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Abstract

Active learning aims to reduce the annotation cost by selecting those informative
samples to improve training efficiency and network accuracy. However, current active
learning methods for object detection have three drawbacks: a) the network architectures
of the detector during active learning are fixed without considering its saturation; (b)
the detector may fall short in giving credible prediction probabilities on unlabeled data;
(c) existing uncertainty measures may lead to homogenization of the samples. To over-
come these problems, we propose a novel active learning strategy with dynamic neural
architecture adaption for object detection. Specially, we incorporate a neural architecture
adaption module that modifies and expands the current detector structure for the varia-
tion of incoming data stream. We design several network morphism modifications to
enable an efficient adaption, which avoids the retraining of the detector after changing
the network architecture in each round. Furthermore, we introduce Dirichlet calibration
to correct the classifier for obtaining credible prediction, and present a clustering sam-
pling scheme to select diverse samples. Experimental results show that the proposed
method outperforms the previous state-of-the-art active learning methods with fixed ar-
chitectures, improving 1.9% mAP on BDD and 1.6% mAP on COCO.
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1 Introduction
Active learning [8, 12, 13] is a machine learning algorithm that assists the learning proce-
dure. It aims to improve data efficiency by judicious selection of samples for human labeling.
Especially for the complex detection annotation [14, 27], which needs to give category in-
formation and mark out bounding box, active learning can greatly reduce the labeling costs.
However, there is only few research related to active learning on detection.

Current active learning employs the previously-trained model to predict the uncertainty
of the unlabeled data. It selects the most difficult and informative samples that the model
has not well learned to maximize improvement performance while minimizing the labeling
budget. Despite the progress of active learning [16, 19, 20], there are still some drawbacks:
(i) current methods only equip with fixed detection architecture [26] without considering the
constantly changing of labeled data. With the iteration of active learning, more data will
be added to the labeled pool. It is unlikely that the fixed model can adapt to the incoming
data stream. Because if a large model is adopted, it is prone to overfit on the small dataset
in the early period of active learning, while choosing a small model with limited capacity
is unable to accommodate a large amount of data in the later period. (ii) the distribution
over unlabeled data may shift and eventually be very different from original training data
distribution, causing the detector to give inaccurate prediction probabilities. (iii) the existing
active learning methods only take uncertainty measurement as the basis of sample selection.
Still, when many images with high uncertainty are from similar scenes (e.g., dark night), this
selection method tends to cause sample homogenization, which is not conducive to model
training.

To overcome these problems, we propose dynamic and scalable active learning with neu-
ral architecture adaption for object detection. Our approach, termed as AL-NAS, deliberately
performs neural architecture adaption module at every active learning round, aiming to find
a suitable depth, resolution, and receptive fields for each stage of feature hierarchy. Inspired
by recent advances in neural architecture searching [7], we adopt the ‘swap-expand’ strategy
in the neural architecture adaption phase. The ‘swap’ operation allows exchanging the adja-
cent convolutional layers for finding a better downsampling location. The ‘expand’ operation
performs small increments of convolutional layers to enhance the backbone’s capacity. The
best modification among all nodes is selected as the initial model for the next round of active
learning. For efficient adaption, we also design several network morphism modifications [3]
to avoid re-pretraining the modified model at each round, where the weights of models can
be well-inherited before and after modification. This ‘swap-expand’ strategy works well and
keeps increasing the performance of active learning efficiently.

To calibrate the predictive probabilities from the classifier, we introduce Dirichlet cal-
ibration which considers the distribution of prediction vectors separately on the instances
of each class. Based on the equivalence between generative parametrisation and linear
parametrisation [11], Dirichlet calibration just learns a single corrective layer on log-transformed
class probabilities, followed by softmax as multinomial logistic regression. It increases the
confidence-reliability of predictive probabilities, which is benefit for estimating the uncer-
tainty on unlabeled data.

For sample selection diversity, we present an effective clustering scheme to store sam-
ples according to their distribution. The features for clustering can be restored during the
inference for unlabeled data, with no additional calculation. Meanwhile, to save the storage
space, we perform dimension reduction on these features, it also facilitates the subsequent
clustering to be more efficient. As such, the uncertainty samples can be selected proportion-
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Figure 1: The whole pipeline of our scalable active learning method with neural architecture
adaption. At each round of active learning, we first perform the neural architecture adaptation
module with ‘swap-expand’ strategy. Then the best model is proceeded through the Dirichlet
calibration module before predicting the uncertainty on unlabeled data. After that, we design
a clustering technique to distribute predicted samples into different buckets, and select the
samples with the most uncertainty proportionally to update the labeled data.

ally from different clusters, keeping the diversity.
Evaluative results on two widely used detection benchmarks, i.e., COCO [14] and BDD

[27], show that the proposed method achieves superior performance, significantly improves
known active learning algorithms. In particular, our method achieves an accuracy of 32.8%
with Resnet-18 as initial backbone architecture on the BDD dataset, even outperforms the
fixed Resnet-50 (32.2%) by 0.6%, and our final architecture has absolute advantages with
smaller memory, parameters and faster FPS. It is worth mentioning that the proposed method
is a flexible and general framework and can be integrated with other active learning strategies
to improve the performance consistently.

The main contributions of our paper can be summarized as below:

• We propose a scalable active learning approach with dynamic neural architecture adap-
tion for object detection, generating a more powerful model in each round.

• We present Dirichlet calibration to correct the prediction probabilities, providing the
high-quality uncertainty estimates on unlabeled data.

• We introduce an effective clustering scheme for selecting samples, making the chosen
examples informative without losing diversity.

2 The Proposed Method
We propose scalable active learning with dynamic neural architecture adaption framework
for object detection. The whole pipeline is shown in Figure 1. The core idea of our method
is to integrate a neural architecture adaption module in every active learning round, aiming
to adapt to the variation of the incoming data stream. Based on this purpose, we introduce
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Figure 2: Illustration of the ‘swap’ and ‘expand’ operations on Resnet-18 backbone, without
repeatedly pretraining from scratch.

a ’swap-expand’ searching strategy to find a suitable depth and resolution in each stage.
Meanwhile, we design a calibration layer to correct probabilities and present a clustering
sampling scheme to collect diverse samples.

2.1 Dynamic Neural Architecture Adaption
The backbone architecture [6, 10, 22, 24] served as a feature extractor, is critical for ob-
ject detection networks and active learning. Previous work in active learning has typically
adopted a fixed architecture throughout the iterative process, which leads to sub-optimal per-
formance in two main folds. Firstly, if a large backbone is selected, it is prone to overfit in
the early period which lacks enough data, and fails in selecting the most informative unla-
beled samples. Secondly, if a small backbone is selected, it may not have sufficient capacity
to fully exploit a large amount of labeled data as iteration selection proceeds.

Therefore, we propose a neural architecture adaption scheme for the active learning pro-
cess, which takes modifications and extensions into account, aims at extending the capacity
of the network architecture. We also introduce the network morphism to enable an efficient
adaption that avoids repeated training after changing the network architecture in each round.
Search Space: Our neural architecture adaption is designed to find a best updated model by
the most significant performance improvement for the input data stream. We use the classical
Resnet as the basic structure and adjust the depth, receptive fields, output channels of each
stage while maintaining the number of stages. Each stage contains several basic blocks (for
the Resnet-18) or bottleneck blocks(for the Resnet-50), and the resolution of the feature map
remains unchanged through each block. We downsample the feature map for each stage
except for the first one. Besides, to limit the complexity of the entire network, we allow a
different number of blocks in each stage and adjust the order of downsampling in each stage.

For simplicity, we encode our adaptive architecture like 11-21-121-21, where ‘-’ sepa-
rates each stage with a different resolution, ‘1’ indicates a regular block like the basic block
of Resnet-18, and ‘2’ means the number of base channel is doubled. According to this defi-
nition pattern, we encode Resnet-18 as 11-21-21-21, for an example.
‘Swap-Expand’ Strategy: We present a set of operations including ‘swap’ and ‘expand’
to the current model. The brilliance is that the pre-trained model can be reused by network
morphism [3], avoiding the repeated training during the adaptive progress. As illustrated
in Figure 2, the ‘swap’ operation interchanges the stride of the neighboring block while
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keeping the weight unchanged. For the ’expand’ operation, a new block is inserted into any
neighboring blocks, and the weight parameters are initialized as an identity matrix.

In summary, our neural architecture adaption method starts with a small base model
(e.g., Resnet-18 pre-trained on ImageNet dataset), generates several new models with the
proposed ‘swap-expand’ operations through the training of several epochs (i.e. 8). Then the
best performing model is selected as the base model for the next iteration of active learning
(i.e. pre-arch model). The cycle continues until the end condition for active learning reaches.

2.2 Dirichlet Calibration for Uncertainty
Uncertainty is a simple yet effective active learning method, it measures distances between
samples and the decision boundary based on the predicted probabilities. However, deep neu-
ral networks usually yield poor probability estimates for unlabeled data whose distribution
may shift from that of original data. To solve this problem, we present a Dirichlet calibration
method to offer high-quality predictive probabilities for uncertainty estimates.
Uncertainty: For detection task, the uncertainty methods of active learning need to consider
the uncertainty for each bounding box in an image. Given a predicted bounding box B, the
uncertainty [12] is defined as:

U1(B) = 1− p̂max(B) (1)

where p̂max(B) is the highest class probability for this box. The higher the value, the smaller
the probabilities of other categories, which means a relatively accurate predicted result with
low uncertainty.

Another way to use the probability uncertainty is to query the margin between the poste-
riors [8]:

U2(B) =−(p̂max1(B)− p̂max2(B)) (2)

where p̂max1 and p̂max2 represent the first and second maximal probabilities, respectively.
The minus sign in front is simply to ensure that U(B) acts a maximizer.

The entropy strategy [16] is an upgrade of the above two methods. It encodes the discrete
distribution of all probabilities of a predicted box and measures the variable:

U3(B) =−
c

∑
j=1

p̂ilog(p̂ j) (3)

where c is the number of classes, a higher value of the entropy indicates greater uncertainty
in the probability. The final uncertainty of the image I can be obtained by the average or
maximal the uncertainty of all detected boxes within.
Dirichlet Calibration: In order to better evaluate the uncertainty on unlabeled data, we
implement Dirichlet calibration for the probability p̂. Define the canonical calibration map
[25] as:

µ(q) = (P(Y = 1 | p̂(B) = q), ...,P(Y = k | p̂(B) = q)) (4)

where p̂(B) is the predicted probability of all classes for the bounding box B. These k
distributions are Dirichlet distributions with different parameters:

Y ∼ Categorical(π)

p̂(B) | Y = j ∼ Dir(α( j)) for j ∈ {1, ...,k}
(5)
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where π ∈∆k is the parameter of the categorical prior distribution and α( j)=(α
( j)
1 , ...,α

( j)
k )∈

(0,∞)k are the Dirichlet parameters for class j. Then, we use Bayes’ rule to express the cal-
ibration function as:

P(Y = j | p̂(B) = q) ∝ P(p̂(B) = q | Y = j)P(Y = j)

= f (q;α
( j))π j

(6)

where f is the probability density function of Dirichlet distribution. Let z=∑
k
j=1 π j f (q;α( j))

be the normaliser, we can obtain:

µ̂DirGen(q;α,π) = ( f (q;α
(1))π1, ..., f (q;α

(k))πk)/z (7)

as [11] shows that µ̂DirGen(q;α,π) is equivalent to:

µ̂DirLin(q;W,b) = σ(W lnq+b) (8)

where W ∈Rk×k is a k×k parameter matrix, ln is a vector function that calculates the natural
logarithm component-wise and b ∈Rk is a parameter vector of length k. In practice, we only
have to learn W and b by the loss function:

L =
1
n

n

∑
i=1

ln[µ̂DirLin(p̂(xi);W,b)]yi +λ ||W ||22 (9)

where (xi,yi)i∈{1,...,n} are validation datapoints, and the bias b is non-regularized in order to
reduce variance [5].

In training stage, we learn a Dirichlet calibration layer by Eq.(9) after the classification
layer, as shown in Figure 1. For training these calibration parameters, we randomly adopt 1K
data from the selected unlabeled samples of the previous round, and hold the other network
parameters fixed. In prediction stage, the calibration layer calibrates the predicted prob-
abilities for each bounding box, and then the calibrated probabilities are used to estimate
uncertainty by the uncertainty methods.

2.3 Clustering to Buckets
Diversity is an effective way to avoid sampling homogenization, but it is neglected in recent
state-of-the-art active learning methods [1, 4, 9, 26]. Especially when the samples come
from continuous scenarios, the over-sampling of similar consecutive frames not only wastes
extensive manual annotation resources but also easily causes the overfitting of the model.

To overcome this challenge, we introduce a clustering method to guarantee the diversity
of sampling. More specifically, we perform dimension reduction on the features of unlabeled
data and then divide all unlabeled data into different buckets based on their clustering dis-
tribution. The samples can be selected proportionally within each bucket. Detailed steps of
our proposed approach are as follows.
Clustering Feature: As illustrated in Figure 1, during the inference process of unlabeled
data, we preserve the intermediate features which are the output of the last convolutional
layers of the last stage, these features are most informative for clustering. As this step needs
no deliberate feature extraction, the process is very effective.
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Dimension Reduction: Before saving these features directly, it is essential to downscale
them. Because their volume would be around 24 times greater than the original input image,
which increases a gross IO and storage overhead. Such large features also present challenges
for understanding and exploring the relationships. An intuitive solution is downsampling
with a 1*1 convolutional layer or simply adding max or mean pooling layer. However, there
are no direct and reasonable labels to train that convolutional layer and learn reasonable pa-
rameters, while the pooling layer with a very large stride could lose a majority of significant
information. Instead, the classical machine learning methods such as Principal Component
Analysis (PCA) [21] or t-Distributed Stochastic Neighbor Embedding (t-SNE) [17] can be
adopted to perform on these features.
Clustering to Buckets: After obtaining the dimension-reduced features of all unlabeled
data, we aggregate them to K clusters with K-Means++ [23]. As shown in Eq.(10), we first
randomly select K objects as the initial clustering centers C, and then calculate the distance
E between each object and each center:

E =
K

∑
i=1

∑
x∈Ci

‖x−ui‖2 (10)

where µi =
1
|ci| ∑x∈Ci x is the mean vector of Ci.

This method takes advantage of the clustering results that spread different samples into
different buckets, maintaining the diversity of sample selection.

3 Experiments
In this section, we perform extensive experiments on two widely used detection benchmarks:
COCO [14] and BDD [27]. We first provide an ablation study for a better understanding of
our method and then compare it with other state-of-the-art active learning algorithms.

3.1 Datasets and Evaluation Protocol
We use the COCO dataset [14] to evaluate universal object detection and Berkeley Deep
Drive (BDD) dataset [27] to evaluate domain-specific object detection. COCO dataset con-
tains 80 classes with 118K images for training, 5K images for validation. BDD is a large-
scale autonomous driving dataset. It contains 10 classes with 70K images sampled from
100K video clips. Since the training images of the ‘train’ category are too few, we ignore
this category and only report results of the other 9 categories. For COCO and BDD datasets,
we follow the standard evaluation metrics from COCO style, and calculate mean Average
Precision (mAP) across IoU thresholds from 0.5 to 0.95 with an interval of 0.05.

3.2 Implementation Details
We employ representative Faster RCNN [18] with FPN [15] to implement our method, with
mmdetection toolbox [2]. The Resnet-18 pre-trained on ImageNet [10] are used for back-
bone architectures of the detectors. We adopt 8 NVIDIA Tesla V100 GPUS cards only for
parallel acceleration, with a batch size of 16 and 2 images per GPU. During each round of
active learning training, we optimize the objective function by the Stochastic Gradient De-
scend(SGD) method for 8 epochs. The learning rate is set to 0.02 and it is reduced with a
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Methods Data
Random ENT[16] Clu Cal NAS 14K 28K 42K 56K 70K√

23.8 27.0 28.8 29.9 30.8√
23.8 27.7 29.7 30.3 30.9√ √
23.8 27.9 29.8 30.6 31.0√ √ √
23.8 28.0 30.1 30.9 31.2√ √ √ √
23.8 28.6 30.8 31.8 32.8

Table 1: Ablation study of different components for active learning on BDD dataset (mAP).
‘Clu’ denotes Clustering, ‘Cal’ denotes Calibration, ‘NAS’ is the proposed neural architec-
ture adaption. Resnet-18 is employed as backbone.

cosine learning rate schedule until 0.0001 in the last iteration. In all experiments, we ran-
domly select 20K images from COCO training set as initial labeled data, and the remaining
100K images as unlabeled data. At every round of active learning, another 20K images are
selected from unlabeled data for labeling and then sent to the labeled pool. Similarly, the
BDD training set is divided into 14K and 56K as labeled data and unlabeled data, respec-
tively, and 14K images are selected from unlabeled data for labeling in each round. The
resolutions for COCO and BDD are set as (1333, 800) and (1280, 720), respectively, follow-
ing the traditional implementation of each dataset. The clustering number K in Eq.(10) is set
to 6 for BDD, 60 for COCO. The NAS strategy searches for 8 models at each round of active
learning.

3.3 Ablation Study
We evaluate each module of our active learning method to demonstrate its effectiveness. As
shown in Table 1, the performance of the random method continues to improve as the la-
beled data increases, while ENT[16] has a more obvious advantage, especially at the rounds
of 28K and 42K. This implies that using a proper small model on a small dataset can better
reflect the effect of active learning. Our ‘Clu’ and ‘Cal’ schemes further improve the per-
formance in every round, demonstrating that sample diversity and probability calibration are
conducive to learning a generalized and robust model. There are two points worth noting:
(1) Although all approaches adopt the same complete 70K data in the final round, active
learning can still improve the model. This can be interpreted as a better pre-trained model
from the previous round that can bring better initial weights for the training of the current
round. (2) The growth trend brought by active learning seems to decrease with the increase
of data. It is mainly due to that the fixed model architecture is unable to adapt to the incoming
data flow, so it is particularly necessary to equip incremental data with a neural architecture
adaption module, and our approach emerges. The proposed NAS module consistently and
significantly improves the performance by a large margin, from 0.6% to 1.6%, compared
with ‘ENT + Clu + Cal’. It can find a more powerful model architecture in each round of
active learning, including depth, resolution, and receptive fields.

3.4 Comparison with State-of-the-Art
Comparison on BDD Dataset: Figure 3 shows the performance curves of our method and
other state-of-the-art methods on BDD dataset. The state-of-the-art methods have approx-
imate performance that are superior to those of random selection, especially in the second
and third rounds. However, the advantage is less obvious in the final round. Compared
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Figure 3: The detection performance
(mAP) of our method and other state-of-
the-art methods on BDD dataset.
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Figure 4: The detection performance
(mAP) our method and other state-of-the-
art methods on COCO dataset.

Data Ours Pre_Arch Arch Memory (MB) Params (M) FPS mAP

14K
Resnet-18 Fixed 2176 28.68 20.5 23.8
Resnet-50 Fixed 4338 43.98 13.4 26.4

28K
√

Resnet-18 11-211-21-21 2353 29.05 20 28.6
Resnet-50 Fixed 4338 43.98 13.4 30.1

42K
√

11-211-21-21 112-112-12-1 2700 29.43 17.4 30.8
Resnet-50 Fixed 4338 43.98 13.4 31.4

56K
√

112-112-12-1 11211-1121-12-1 3309 31.21 14.7 31.8
Resnet-50 Fixed 4338 43.98 13.4 31.9

70K
√

11211-1121-12-1 11211-1121-121-1 3440−898 35.93−8.05 14.0+0.6 32.8+0.6

Resnet-50 Fixed 4338 43.98 13.4 32.2

Table 2: The detailed neural architectures at each round on BDD dataset. ‘Pre_arch’ denotes
that the backbone architecture of previous round is served as the initial architecture in the
current round. ‘Arch’ denotes the new backbone architecture obtained by our method.

with these active learning approaches with fixed architectures, the proposed scalable active
learning with neural architecture adaption method (AL-NAS) consistently produces superior
results in each round. It is most striking that our method still drives the improvement by
a large margin in the final round (i.e., 32.8%), breaking the bottleneck that active learning
methods have little effect on the full data. What’s more, we note that Random-NAS also
performs better than other state-of-the-art methods, demonstrating that our NAS module is
very versatile to be integrated into other approaches.
Comparison on COCO Dataset: To further illustrate the effectiveness of our method, we
also provide the results on COCO dataset in Figure 4. Without any bells and whistles,
our AL-NAS achieves the best results. Equipped with neural architecture adaption module,
Random-NAS is able to adjust the model as the amount of training data changes, so it ranks
second. LLAL[26] jointly trains the target and prediction modules, the gradient backprop-
agation affects the original network, resulting in a lower performance in the initial round.
Other methods are superior to random selection. However, with continuous iterations, the
models of these methods tend to be saturated and cannot further improve random selection.
Comparison with Larger Model: In addition, it is interesting to inspect the final model
that has been selected by the neural architecture adaption module. As shown in Table 2, we
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Methods
Data

14K 28K 42K 56K 70K
AL-NAS (K = 4) 23.8 28.5 30.6 31.7 32.6
AL-NAS (K = 6) 23.8 28.6 30.8 31.8 32.8
AL-NAS (K = 10) 23.8 28.6 30.7 31.9 32.7

Table 3: Parameter analysis of clustering number on BDD dataset (mAP) to explore the
relationship between sample diversity and uncertainty.

embed ENT[16] into a fixed model with Resnet-50 as the backbone and our adaptive model
with Resnet-18 as the starting backbone, respectively. In the initial active learning round,
it is evident that there is a big mAP gap (2.6%) between Resnet-18 and Resnet-50. Later
on, the gap is getting smaller deriving from the continuous improvement of our approach to
Resnet-18. In the fourth round, the performance of our architecture (31.8%) is comparable to
that (31.9%) of Resnet-50. It is worth noting that our final architecture (32.8%) significantly
outperforms Resnet-50 (32.2%) in the fifth round, while our method only adds a few layers to
original Resnet-18, eventually increasing to 28 layers, far less than Resnet-50. Meanwhile,
our model has a huge advantage over Resnet-50 in terms of Memory, Params, and FPS.

3.5 Parameter Analysis

We adjust the clustering number K on our method to explore the relationship between sample
diversity and uncertainty. When K is 1, it is equivalent to no clustering. As K increases, the
sample distribution becomes tighter and the aggregation degree of each cluster gradually
grows. However, a very large K might be not necessarily a better option for active learning.
As shown in Table 3. a larger K can only guarantee the diversity of the samples, while
may lose the uncertainty. For example, various samples with low uncertainty are clustered
into the same bucket, but these low-informative samples will be selected proportionally at
every active learning round, which reduces the constraint of selecting samples based on
uncertainty. In conclusion, the cluster number K moderates the trade-off between uncertainty
and diversity.

4 Conclusion

In this paper, we propose a novel active learning pipeline with neural architecture adaption
for object detection. The adaption module consistently modifies and expands the current
architecture to offer a more powerful detector for the real-time data instream. The morphism
design allows the detector to inherit previous weights well during each round, making the
training more efficient. The Dirichlet calibration provides more accurate prediction proba-
bilities, and the clustering scheme shows effective performance improvement from sample
diversity. Extensive experimental results on multiple detection benchmarks show that the
proposed method achieves state-of-the-art performance. It is worth mentioning that our
framework is highly versatile and can be integrated with other active learning methods to
advance them.
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