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Abstract
Real-world contains an overwhelmingly large number of object classes, learning all of
which at once is infeasible. Few-shot learning provides a promising learning paradigm
due to its ability to quickly adapt to novel distributions with only a few samples. Recent
works [8, 39] show that simply learning a good feature embedding can outperform
more sophisticated meta-learning and metric learning algorithms for few-shot learning.
This paper proposes a self supervised knowledge distillation approach, which learns
a strong equivariant feature embedding for few-shot learning, by faithfully encoding
inter-class relationships and preserving intra-class diversity. To this end, we follow a
two-stage learning process: first, we train our model using a self-supervised auxiliary
loss to maximize the entropy of the feature embedding, thus creating an optimal output
manifold. In the second stage, we minimize the entropy on feature embedding by bringing
self-supervised positive twins together, while constraining the learned manifold with
student-teacher distillation. Our experiments show that, even in the first stage, features
learnt by self-supervision can outperform current state-of-the-art methods, with further
gains achieved by our second stage distillation process. Our codes are publicly available
at: https://github.com/brjathu/SKD

1 Introduction
Modern deep learning algorithms generally require a large amount of annotated data which
is expensive to acquire [1, 20]. Inspired by the fact that humans can learn from only a few
examples, few-shot learning (FSL) offers a promising machine learning paradigm. FSL aims
to develop models that can generalize to new concepts using only a few annotated samples
(typically in 1-5 range). Data scarcity and limited supervision makes FSL a challenging task.

Existing works mainly approach FSL using meta-learning [2, 12, 18, 22, 23, 33, 35]
to adapt the base learner for the new tasks, or by enforcing margin maximizing constraints
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Generation Zero Generation One

Figure 1: Self-supervised Knowledge Distillation
(SKD) operates in two phases. In Gen-0, self-
supervision is used to estimate the true prediction
manifold, equivariant to input transformations. Specif-
ically, we enforce the model to predict the amount
of input image rotation using only the output logits
(pretext task). In Gen-1, we force the original sample
outputs to be the same as in Gen-0 (dotted lines), while
reducing the distance with their augmented versions
to enhance discriminability.

through metric learning [21, 36, 38, 41]. In doing so, these FSL methods ignore the importance
of intra-class diversity while seeking to achieve inter-class discriminability. In this work,
instead of learning representations which are invariant to within classes, we argue for an
equivariant representation. Our main intuition is that major transformations in the input
domain are desired to be reflected in their corresponding outputs to ensure output space
diversity. By faithfully reflecting these changes in an equivariant manner, we seek to learn the
true natural manifold of an object class samples.

We propose a two-stage self-supervised knowledge distillation (SKD) approach for FSL.
Despite the availability of only few-shot labeled examples, we show that auxiliary self-
supervised learning (SSL) signals can be mined from the limited data, and effectively lever-
aged to learn the true output-space manifold of each class. For this purpose, we take a
direction in contrast to previous works which learn an invariant representation that maps
augmented inputs to the same prediction [5]. With the goal to enhance generalizability of
the learnt features, we first learn a Generation-zero (Gen-0) model whose output predic-
tions are equivariant to the input transformations, thereby avoiding overfitting and ensuring
heterogeneity in the prediction space.

Once the Generation-zero model has learned to estimate the optimal output manifold,
we perform knowledge distillation by treating the learned model as a teacher network and
training a student model with the teacher’s outputs. Different from the first stage, we now
enforce that the augmented samples and their original inputs result in similar predictions
to enhance between-class discrimination. The knowledge distillation mechanism therefore
guides the Generation-one (Gen-1) model to develop the following intuitive properties. First,
the output class manifold is diverse enough to preserve major transformations in the input,
thereby avoiding overfitting and improving generalization. Second, the learned relationships
in the output space encode natural connections among classes e.g., two similar classes should
have correlated predictions as opposed to totally independent and orthogonal projections
considered in one-hot encoded ground-truths. Thus, by faithfully representing the output
space via encoding inter-class relationships and preserving intra-class diversity, our approach
learns improved representations for FSL.

The following are the main contributions of this work:

• Different to existing approaches that use SSL as an auxiliary task, we show the benefit
of SSL towards enforcing diversity constraints in the output prediction space. Our
simple design sequentially applies self-supervision after the final classification layer.

• A dual-stage training regime which first estimates the diverse output manifold by
learning equivariant features, and then minimizes the positive-augmented pair distance
while anchoring the original samples to preserve the learned manifold using distillation.
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• Extensive evaluations on five datasets with consistent gains over recent FSL methods.

2 Related work
Few-shot learning (FSL): There have been several efforts on FSL ranging from metric
learning to meta-learning methods. Metric learning methods commonly learn a metric space,
in which the support set can be easily matched with the query set. For example, Koch et
al. [21] use a Siamese network to learn a similarity metric to classify unknown classes, with
the aid of a support set. Sung et al. [38] use a relation module to learn the relationships
between support set and the query image. Matching networks [41] employ attention and
memory to learn a network that matches support set to the query image. In addition, [36]
assigns the mean embedding as a prototype and minimizes the distance from it with rest of
the samples in the query set. In contrast, we only use augmented pairs of an image to move
their embeddings closer, while preserving their respective distances in the output space.
Self-supervised learning (SSL): SSL defines a pretext learning task that can enhance model’s
learning capability without requiring any additional annotation effort [19]. Generally, these
surrogate tasks require a higher-level understanding, thereby forcing the learning agent to
learn useful representations while solving the auxiliary tasks. The existing SSL techniques
mostly differ in the way supervisory signal is obtained from the data. For example, [15]
defines pretext supervisory signal in terms of the amount of rotation applied to an input
image. Doersch et al. [9] train a CNN to predict the relative position of a pair of randomly
sampled image patches. This idea is further extended to predict permutations of multiple
image patches in [26]. Alternatively, image colorization and object counting were employed
as pretext tasks to improve representation learning [27, 45]. Zhai et al. [44] propose an SSL
approach in a semi-supervised setting where some labelled and many unlabelled examples
were available. Different from these works, our approach uses self-supervision to enforce
additional constraints in the classification space. Close to our work is a set of approaches that
seek to learn representations that are invariant to image transformations and augmentations
[3, 5, 10]. In contrast, our approach does the exact opposite: we seek to learn an equivariant
representation, so that the true manifold of a class can be learned with only a few-examples.
Embeddings for FSL: Recent works have highlighted the significance of learning strong
embeddings for FSL. For example, [8, 39] show that a simple baseline can achieve very
competitive performance by learning a powerful feature embedding. Similarly, [31] attribute
the success of meta-learning for FSL [12, 13, 23, 35] to its strong feature representation
capability rather than meta-learning itself. Our work is an effort along the same direction,
and proposes a novel self-supervised knowledge distillation approach that can learn effective
feature representations for FSL with limited supervision.
Differences with close works: The closest to our work is Gidaris et al. [16], which uses
self-supervision to boost FSL. However, [16] simply employs self-supervision as an auxiliary
loss, while we use it to shape and constrain the learning manifold . Architecture wise, we
use a sequential self-supervision layer, while [16] has a parallel design. Furthermore, [16]
does not explore multiple generations. We propose a dual-stage learning process, where the
second generation further improves the learned representations by constraining the embedding
space using distillation and bringing embeddings of and original and augmented image pairs
closer. Unlike existing FSL methods (e.g., MAML [12], ProtoNets [36]) which require
setting-specific models (e.g., a 5-way 1-shot model cannot be used for 10-way 1-shot, and
requires re-training from scratch), we train a single generic model, which is applicable to any
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number of ways or shots. Further, while recent works require extra steps to remember the
base classes, our method can directly predict base classes with high accuracy (see Sec. 4.2).

There is a line work which uses distillation to improve the model quality, [30] proposed
using various augmentations to create soft/pseudo labels for the unlabeled classes, subse-
quently used to re-train a new model. However, they do not exploit the self-supervised
learning based on the augmentations. Their model is only trained with soft labels, no self-
supervision is used in their training. Additionally, our two-stage training enforces different
FSL objectives at different stages, not just knowledge distillation. First we force the model
to explore the embeddings space and learn rich features and then we engorge the model to
be more discriminative. These objectives are necessary for the model to perform well on
FSL, with unseen classes. Our learning objective is similar to the learning objective of [42],
however our motivation behind these objectives are fundamentally different from theirs. We
only use self-supervision during Gen-0 to encourage the model to explore the feature space
and create more diverse representations. This is essential because our evaluation is on unseen
classes (while [42] is evaluating on seen classes). Further, unlike [B] we do not train our
Gen-1 model (equivalent to [42] student) on self-supervision loss. Because, using the second
stage we focus on making the model to be more discriminative between unseen classes,
therefore no cross-entropy loss on labeled data is used during Gen-1. Our Gen-1 training is
only about grouping unseen images, irrespective of the class labels. While [42] uses both
label loss and self-supervision to train the student.

3 Self-supervised Knowledge Distillation
The proposed SKD uses a two stage training pipeline: Generation-zero (Gen-0) and Generation-
one (Gen-1). Gen-0 utilizes self-supervision to learn a diverse classification manifold, in
which the learned embeddings are equivariant to rotation (or another transformation). Later
for Gen-1, we employ the Gen-0 model as a teacher and use original (non-augmented) images
as anchors to preserve the learned manifold, while rotated version of the images are used to
reduce intra-class distances in the embedding space to learn discriminative features.

3.1 Problem Formulation
Let’s assume a neural network F contains feature embedding parameters Θ, and classification
weights Φ. Any input image xxx can be mapped to a feature vector vvv ∈ Rd by a function
f
Θ

: xxx → vvv. Consequently, features vvv are mapped to logits ppp ∈ Rc by another function
f
Φ

: vvv → ppp, where c denotes the number of output classes. Hence, conventionally F is defined
as a composition of these functions, F= f

Φ
◦ f

Θ
. In this work, we introduce another function

f
Ψ

, parameterized by Ψ, such that, f
Ψ

: ppp → qqq, which maps logits ppp to a secondary set of
logits qqq ∈ Rs for self-supervised task (e.g., rotation classification). For each input xxx, we
automatically obtain labels r ∈ {1, . . . ,s}, where s is the number of self-supervised labels, e.g.,
s = 4 when predicting 4 rotation angles. Therefore, the complete network can be represented
as FΘ,Φ,Ψ = f

Ψ
◦ f

Φ
◦ f

Θ
.

We consider a dataset D with m image-label pairs {xxxi,yi}m where yi ∈ {1, . . . ,c}. During
evaluation, we sample episodes as in classical FSL setting. An episode Deval contains, Dsupp
and Dquery. In an n-way k-shot setting, Dsupp has k samples for each of n classes.

3.2 Generation-Zero: Learning Data Manifold
During our first stage (called Gen-0), a minibatch B={x,y} is randomly sampled from the
dataset D, which has m number of image-label pairs such that x = {xxxi}m,y = {yi}m. We first
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Figure 2: Overall training process of SKD: Gen-0 uses multiple rotated versions of the images
to train the neural network to predict the class as well as the rotated angle. Then during Gen-1,
we use original version of the images as anchor points to preserve the manifold while moving
the logits for the rotated version closer, to increase the discriminative ability of the network.

take the images x and apply a transformation function T (·) to create augmented copies of
x. For the sake of brevity, here we consider T (·) as a rotation transformation, however, any
other suitable transformation can also be considered as we show in our experiments (Sec. 4.2).
Applying rotations of 90,180 and 270 degrees to x, we create x90, x180 and x270, respectively.
Then we combine all augmented versions of images into a single tensor x̂ = {x, x90, x180,
x270} whose corresponding class labels are ŷ ∈ R4×m. Additionally, one-hot encoded labels r̂
= {rrri ∈Rs}4×m for the rotation direction are also created, where s = 4 due to the four rotation
angles in our self-supervised task.

First, we pass x̂ through f
Θ

, resulting in the features v̂ ∈ Rd×(4×m). Then, the features are
passed through f

Φ
to get the corresponding logits p̂ ∈ Rc×(4×m), and finally, the logits are

passed through f
Ψ

, to get the rotation logits q̂ ∈ Rs×(4×m),

fΘ(x̂) = v̂, fΦ(v̂) = p̂, fΨ(p̂) = q̂.

We employ, two loss functions to optimize the model in Gen-0: (a) categorical cross entropy
loss Lce between the predicted logits p̂ and the true labels ŷ, and (b) a self-supervision loss
Lss between the rotation logits q̂ and rotation labels r̂. Note that, in this paper all our self-
supervision tasks are simply the prediction of what data augmentation is used [15]. Therefore,
our self-supervision loss is simply a cross entropy loss, using n-way classification of the data
augmentations used in the model. However other kind of self-supervison can be also used
without any modifications. These two loss terms are combined with a weighting coefficient α

(tuned on a validation set) to get our final loss,

LGen-0 = Lce +α ·Lss, s.t., Lce(ppp,y) =− log
(

exp(py)

∑ j exp(p j)

)
, Lss(qqq,r) =− log

(
exp(qr)

∑ j exp(q j)

)
.

The training process for Gen-0 model can be stated as the following optimization problem,

min
Θ, Φ, Ψ

Ex,y∼D
[
Lce( fΦ,Θ(x̂), ŷ)+α ·Lss( fΦ,Θ,Ψ(x̂), r̂)

]
. (1)

The above objective ensures that the output logits are representative enough to encapsulate
information about the input transformation, thereby successfully predicting the amount of
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rotation applied to the input. This behaviour allows us to maintain diversity in the output
space while faithfully estimating the natural data manifold of each object category.

3.3 Generation-One: Knowledge Distillation
Once the Gen-0 model is trained with cross entropy and self-supervision loss functions, we
take two clones of the trained model: a teacher model F t and a student model Fs. The
weights of the teacher model are frozen and used only to guide students learning. Again, we
sample a minibatch B from D and generate a twin x̄ ∈ x̂\x from x. In this case, a twin x̄
is simply a rotated version of x (e.g., x180). During Gen-1 training, x is used as an anchor
point to constrain any changes to the classification manifold. This is enforced by a knowledge
distillation [17] loss between teacher and student networks. Concurrently, an auxiliary ℓ2 loss
is employed to bring the embeddings of x and x̄ together to enhance feature discriminability
while preserving the original output manifold. Note that, by using positive augmented pairs
we only change embedding space within the class manifold.

Specifically, we first pass x through the teacher network F t = f t
Φ,Θ ◦ f t

Ψ
and its logits pt

are obtained. Then, x, x̄ are passed through the Fs to get their corresponding logits ps, and p̄s,

f t
Φ,Θ(x) = pt , f s

Φ,Θ({x, x̄}) = {ps, p̄s} s.t., fΦ,Θ= fΦ◦ fΘ.

We use Kullback–Leibler (KL) divergence measure between pt = {pppt
i} and ps = {ppps

i} for
knowledge distillation, and apply ℓ2 loss between ps and p̄s to achieve better discriminability,

LKD(ppps, pppt ,T ) = KL
(

σ(
ppps

T
),σ(

pppt

T
)

)
, Lℓ2

(ppps, p̄pps) = ∥ppps − p̄pps∥2,

where, σ is a softmax function and T is a temperature parameter used to soften the output
distribution. Finally, we combine these two loss terms by a coefficient β as follows,

LGen-1 = LKD +β ·Lℓ2
. (2)

The overall Gen-1 training process can be stated as the following optimization problem,

min
Θ, Φ

Ex,y∼D
[
LKD( f s

Φ,Θ(x), f t
Φ,Θ(x))+β ·Lℓ2

( f s
Φ,Θ(x), f s

Φ,Θ(x̄))
]
.

Note that, for our model, it is necessary to have the self-supervision branch (rotation clas-
sification head) sequentially added to the classification layer, which is unlike previous
works [4, 16, 37] that connect rotation classification head directly after the feature em-
bedding layer. This is because, during the Gen-0, we encourage the penultimate layer to
encode information about both the image class and its rotation (thus preserving output space
diversity). Later in Gen-1, we bring the logits of the rotated pairs closer (to improve discrimi-
nation). These objectives are not achievable if the rotation head is connected directly to the
feature embedding layer, or if distillation is performed on the features as in previous works.

3.4 SKD at Inference
During evaluation, a held out part of the dataset is used to sample tasks. This comprises
of a support set and a query set {Dsupp, Dquery}. Dsupp has image-label pairs {xsupp,ysupp},
while Dquery is an image tensor xquery. Both xsupp and xquery are fed to the final trained f s

Θ
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model to get the feature embeddings vsupp and vquery, respectively. We use a simple logistic
regression classifier [2, 39] to map the labels from support set to query set. The embeddings
are ℓ2 normalized onto a unit sphere [39]. We randomly sample 600 tasks, and report mean
classification accuracy with 95% confidence interval. Note that unlike popular meta-learning
algorithms (e.g., [12, 23]), a major strength of the proposed method is that it does not need to
train multiple models for different values of n and k in n-way, k-shot classification. Since, the
classification is disentangled from feature learning in our case, the same model can be used to
evaluate for any value of n and k in FSL.

4 Experiments and Results

We comprehensively compare our method on five benchmark few-shot learning datasets
that include miniImageNet [41], tieredImageNet [34], CIFAR-FS [2], FC100 [28] and Meta-
dataset [40]. Additionally, we provide an extensive ablation study to investigate the individual
contributions of different components in our framework (Sec. 4.2).

miniImageNet, 5-way tieredImageNet, 5-wayMethod Backbone 1-shot 5-shot 1-shot 5-shot

MAML [12] 32-32-32-32 48.70 ± 1.84 63.11 ± 0.92 51.67 ± 1.81 70.30 ± 1.75
Prototypical Networks† [36] 64-64-64-64 49.42 ± 0.78 68.20 ± 0.66 53.31 ± 0.89 72.69 ± 0.74

Dynamic Few-shot [14] 64-64-128-128 56.20 ± 0.86 73.00 ± 0.64 - -
Relation Networks [38] 64-96-128-256 50.44 ± 0.82 65.32 ± 0.70 54.48 ± 0.93 71.32 ± 0.78

R2D2 [2] 96-192-384-512 51.2 ± 0.6 68.8 ± 0.1 - -
SNAIL [25] ResNet-12 55.71 ± 0.99 68.88 ± 0.92 - -

TADAM [28] ResNet-12 58.50 ± 0.30 76.70 ± 0.30 - -
MetaOptNet [22] ResNet-12 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53

Diversity w/ Cooperation [11] ResNet-18 59.48 ± 0.65 75.62 ± 0.48 - -
Boosting [16] WRN-28-10 63.77 ± 0.45 80.70 ± 0.33 70.53 ± 0.51 84.98 ± 0.36

Fine-tuning [8] WRN-28-10 57.73 ± 0.62 78.17 ± 0.49 66.58 ± 0.70 85.55 ± 0.48
LEO-trainval† [35] WRN-28-10 61.76 ± 0.08 77.59 ± 0.12 66.33 ± 0.05 81.44 ± 0.09

FEAT [43] ResNet-12 66.78 ± n/a 82.05 ± n/a 70.80 ± n/a 84.79 ± n/a
Meta-baseline [6] ResNet-12 63.17 ± 0.23 79.26 ± 0.17 68.62 ± 0.27 83.29 ± 0.18
RFS-simple [39] ResNet-12 62.02 ± 0.63 79.64 ± 0.44 69.74 ± 0.72 84.41 ± 0.55
RFS-distill [39] ResNet-12 64.82 ± 0.60 82.14 ± 0.43 71.52 ± 0.69 86.03 ± 0.49

SKD-GEN0 ResNet-12 65.93 ± 0.81 83.15 ± 0.54 71.69 ± 0.91 86.66 ± 0.60
SKD-GEN1 ResNet-12 67.04 ± 0.85 83.54 ± 0.54 72.03 ± 0.91 86.50 ± 0.58

Table 1: FSL results on miniImageNet [41] and tieredImageNet [34] datasets, with mean
accuracy and 95% confidence interval. †results obtained by training on train+val sets.

Datasets: We evaluate SKD on five widely used FSL benchmarks. These include two datasets
which are subsets of the ImageNet i.e., miniImageNet [41] and tieredImageNet [34], the other
two which are splits of CIFAR100 i.e., CIFAR-FS [2] and FC100 [28], and a very large-scale
Meta-dataset [40] (composed of multiple datasets of diverse nature). For miniImageNet [41],
we use the split proposed in [32], with 64, 16 and 20 classes for training, validation and
testing, respectively. The tieredImageNet [34] contains 608 classes which are semantically
grouped into 34 high-level classes, that are further divided into 20, 6 and 8 for training,
validation, and test splits, thus ensuring diversity. CIFAR-FS [2] has a random split of 100
classes into 64, 16 and 20 for training, validation, and testing, while FC100 [28] uses splits
similar to tieredImageNet, making them more diverse. FC100 has 60, 20, 20 classes for
training, validation, and testing respectively. For Meta-dataset [40], the model is trained on
ImageNet-training-split (1000 ImageNet classes grouped into 712 training, 158 validation and
130 test) and evaluated on three datasets within Meta-dataset including Describable Textures
[7], MSCOCO [24] and ImageNet test split.
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CIFAR-FS, 5-way FC100, 5-wayMethod Backbone 1-shot 5-shot 1-shot 5-shot

MAML [12] 32-32-32-32 58.9 ± 1.9 71.5 ± 1.0 - -
Prototypical Networks† [36] 64-64-64-64 55.5 ± 0.7 72.0 ± 0.6 35.3 ± 0.6 48.6 ± 0.6

Relation Networks [38] 64-96-128-256 55.0 ± 1.0 69.3 ± 0.8 - -
R2D2 [2] 96-192-384-512 65.3 ± 0.2 79.4 ± 0.1 - -

TADAM [28] ResNet-12 - - 40.1 ± 0.4 56.1 ± 0.4
Shot-Free [33] ResNet-12 69.2 ± n/a 84.7 ± n/a - -
TEWAM [29] ResNet-12 70.4 ± n/a 81.3 ± n/a - -

Prototypical Networks† [36] ResNet-12 72.2 ± 0.7 83.5 ± 0.5 37.5 ± 0.6 52.5 ± 0.6
Boosting [16] WRN-28-10 73.6 ± 0.3 86.0 ± 0.2 - -

MetaOptNet [22] ResNet-12 72.6 ± 0.7 84.3 ± 0.5 41.1 ± 0.6 55.5 ± 0.6
RFS-simple [39] ResNet-12 71.5 ± 0.8 86.0 ± 0.5 42.6 ± 0.7 59.1 ± 0.6
RFS-distill [39] ResNet-12 73.9 ± 0.8 86.9 ± 0.5 44.6 ± 0.7 60.9 ± 0.6

SKD-GEN0 ResNet-12 74.5 ± 0.9 88.0 ± 0.6 46.4 ± 0.8 63.3 ± 0.7
SKD-GEN1 ResNet-12 76.9 ± 0.9 88.9 ± 0.6 47.3 ± 0.8 63.8 ± 0.7

Table 2: FSL results on CIFAR-FS [2] and FC100 [28] datasets, with mean accuracy and 95%
confidence interval. †results obtained by training on train+val sets.

4.1 Few-shot learning results

Our results shown in Table 1 (miniImageNet [41] & tieredImageNet [34] datasets ) and
Table 2 (CIFAR-FS [2] & FC100 [28] datasets) suggest that the proposed SKD consistently
outperforms the existing methods across all datasets. Even, our Gen-0 alone performs better
than the current state-of-the-art (SOTA) methods by a considerable margin. For example,
SKD Gen-0 model surpasses SOTA performance on miniImageNet by ∼1% on both 5-way
1-shot and 5-way 5-shot tasks. The same can be observed on other datasets. Compared to
feature embedding based RFS [39], SKD shows an improvement of 3.91% on 5-way 1-shot
and 3.51% on 5-way 5-shot learning. A similar trend is observed across other evaluated
datasets with consistent 2-3% gains over RFS [39]. This is due to the self-supervised learning
strategy which enables SKD to learn diverse and generalizable embeddings.

Gen-1 incorporates knowledge distillation and proves even more effective compared with
Gen-0. On miniImageNet, we achieve 67.04% and 83.54% on 5-way 1-shot and 5-way
5-shot learning tasks, respectively. These are gains of 2.22% and 1.4% on 5-way 1-shot and
5-way 5-shot tasks. Similar consistent gains of 2-3% over SOTA results can be observed
across other evaluated datasets. Note that, RFS-distill [39] uses multiple iterations (up to
3-4 generations) for model distillation, while SKD only uses a single generation for the
distillation. We attribute our gain to the way we use knowledge distillation to constrain
changes in the embedding space, while minimizing the embedding distance between images
and their augmented pairs, thus enhancing representation capabilities of the model.

4.2 Ablation Studies and Analysis

Choices of loss function: We study the impact of different contributions by progressively
integrating them into our pipeline in Table 3. We first evaluate SKD with and without
the self-supervision loss. If we train the Gen-0 with only cross entropy loss, which is
same as RFS-simple [39], the model achieves 71.5± 0.8% and 62.02± 0.63% for 5-way
1-shot task on CIFAR-FS and miniImageNet, respectively. Then, if we train the Gen-0 with
additional self supervision, the performance improves to 74.5±0.9% and 65.93±0.81%. This
shows an absolute gain of 3.0% and 3.91%, by incorporating our proposed self-supervision.
Additionally, if we only keep knowledge distillation for Gen-1, we can see that self-supervision
for Gen-0 has a clear impact on the next generation. As shown in Table 3, self-supervision at
Gen-0 is responsible for 2% performance improvement on Gen-1. Further, during Gen-1, the
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CIFAR-FS, 5-way miniImageNet, 5-wayGeneration Loss Function 1-shot 5-shot 1-shot 5-shot

GEN-0 LCE 71.5 ± 0.8 86.0 ± 0.5 62.02 ± 0.63 79.64 ± 0.44
LCE +αLSS 74.5 ± 0.9 88.0 ± 0.6 65.93 ± 0.81 83.15 ± 0.54

GEN-1

LCE →LKD 73.9 ± 0.8 86.9 ± 0.5 64.82 ± 0.60 82.14 ± 0.43
LCE →LKD +βLℓ2

74.9 ± 1.0 87.6 ± 0.6 64.76 ± 0.84 81.84 ± 0.54
LCE +αLSS →LKD 75.6 ± 0.9 88.7 ± 0.6 66.48 ± 0.84 83.64 ± 0.53
LCE +αLSS →LKD +βLℓ2

76.9 ± 0.9 88.9 ± 0.6 67.04 ± 0.85 83.54 ± 0.54

Table 3: FSL results on CIFAR-FS [2] and FC100 [28], with different combinations of loss
functions for Gen-0 and Gen-1. For Gen-1, the loss functions on the left side of the arrow
were used to train the Gen-0 model.

advantage of using the Lℓ2
loss to bring logits of rotated augmentations closer, is demonstrated

in Table 3. We can see that, for the Gen-0 models trained either on Lce or Lce+αLss, addition
of Lℓ2

loss during Gen-1 gives about ∼ 1% gain compared with using knowledge distillation
only. We can also see that, in both 1-shot and 5-shot cases having the Lℓ2

loss term during
Gen-1 helps to improve the performance. In CIFAR-FS, only using distillation loss at GEN-1
gives 73.9±0.8 and 86.9±0.5 for 1-shot and 5-shot respectively. However, having additional
L2 loss term during the GEN-1 optimization helps to improve the performance to 74.9±1.0
(1-shot) and 87.6±0.6 (5-shot). Finally note that, our Gen-1 training does not use any class
labels during this stage of the training. During this stage we are only interested in making
the model more discriminative towards unseen classes, not on seen classes. These empirical
evaluations clearly establish individual importance of different components (self-supervision,
knowledge distillation and ensuring equivariance representations in the output space) of our
proposed two stage approach.

Generation 0, 5-way Generation 1, 5-waySelf-supervision
Type 1-shot 5-shot 1-shot 5-shot

None 71.5 ± 0.8 86.0 ± 0.5 73.9 ± 0.8 86.9 ± 0.5

Rotation 74.5 ± 0.9 88.0 ± 0.6 76.9 ± 0.9 88.9 ± 0.6
Location 74.1 ± 0.9 88.0 ± 0.6 76.2 ± 0.9 87.8 ± 0.6
Jigsaw puzzle 72.7 ± 0.8 87.1 ± 0.6 75.0 ± 0.8 88.0 ± 0.5
Gaussian Blur 68.8 ± 0.9 84.9 ± 0.6 71.6 ± 0.9 85.7 ± 0.6

Figure 3: Performance of SKD on CIFAR-
FS [2] dataset for different self-supervision
tasks.
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Figure 4: Ablation study on the sensitivity of
the loss coefficient hyper-parameters α and β .

Choices of self-supervision: We further investigate different choices of self-supervision. (a)
Instead of rotations based self-supervision, we use a 2×2 crop of an image, and train the
final classifier to predict the correct crop quadrant [37]. (b) We apply Gaussian blur with
varying strengths and define the pretext task in terms of predicting the level of degradation
(in discrete manner). (c) The unordered patches are input to the model and the network is
trained to solve the proxy task of re-arranging the patches in their correct order (jigsaw puzzle
[26]). The results in Table 3 show that the crop-based location prediction and jigsaw puzzle
self-supervision methods perform favorably well compared with the state-of-the-art FSL
methods, though they perform slightly lower than the rotations based self-supervision. We
find this trend to be consistent with self-supervised learning literature [19], where changing
global information while preserving local information generally helps more. Thus rotation
based proxy task provides an edge over localized transformations.
Sequential vs Parallel heads: Sequential design is important to SKD. We ran SKD with
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parallel heads (as in [16]) on mini-ImageNet and achieve an accuracy of 64.29±0.80% and
80.58±0.53% (1 & 5 shots respectively). These results suggest that, under the same settings,
our proposed sequential design performs favorably well against the parallel heads by achieving
65.93±0.81% and 83.15±0.54% (1 & 5 shots). We believe that with a parallel head design,
the network can find a simple linearly separable solution like [AT ,BT ]T , where A only capture
the class distribution while B only capture the distribution of data augmentations independent
of the class. However, our motivation is to capture both properties in the output logit space
via a cascaded design, thereby helping learn the true data manifold for FSL settings.
Base Class Performance: While fine-tuning for novel classes, FSL methods can forget
base-class information, which results in a performance drop over the original set of base
classes. Since in practical settings, we require models to retain old knowledge while learning
new classes, it is interesting to study the base class performance of fine-tuned models. Our
experiments show that SKD can predict base classes with high accuracy i.e., miniImageNet:
81.9% and tieredImageNet: 73.6%. These strong results suggest that SKD retains base class
information and generalizes equally well to novel and old classes.
Time Complexity SKD has a time complexity of O(2×T ), where T is the time required to
train one generation. In comparison, RFS [39] has time complexity of O(n×T ), where n is
the number of generations (usually 3-4). Using a single Tesla V100 GPU on CIFAR-FS, for
the first generation, both RFS and SKD take approx. the same time, i.e., T = 88 minutes. The
complete training time on CIFAR-FS of RFS is ∼ 4 hours, while SKD only takes ∼ 2 hours.
Visualizing SKD Behaviour: To illustrate that a meaningful feature embedding is learned
in our proposed two-stage self-supervised knowledge distillation scheme, we show a tSNE
visualization of the learned features in Fig. 5. The scatter plots are obtained for feature
embeddings of 10 classes of CIFAR-FS test-set (never seen during training). We clearly
notice weak class boundaries for the model trained without self-supervision, while our
proposed self-supervised models (both Gen-0 & 1) have better class separation. Further,
Gen-0 & 1 models faithfully preserve the class structure in the feature space (distance from
class centers in both cases are almost the same), thanks to distillation loss.

Figure 5: Left to right:
A tSNE visualization of
feature embeddings from
the models trained with
no-self-supervision, self-
supervision (Gen-0) and
self-supervision (Gen-1).

5 Conclusion
Deep learning models can easily overfit on the scarce data available in FSL settings. To
enhance generalizability, existing approaches regularize the model to preserve margins or
encode high-level learning behaviour via meta-learning. In this work, we take a different
approach and propose to learn the true output embedding space via self-supervised learning.
Our approach operates in two phases: first, the model learns to classify inputs such that the
diversity in the outputs is not lost, thereby avoiding overfitting and modeling the natural output
manifold structure. Once this structure is learned, our approach trains a student model that
preserves the original output manifold structure while jointly maximizing the discriminability
of learned representations. Our results on five popular benchmarks show the benefit of our
approach where it establishes a new state-of-the-art for FSL.
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