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Abstract

Existing weakly or semi-supervised semantic segmentation methods utilize image or
box-level supervision to generate pseudo-labels for weakly labeled images. However, due
to the lack of strong supervision, the generated pseudo-labels are often noisy near the
object boundaries, which severely impacts the network’s ability to learn strong representa-
tions. To address this problem, we present a novel framework that generates pseudo-labels
for training images, which are then used to train a segmentation model. To generate
pseudo-labels, we combine information from: (i) a class agnostic ‘objectness’ network
that learns to recognize object-like regions, and (ii) either image-level or bounding box
annotations. We show the efficacy of our approach by demonstrating how the objectness
network can naturally be leveraged to generate object-like regions for unseen categories.
We then propose an end-to-end multi-task learning strategy, that jointly learns to seg-
ment semantics and objectness using the generated pseudo-labels. Extensive experiments
demonstrate the high quality of our generated pseudo-labels and effectiveness of the
proposed framework in a variety of domains. Our approach achieves better or competitive
performance compared to existing weakly-supervised and semi-supervised methods.

1 Introduction
State-of-the-art methods for semantic segmentation [4, 9, 10, 11, 19, 19, 27, 28, 31, 32,
36, 37, 47, 50, 51, 60, 68, 70] are founded on fully convolutional networks (FCN) [50]
to segment semantic objects in an end-to-end manner. A caveat of such training is that it
requires supervision with an extensive amount of pixel-level annotations. Since the expense
for generating semantic segmentation annotations is large, a natural solution is to address the
problem of semantic segmentation with one of two common supervision settings, weakly or
semi-supervised.
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Figure 1: Left: An illustration of our process for generating high-quality semantic segmen-
tation pseudo-labels for a target dataset, DT . We first train a objectness network, fθ , on a
source dataset under one of two data settings, (overlapping (DS) or non-overlapping (D†

S)
categories (k) withDT ), that learns to generate a class-agnostic objectness prior. Right: Then,
we use either Class Activation Maps (CAMs) [71] or bounding box proposals combined with
a class agnostic objectness prior to generate a pseudo-label.

In the weakly supervised semantic segmentation (WSSS) setting, labels used during
training contain only partial information. Recently proposed WSSS methods utilize image-
level labels [2, 3, 7, 12, 17, 18, 23, 25, 35, 43, 44, 63, 69], scribbles [46], or bounding
box [15, 38, 58] supervision to learn semantic masks. Most of these methods rely on
incorporating additional guidance to obtain the location and shape information. A common
way to obtain location cues from class labels is by using Class Activation Maps (CAMs) [71]
as it roughly localizes semantic regions of each class. However, utilizing CAMs directly as
supervision can be problematic as they roughly localize objects and cannot capture detailed
object boundaries between different semantic regions. Recent works have addressed this
issue in a variety of ways [2, 3, 42, 54], one of the most effective being the use of object
guidance via the use of class agnostic saliency [25, 35, 43, 69]. Similarly, bounding box based
methods [25, 38, 40, 45, 58] typically rely on generating rough pseudo-labels by applying
the unsupervised CRF [39], MCG [55], or GrabCut [57] methods to remove irrelevant
regions from the semantic region proposal in an iterative way to obtain stronger pseudo-
labels at each iteration. However, the quality gap between the pseudo-labels and groundtruth
is typically large for the CAM-based and bounding box-based approaches. Furthermore,
iterative procedures and complex pipelines can make the data generation process for these
methods computationally expensive and time consuming.

In the semi-supervised semantic segmentation (SSSS) setting, the groundtruth annotations
are used but only for a fraction of the total number of training examples, e.g., 10% of the
labels [59]. Similar to the techniques used in WSSS methods, pseudo-labels are then generated
for the unlabelled data (e.g., by using additional image-level annotations [25, 38, 43, 63, 64]).
Recent work [24] introduced a partially supervised training paradigm which learns to segment
everything using a portion of box and mask annotations. However, these methods still require
labour-intensive pixel-level semantic annotations and the performance heavily depends on the
quantity of the labeled data and the quality of the generated pseudo-labels.

In the light of the highlighted issues that arise in WSSS and SSSS methods, we propose
a novel simple yet effective pipeline which transfers ‘objectness’ knowledge to weakly
labeled images for learning semantic segmentation. The intuition behind using the objectness
guidance instead of widely used saliency-based approaches [52, 63, 67, 69] is that groundtruth
saliency masks inherently ignore objects near the border of the image due to the well-known
centre bias [1, 5]. Recent works [62, 64] also utilize the objectness prior to refine the semantic
proposals. There are two key differences between our work and [64]. First is the use of
a source dataset. [64] obtains the objectness prior strictly from the target data distribution,
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which is arguably an easier problem to solve. However in our work, we strictly prohibit the
use of per-pixel labels from the target dataset and only use a source dataset (i.e., COCOStuff)
for the objectness prior. We argue that using COCOStuff as the source data (instead of VOC
like in [64]) will allow our objectness network to generate better pseudo-labels for a more
diverse set of categories and can be generalized well to different target datasets. Second,
during the segmentation network training, [64] uses the semantic segmentation labels for the
strong categories (i.e., the classes used to train their objectness network), while in our settings
we only use pseudo-labels when training the semantic segmentation network.

The key component of our pipeline is the pseudo-label generation approach (see Fig. 1),
where we first train an objectness network on a source dataset which generates a class
agnostic objectness prior. We then combine this prior with weak semantic proposals (e.g.,
image or box-level) to generate semantic segmentation labels for a target dataset. We further
show that the objectness prior is robust enough to generalize the objectness knowledge
onto categories that have never been seen by the objectness network; when the source
dataset has no class overlap with the target dataset (i.e., the non-overlapping case). We
view the non-overlapping setting as comparable with weak-supervision, as the objectness
model has no direct understanding of the shape of the target domain classes (unlike previous
methods [52, 63, 67, 69] which use overlapping groundtruth saliency annotations). In contrast,
the overlapping setting (i.e., the class agnostic source dataset contains objects found in the
target dataset) is comparable (but has less supervision) to semi-supervision as class-agnostic
(i.e., binary) segmentation annotations are used. Finally, for segmentation learning, we adopt
a multi-task joint-learning [13, 21, 29, 30, 69] based Semantic Objectness Network (denoted
as SONet), with the addition of an ‘objectness branch’, that explicitly models the relationship
between semantics and objectness. We summarize our main contributions as follows:

1. We introduce a simple yet effective pseudo-label generation technique that combines a
class agnostic ‘objectness’ prior with semantic region proposals. The flexibility of our
technique is demonstrated by its ability to incorporate either image or box-level labels
into the pseudo-label generation pipeline.

2. We propose a joint learning based Semantic Objectness Network, SONet, that improves
the semantic segmentation quality through objectness guidance.

3. We present an extensive set of experimental results which demonstrates the effectiveness
of our proposed method in both the simplicity of the pseudo-label generation process as
well as the quality of the pseudo-labels. Our proposed approach achieves competitive
performance compared to existing WSSS methods and outperforms SSSS methods
without ever using groundtruth semantic segmentation supervision.

2 Proposed Framework

Our pipeline consists of two key components. First, we generate pseudo-labels for training
images by combining our generated objectness prior with weak semantic proposals, which are
produced from either image labels or box annotations (Sec. 2.1). Second, we introduce our
multi-task model, SONet, that jointly learns to segment both semantic categories and a binary
‘objectness’ mask, which enforces richer boundary detail and semantic information (Sec. 2.2).
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2.1 Semantic Pseudo-Label Generation
Our pseudo-label generation process consists of two separate components. We first describe
the procedure behind training the ‘objectness’ network which is designed to obtain detailed
boundary information for any object-like region. Next, we describe two different techniques
for generating semantic pseudo-labels by combining the output of the objectness network
with semantic region proposals, which are obtained from either image-level class labels or
bounding box annotations.

Training an Objectness Network. Pixel objectness [66] quantifies how likely a pixel belongs
to an object of any class (i.e., other than “stuff” classes like background, grass, sky, sidewalks,
etc.), and should be high even for objects unseen during training. We use DeepLabv3
network [10], φP , on a source dataset, DS , to learn an objectness prior from the ‘things’ label.
We use a weak form of the COCOStuff dataset, denoted as COCO-Binary and consider it
as the source dataset, DS . More specifically, we generate COCO-Binary by removing all
semantic labels from the COCOStuff dataset so what remains is binary maps where all the
things categories are assigned to the label one, and the stuff categories to zero. We then train
the objectness network, φP , on the source dataset, DS , under two different settings which
outputs a pixel-wise ‘objectness score’ (similar to the saliency detection models). In the first
setting, we include all the images from the source data, DS , regardless of whether the objects
found in DS images overlap with target data, DT . In the second setting, we create a subset of
DS by excluding those images containing any categories which overlap with DT categories.
We can formalize the overlapping and non-overlapping settings as follows:

k ∈

{
DS overlapping
D†

S :D†
S ⊆DS , D†

S ∩DT = /0 non-overlapping,
(1)

where k denotes the set of object classes contained in COCO-Binary used to train the ob-
jectness model, φP . D†

S represents the non-overlapping subset where there is no semantic
category overlap between D†

S and DT . Note that the semantic annotations are solely used to
generate the subset of non-overlapping data,D†

S , and is not required for training the objectness
model, φP . We believe the non-overlapping setting is more challenging than saliency-based
WSSS [52, 63, 67, 69], because those methods contain semantic overlap within the source
and target data. In both settings, we train the objectness classifier using the class-agnostic
segmentation groundtruth and use the binary cross entropy loss function. The main goal of
the objectness classifier is to learn a strong objectness representation [33] that contributes
towards creating pseudo-labels for semantic supervision.

Class-Driven Pseudo-labels. CAM [71] is widely used as a weak source of supervision
as it roughly localizes semantic object areas. Following previous works [2, 3], we first
generate CAMs for training images by adopting the method of [71] using a multi-label
image classification network. For a fair comparison, we use a ResNet-50 [20] model as the
classification network, as used in other CAM-based methods [2, 3, 25, 67]. We directly utilize
the raw CAMs to generate pseudo-labels by thresholding their confidence scores for each
class label at every pixel predicted to be an object by the class agnostic objectness network
(see Fig. 1(B)). We can formalize this procedure as follows:

GCm
i, j =

argmax
k∈K

(Cm(i, j,k)) ifOi, j > 0 Cm(i, j)> δ

0 otherwise
, (2)
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where GCm
i, j denotes the pseudo-label value at pixel (i, j), K is the set of class indices, Oi, j is

the objectness score, Cm is the non-thresholded CAM proposals, and δ is a threshold (we use
δ = 0.01 in all experiments).

Box-Driven Pseudo-labels. The simplest box-driven pseudo-labels can be obtained by filling
the bounding box annotations with the corresponding class label. Some methods [38, 58] use
semi-automatic segmentation techniques (e.g., CRF [53], GrabCut [57]) to further refine the
box annotations, as rectangular regions contain a significant number of incorrectly labeled
background pixels. However, these techniques are time consuming and the quality of the
pseudo-label is lacking. To address this challenge, we propose an approach to generate
pseudo-labels using the class agnostic objectness masks, O, and the box annotations, B.

Following common practice [26, 38, 58], if any two bounding boxes overlap, we assume
the box with smaller area appears in front. Additionally, if the overlap between any box and
the largest box in the image is greater than some threshold, we only keep the inner 60% of the
box and fill the rest of the box as 255 (which is ignored during training). The intuition behind
the ignoring strategy is simply trading-off lower recall (ignore more pixels where high-degree
of overlap occurs) for higher precision (more pixels are correctly labelled). We then mask the
resulting box proposal, B, with the objectness map, O, to filter out the irrelevant regions from
B and O, and only keep the regions overlapping the object of interest. We set any pixel to
the background class if it does not overlap any boxes. Formally, for each bounding box, Bk,
k ∈ {1, ...,n}, in an image:

GB
ign
(i, j) =


Bcls

k if Oi, j > 0, B0∩Bk < α, (i, j) ∈ Bk

Bcls
k if Oi, j > 0, B0∩Bk > α, (i, j) ∈ Bin

k

255 if Oi, j > 0, B0∩Bk > α (i, j) ∈ Bout
k

0 otherwise

, (3)

where B0 denotes the largest box, n is the number of boxes in each image, Bout
k is the outer

40% of the bounding box’s area, Bin
k is the inner 60% of the bounding box, ‘∩’ calculates the

area of intersection between two bounding boxes, and α is a threshold (we set α = 0.3).

2.2 Semantic Objectness Network: SONet

The Semantic Objectness Network (SONet) consists of a segmentation network and an ob-
jectness module. The objectness module receives the output of the segmentation network as
input, and predicts a binary mask (see Fig. 2).

Figure 2: Overview of our proposed SONet.
With the generated pseudo-labels, we jointly
train SONet on the target dataset, DT , to
predict semantics, S, and objectness, SO.

Network Architecture. We use DeepLabv3 [10]
as our segmentation network, φS , which out-
puts feature maps of 1/16 of the input image
size. Given an input image, It , φS generates
a semantic segmentation map, S, using the
pseudo-label as supervision. The objectness
module, φO, takes S as input and consists of a
stack of five convolutional layers that includes
batch normalization and ReLU layers (see Ta-
ble S1 in the supplementary for architectural
details). We use a 3×3 kernel in the first four
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convolution layers and use a 1×1 kernel in the last layer which outputs the objectness map,
SO. The procedure for obtaining the semantic and objectness maps can be described as:

S = φS(It ;WT ), SO = φO(S; WO), (4)

where WT and WO refer to trainable weights for the φS and φO modules, respectively.

Joint Learning of Semantics and Objectness. We train our proposed SONet method using
the generated pixel-level semantic and objectness pseudo-labels in an end-to-end manner (see
Fig. 2). Let DT = (It ,G,O) denote the target semantic segmentation dataset with images
It , pseudo-labels G ∈ {GCm ,GB}, and O ∈ {0,1} is the objectness prior. More specifically,
let It ∈ Rh×w×3 be a training image from DT with semantic segmentation pseudo-label
G ∈ Rh×w and the objectness prior O ∈ Rh×w. We denote the pixel-wise cross entropy loss
function LS and LO between (S,G) and (SO,O), respectively. The final loss function of the
network is the sum of the segmentation and objectness losses as follows:

LS = `CE(S,G), LO = `BCE(SO,O), LSONet = LS +LO, (5)

where `CE and `BCE denote the multi-class and binary cross entropy loss function, respectively.
The joint training allows our network to propagate objectness information together with
semantics, and suppress erroneous decisions which allows for more accurate final predictions
for both outputs. During inference, we simply take the segmentation map to measure the
overall performance of our proposed approach.

3 Experiments
We evaluate our proposed framework on the PASCAL VOC 2012 [16] and Cityscapes [14]
semantic segmentation benchmarks. We generate objectness masks for the VOC12 target
dataset from two different objectness trained models on COCO-Stuff: overlapping (all
images) and non-overlapping (images with no overlapping objects with target data). We
also report experiments under domain adaptation settings by training on a different target
dataset, OpenV5 [41], and evaluating on VOC12. OpenV5 [41] is a recently released dataset
consisting of image-level, bounding box, and semantic segmentation annotations for over 600
classes. For these experiments, we randomly select 42,621 images from the same 21 classes
as VOC12 and generate pseudo-labels using our box-driven approach. We train SONet with
the generated pseudo-labels from OpenV5 and then evaluate on VOC12 (denoted as O→
V). We also finetune SONet on VOC12 before evaluation (denoted as O + V). We report
experimental results with different backbone networks for a fair comparison.

3.1 Analysis of Generated Pseudo-labels
We first evaluate the quality of our generated pseudo-labels to explore the upper bound for dif-
ferent types of weak supervision and report the results in Table 1(a). We consider the generated
pseudo-labels as predictions and obtain the upper bound for each supervision type by calculat-
ing the mIoU between the pseudo-label and the groundtruth. To generate CAMs pseudo-labels,
Cm, we simply threshold the scores of raw CAMs. When we apply our objectness mask, O, to
improve the boundary of CAMs (GCm ), we obtain 70.6% mIoU. Further, using the bounding
boxes and objectness map (GB ) achieves 76.6% mIoU that further improves the upper bound
mIoU by 6%. In addition, applying the non-overlapping objectness mask, ON , substantially
improves the CAMs (GCm

† ) or bounding box (GB
† ) proposals. As shown in Table 1(a), exploiting
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Sup. Train

Cm 48.3
GCm

† 63.5
GCm 70.6
B 60.2
GB

† 68.6
GB 76.6

(a)

Method Sup. Val.

SONet

Cm 50.2
GCm

† 65.3
GCm 70.5
B 54.6
GB

† 67.9
GB 73.8

(b)

Method Sup. mIoU

O→ V

SONet
B 51.5
GB 71.0

O + V

SONet
GB 75.9
GB

ign
76.9

(c)

Table 1: (a) Upper-bound analysis for different
pseudo-label types on the VOC12 train set. (b) Quan-
titative results on VOC12 val set for the baseline and
our approach. (c) SONet’s performance under domain
adaptation settings, trained on OpenV5 and then ei-
ther directly evaluated (O→ V) or fine-tuned (O + V)
on VOC12.

an objectness map with CAMs
or bounding boxes significantly im-
proves the quality of pseudo-labels
as it removes incorrectly labeled pix-
els from the CAM and bounding
box proposals. Next, we evaluate
the performance of our proposed
SONet (Table 1(b)) with CAMs,
box annotations, and the gener-
ated pseudo-labels. SONet trained
with box proposals achieves 54.6%
mIoU which outperforms the same
model trained using CAM proposals
(50.2%). When we use our generated
pseudo-labels during training, SONet achieves 70.5% mIoU (GCm) and 73.8% (GB ) on the
VOC12 val set. In the domain adaptation settings (see Table 1(c)), SONet trained only with
OpenV5 groundtruth boxes achieves 51.5% mIoU accuracy on the VOC12 val set. When
SONet is trained on OpenV5 with GB as supervision, it drastically improves the overall mIoU
to 71.0% (note that in this setting we only use OpenV5 images to train SONet). Additionally,
fine-tuning SONet on the VOC12 training set with GB supervision increases the mIoU to
76.9%. These experiments indicate that our pseudo-label generation technique achieves good
upper bound performance compared to the groundtruth.

3.2 Image Segmentation Results

Method Backbone Guidance mIoU
val test

Weakly-Supervised Approaches
Image-Level Supervision (CAM)
FlickleNet [43] Res-101 Saliency 64.9 65.3
OAA∗ [35] Res-101 Saliency 65.2 66.4
ME [18] Res101 Saliency 67.2 66.7
ICD [17] Res101 Saliency 67.8 68.0
SGAN∗ Res-101 Saliency 67.1 67.2

SONet-O∗ Res-101 Objectness 64.5 65.8
SONet∗ Res-101 Objectness 68.1 69.7
SONet Res-101 Objectness 70.5 71.5
Box-Level Supervision
SDI∗ [38] Res-101 BSDS 69.4 -
BCM∗ [58] Res-101 CRF 70.2 -
SONet∗ Res-101 Objectness 72.2 73.7
SONet Res-101 Objectness 74.8 76.0

Semi-Supervised Approaches
WSSL [53] VGG-16 1.4k GT 64.6 -
SDI [38] VGG-16 1.4k GT 65.8 66.9
FickleNet [43] VGG-16 1.4k GT 65.8 -
SONet VGG-16 - 66.1 67

Table 2: Quantitative comparison with weakly
and semi supervised methods on the PASCAL
VOC12 validation and test sets. SONet-O denotes
the method used non-overlapping objectness prior.
Methods marked by ∗ used DeepLabv2-Res101.

In this section, we compare our pro-
posed SONet method with previous
state-of-the-art WSSS and SSSS meth-
ods [17, 18, 35, 38, 43, 53, 58]. Ta-
ble 2 presents a comparison with recent
weakly and semi supervised methods us-
ing image and bounding box-level super-
vision. For fair comparison in WSSS
setting, we compare with other meth-
ods that use ResNet-101 as the backbone
and additional guidance (e.g., saliency
maps and optical flow) as supervision.
SONet∗ outperforms the current state-
of-the-art image-level + extra guidance
based methods by a reasonable margin,
achieving 68.1% mIoU on the VOC12
val set. Interestingly, SONet-O∗, which
is trained on the pseudo-labels generated
under the non-overlapping settings, also
achieves comparable performance with
the baseline WSSS methods. When com-
pared to methods that use bounding box-
level supervision with extra guidance,
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SONet GCm 84.4 37.6 83.7 63.9 51.6 88.4 84.7 68.3 30.8 81.4 57.9 68.0 79.6 83.6 74.2 58.5 84.6 53.4 81.5 57.1 69.7

SONet(O→V) GB 91.3 39.9 89.7 68.5 68.6 89.8 77.0 80.8 21.4 71.9 34.2 81.3 83.4 82.4 71.4 58.6 82.9 53.2 86.4 66.5 71.1
SONet GB 91.4 37.3 88.7 68.0 66.0 94.1 88.0 79.9 32.3 83.4 64.3 77.5 86.3 78.0 74.4 59.4 86.3 57.3 84.8 66.2 74.1
SONet(O+V) GB 90.7 40.0 90.2 69.7 72.7 94.1 87.4 79.2 32.7 86.7 62.6 80.1 88.5 81.3 74.2 62.6 91.9 58.5 89.2 69.5 76.0
SONet GBign 92.1 40.9 90.6 68.5 74.0 94.1 87.1 83.2 31.3 86.4 67.2 78.2 84.6 84.0 77.1 61.6 90.6 55.3 85.4 69.2 76.0
SONet (O+V) GBign 91.8 39.9 89.9 71.3 74.8 94.6 88.2 80.9 33.0 89.5 62.8 82.5 89.7 83.8 76.9 62.8 90.3 59.9 89.3 70.0 77.0

DeepLabV3 F 92.9 60.3 93.0 70.5 73.3 94.1 88.1 90.9 35.3 83.4 65.7 86.3 87.5 85.2 86.5 63.8 88.1 57.6 85.0 72.3 78.8

Table 3: Class-wise IoU on the VOC12 test set. (O→ V) refers to training on OpenV5 and
test on VOC. (O + V) denotes training on OpenV5 and fine-tuning on VOC12. F denotes full
supervision. Bolded values denote the results that surpass the fully supervised method.

SONet∗ also improves upon the state-of-the-art [38, 58] by 2.0%. Note that both BCM [58]
and SDI [38] take much longer to produce pseudo-labels than our approach due to their
iterative procedures and use complex training protocols. We do not include results for a recent
box based method, Box2Seg [40], as they use a higher capacity network architecture [65] for
segmentation learning without publicly available code. Our SONet method achieves 74.8%
mIoU on the VOC12 val set which is very close (2.4% lower) to the fully supervised trained
baseline [10] model (77.2%). In the SSSS setting, we use a similar backbone network as
existing methods to ensure a fair comparison. Note, existing SSSS methods use a portion of
the target semantic segmentation groundtruth while we solely use our generated pseudo-labels
to train the network. Surprisingly, SONet (VGG-16 backbone) marginally outperforms the
existing SSSS methods (66.1% vs. 65.8% mIoU). These results demonstrate that our pseudo-
label generation procedure is flexible and achieves substantial improvements or competitive
performance compared to existing methods in WSSS and SSSS. Table 3 presents a class-wise
IoU comparison of SONet with different training strategies as well as with the fully supervised
baseline DeepLabv3 model on the VOC12 test set. Notably, although the fully supervised
model achieves the highest mIoU, SONet (O+V) trained using GB

ign
outperforms the fully

supervised model on half of the categories, and is competitive in many others. In general,
when trained using bounding box-based pseudo-labels, SONet performs well on rectangular
shaped classes, e.g., bus, car, tv, cow, bottle, bus, and train. However, it is still difficult
for any training protocol combined with SONet to achieve comparable performance with
classes like bike, motorbike, cat, dog or person, where the objects have complex boundary
information or are occluded with other classes, e.g., person on a horse or bike. Furthermore,
using the ignore strategy (GB

ign
vs. GB ) improves the performance notably for both the normal

and domain adaptation settings. The quantitative results indicate that our SONet model can
achieve competitive performance with the fully supervised model, showing the effectiveness
of the proposed pseudo-label generation and the joint learning techniques.

Method Sup. mIoU

DLabv3 (Things) Full 81.5
SONet (Things) GB 76.6

Table 4: Quantitative results
on the Cityscapes [14] val set.

We further use Cityscapes [14] as our target dataset and
report results in Table 4. Cityscapes consists of eight things
classes and 11 stuff classes. Similar to the VOC12, we first
generate class agnostic objectness masks for the Cityscapes
train set and combine it with the bounding box annotations
to generate semantic pseudo-labels. Since our objectness
network is not trained for generating masks for stuff classes, we only consider the things
classes from Cityscapes during pseudo-label generation, training, and evaluation. Next, we
train DeepLabv3-ResNet50 [10] with full supervision as a baseline and SONet (DeepLabv3-
ResNet50 as backbone) using the generated pseudo-labels (GB). Table 4 shows that, our SONet
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Sup.
VOC12 O→ V

[11] SONet [11] SONet

B 52.1 54.6 50.5 51.5
GB 73.1 73.8 70.4 71.0

(a)

Sup. Val. Test

[38]ign=0.1 67.9 -
[38]ign=0.2 67.6 -

GB 73.8 74.1
GB

ign
74.8 76.0

(b) Image GT DeepLabv3 Mask SONet

Table 5: (a) Comparison between SONet and DeepLabv3 [11] on the VOC12 val set. (b)
Comparison of our ignore strategy with SDI [38]. (Right) Visualization of the effect on
segmentation results of the model trained with or w/o objectness branch.

performs well (76.6% mIoU) and obtains 94% relative to the baseline (similar to our results
on VOC12). This result further confirms the generalizability of our pseudo-label generation
technique despite the significant distribution gap between the target (Cityscapes [14]) and the
source (COCOStuff [6]) dataset.

3.3 Ablation Studies

Effectiveness of Objectness Branch. We first validate the effect of the objectness branch
by comparing the results of SONet trained in both multi- and single-task settings. We train
SONet with and without the objectness branch. Note that SONet without the objectness
branch is equivalent to DeepLabv3 [11]. The result of these comparisons are summarized in
Table 5 (a). It is clear that the models trained with the objectness branch achieve superior
performance compared to the models trained only for the task of semantic segmentation.
Interestingly, the objectness branch improves the boundary details to bring more smoothness
(see Fig. in Table 5 (top row)) as expected, as well as the semantic information (see the figure
in Table 5 (bottom row)). SONet’s multi-task objective not only provides it with the ability to
robustly predict both binary and semantic segmentation, but the objectness-based learning
naturally provides the segmentation network a significant performance boost.

Effectiveness of Ignoring Strategy. In Table 5(b), we compare our ignore strategy to the
strategy in SDI [38] when trained using SONet. We show that our ignoring strategy outper-
forms both SDI [38] and SONet trained without an ignore strategy.

Improving Semantic Proposals: Objectness or Saliency Guidance? It is common to
utilize pixel-level saliency information as additional guidance to be combined with the
CAM proposals [52, 63, 67, 69]. Specifically, DHSNet [48] and DSS [22] have been used
in [8, 23, 63] to generate a saliency mask for each training sample. This guidance of saliency
can deliver non-semantic pixel-level supervision for a better boundary segmentation. However,
the saliency information used in the previous studies only focus on the most salient object due
to the problem of centre bias [1, 5]. For instance, as shown in Fig. 3(a), the masks generated
by saliency models can only detect the objects near the centre of an image, the “ship” near the
corner will be incorrectly labelled as background (top row). Furthermore, the region of the
“train” can only be partially labelled because the back of the train is not salient. This problem
introduces outliers (incorrectly labelled regions) when training a segmentation model. In
contrast, our proposed objectness model learns to recognize objects in all image locations,
even if they are not salient or near the image boundary, see Fig. 3(a). Figure 3(b) further
illustrates that the objectness network is equally likely to make errors in all image locations,
while the saliency detection network is biased towards making erroneous predictions near
the image border. To validate this claim quantitatively, we conduct experiments (see Table in
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Image Ours BASNet [56] PicaNet [49]
(a)

Saliency [56] Objectness
(b)

* GCm GB

PicaNet 53.7 64.7
BASNet 58.5 64.0

Ours 70.6 76.6

(c)

Figure 3: (a) Visual comparison between our class agnostic objectness model and top
performing saliency detectors. (b) Saliency and objectness error distribution across the
predictions on VOC12 training set. (c) Pseudo-label quality comparison in terms of mIoU on
the VOC12 train set, between the objectness model and saliency methods.

Fig. 3(c)) by replacing the objectness mask with a saliency mask for creating semantic pseudo-
labels. We use two recent saliency detectors, PiCaNet [49] and BASNet [56] to generate
the saliency mask for VOC12 training images. Combining saliency masks with GCm and
GB achieves performance which is significantly lower than the quality of our pseudo-labels
generated using the objectness guidance.

4 Discussion and Conclusion
Existing saliency-based WSSS [17, 18, 25, 35, 43, 53, 69] and SSSS [43] methods utilize
both saliency detectors (trained on the DUT-S [61] or MSRA-B [34] datasets which have
pixel-level binary segmentation ground-truth for a large number of overlapping instances in
the VOC12 dataset) and a portion of semantic segmentation GT, respectively. Following this
line of work, we choose the objectness-based dataset to introduce a better proposal model
which addresses the severe center bias issue of saliency detectors (see Fig. 3 (a, b)) for WSSS
(e.g., saliency inherently ignores objects near the border). We compare with both WSSS
and SSSS techniques since we do not fall neatly within either category of supervision (i.e.,
comparing against methods which use only CAM is unfair but we also do not use any semantic
segmentation GT). Moreover, in contrast to the previous methods [2, 3, 38, 64], our framework
does not require multiple stages of label inference and training for pseudo-label generation,
but instead operates in a single stage. Additionally, the objectness branch improves the
performance of the segmentation network by propagating boundary and semantic information
back through the network. We believe the objectness branch helps with semantics because it
forces the model to treat objects more uniformly (since the objectness label is binary). This
can guide the segmentation model to treat nearby pixels as the same semantic object class and
promote more spatially uniform predictions, which is correct in many cases.

In summary, we have presented a pseudo-label generation and joint learning strategy for
the tasks of both WSSS and SSSS. We first introduced a novel technique to generate high
quality pseudo-labels that combines class agnostic objectness priors with either image-level
labels or bounding box annotations. Next, we proposed a model that jointly learns semantics
and objectness to guide the network to encode more accurate boundary information and
better semantic representations. We conducted an extensive set of experiments under different
settings and supervision strategies to validate the effectiveness of the proposed methods.
The ablation studies isolated the improvements due to the proposed objectness branch, and
validated the efficacy of our ignoring strategy. Furthermore, the pseudo-label generation
pipeline is simple, efficient, and can be used for large-scale data annotation.
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