2]; it selects the keypoints based on the local window so that
they spread evenly, which reduces the impact of the subsequent outlier rejection step.

5 Conclusion
We have proposed a self-supervised learning framework for characteristic scale and orien-
tation estimation. Our method effectively estimates characteristic scale and orientation via
the histogram alignment technique. Our experiments show impressive results on PatchPose
and HPatches datasets, achieving the state-of-the-art performance on the task of scale and
orientation estimation. Moreover, the use of our patch pose estimation has been shown to im-
prove matching performance on HPatches and IMC2021 benchmarks, on which our method
has never been trained. We believe further research in this direction can benefit a variety of
image matching, visual localization, and recognition problems in computer vision.
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3We evaluate to use the provided source code from IMC2021. https://github.com/ubc-vision/image-matching-
benchmark
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Revisiting oxford and paris: Large-scale image retrieval benchmarking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5706–
5715, 2018.

[34] Jerome Revaud, Philippe Weinzaepfel, César De Souza, Noe Pion, Gabriela Csurka,
Yohann Cabon, and Martin Humenberger. R2d2: Repeatable and reliable detector and
descriptor. arXiv preprint arXiv:1906.06195, 2019.

[35] Ignacio Rocco, Mircea Cimpoi, Relja Arandjelovic, Akihiko Torii, Tomas Pajdla, and
Josef Sivic. Ncnet: Neighbourhood consensus networks for estimating image corre-
spondences. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[36] Paul L Rosin. Measuring corner properties. Computer Vision and Image Understand-
ing, 73(2):291–307, 1999.

[37] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detec-
tion. In European conference on computer vision, pages 430–443. Springer, 2006.

[38] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International conference on computer vision, pages
2564–2571. Ieee, 2011.

[39] Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Hammarstrand, Erik Sten-
borg, Daniel Safari, Masatoshi Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmark-
ing 6dof outdoor visual localization in changing conditions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 8601–8610, 2018.

[40] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4104–4113, 2016.

[41] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm.
Pixelwise view selection for unstructured multi-view stereo. In European Conference
on Computer Vision (ECCV), 2016.



14 LEE, JEONG, CHO: SELF-SUPERVISED SCALE AND ORIENTATION

[42] Xuelun Shen, Cheng Wang, Xin Li, Zenglei Yu, Jonathan Li, Chenglu Wen, Ming
Cheng, and Zijian He. Rf-net: An end-to-end image matching network based on re-
ceptive field. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8132–8140, 2019.

[43] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[44] Kihyuk Sohn and Honglak Lee. Learning invariant representations with local transfor-
mations. In ICML, 2012.

[45] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Dou-
glas Poland, Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia
research. Communications of the ACM, 59(2):64–73, 2016.

[46] Yurun Tian, Bin Fan, and Fuchao Wu. L2-net: Deep learning of discriminative patch
descriptor in euclidean space. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 661–669, 2017.

[47] Yurun Tian, Xin Yu, Bin Fan, Fuchao Wu, Huub Heijnen, and Vassileios Balntas. Sos-
net: Second order similarity regularization for local descriptor learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11016–11025, 2019.

[48] Kyle Wilson and Noah Snavely. Robust global translations with 1dsfm. In European
Conference on Computer Vision, pages 61–75. Springer, 2014.

[49] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. Lift: Learned invari-
ant feature transform. In European Conference on Computer Vision, pages 467–483.
Springer, 2016.

[50] Kwang Moo Yi, Yannick Verdie, Pascal Fua, and Vincent Lepetit. Learning to assign
orientations to feature points. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 107–116, 2016.


