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Abstract

The success of CNNs (Convolutional Neural Networks) is mainly attributed to the
(translation) invariance and local pattern matching effect of convolution kernels. Ac-
cordingly, generalizing discrete convolution operation with such two properties (invari-
ance and local pattern matching) to point cloud domain is enlightening for point cloud
learning. Inspired by this, we propose an adaptive GMM (Gaussian Mixture Model)
convolution (AGMMConv) operation for point cloud learning. Considering the irregu-
larity of point clouds, we propose to represent the kernel points with a GMM, where
the mean vectors denote coordinates of kernel points and the covariance matrices deter-
mine the shape of each kernel point. Meanwhile, the GMM is a distribution represen-
tation of the local geometric surface learned from the local observation, which makes
the kernel adaptive to local geometric structures. The proposed convolution is intrin-
sically invariant to permutation and translation. Besides, potential rotation invariance
can be induced from the probability representation, which is an important prior for 3D
objects recognition. In convolution, a series of shared weights are associated with each
GMM kernel point to match local patterns of point clouds, which allows us to learn
rich features with various learnable templates by analogy to the classical image con-
volution. Experiments on various datasets including object-level and scene-level tasks
demonstrate the effectiveness and robustness of the proposed method. Code is available
at https://github.com/yangfei1223/AGMMConv.

1 Introduction
With the rapid development of modern sensors such as LiDAR (Light Detection and Rang-
ing), 3D point clouds have been widely applied in autonomous driving cars, robotics, as well
as some smart devices. Because of the unordered, sparse, and discrete properties of point
clouds, traditional network architectures applied for grid structure data cannot be generalized
to point cloud domain directly. Therefore, the learning of point cloud data has become urgent
necessary in computer vision. In view of the success of CNNs, some previous methods first
convert the point cloud to a regular representation (e.g. image and voxel representation) to
cater to CNN architectures. However, the structure information will be inevitably lost during
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Figure 1: (a) Fixed kernel representation is sensitive to local geometric. (b) GMM kernel
representation is adaptive to local geometric thus invariant to rotation.

such conversions. In the literature, there has been a number of works concentrate on devising
deep networks for point cloud data. Since Qi et al. first propose PointNet[16] in 2017 to di-
rectly process the points without data conversions, many point-based methods have emerged
out. Thus far, point-based methods have become the mainstream in the community.

Some researchers have tried constructing MLP-based[16, 17], graph-based[20, 29], and
attention-based[4, 27] networks for point cloud learning. These methods aggregate local
point features with a permutation invariant function. However, the representation ability of
the network is largely limited by such simple operators in comparison with image convo-
lutions. Other studies[5, 25, 30] have also attempted to define the convolution operators
in point cloud domain. [5] and [30] define continuous convolutions for point cloud from
the perspective of Monte Carlo, in which the convolution kernels are parameterized with
a continuous function of the distance between the center point and neighbor points. The
kernel weights are computed in an attentive way, which still lacks the ability of local pat-
tern matching as image convolutions. The success of CNNs is largely attributed to the local
pattern matching mechanism of discrete convolution kernels, which allows the CNN to ex-
tract rich features with various learnable kernel templates. Inspired by image convolutions,
KPConv[25] defines the convolution kernels as series of fixed kernel points associated with
shared kernel weights to match local patterns of a point cloud. However, the fixed kernels
are sensitive to local geometric structures. To address this problem, a deformable version
is further extended. Even though, the deformable kernel points are still unpredictable and
cannot ensure invariant to rotation which is critically important for 3D objects recognition.

Compared with these methods mentioned above, our work is more related to the KP-
Conv. In this paper, we stand with KPConv and propose AGMMConv, an adaptive discrete
convolution in point cloud domain. Instead of defining a series of fixed kernel points intu-
itively, we propose to represent the kernel points with an adaptive GMM. The mean vectors
and covariance matrices of the GMM determine the location and shape of each kernel point.
There is an assumption that a point cloud is sampled from a continuous 3D surface. The
GMM is therefore a probability distribution of the local geometric surface, which can be
learned from local observations (i.e. sampled points). Hence, our GMM representation is
adaptive to local geometric structures, which makes the kernels more flexible and robust.
As illustrated in Figure 1, when the input cloud rotated, fixed kernel representation causes
inconsistent output (see Figure 1 (a)), while our GMM kernel representation can be adaptive
to rotation, thus resulting in consistent output (see Figure 1 (b)). Once the kernel points are
determined, the point features will be softly associated with each kernel point according to
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their probability in each Gaussian component. Then a discrete convolution will be conducted
on the kernel points with shared kernel weights to extract local patterns of the point cloud.
Moreover, the mixture coefficients of the GMM can be viewed as an attention to the kernel
points, by which valid kernel points can also be selected adaptively.

The contributions of this paper can be concluded as: 1) We propose the AGMMConv
for discrete convolution in point cloud domain, in which the discrete kernel points are rep-
resented with an adaptive GMM therefore being adaptive to local geometric structures. 2)
The AGMMConv is demonstrated intrinsically invariant to permutation and translation. Be-
sides, potential rotation invariance can be induced from the probability representation, which
makes it robust to rigid transformation. 3) Based on the AGMMConv, an encoder and an
encoder-decoder networks are devised for object-level and scene-level point cloud learning
tasks, respectively. Various experiments demonstrate the effectiveness and scalability of the
proposed method.

2 Related Work
Deep learning methods for point clouds have been widely explored in the literature. For
the irregularity of point cloud data, researchers have attempted to transform a point cloud
to a structured representation then learn it with classical CNN architectures, in view of their
success in processing grid-like data, such as images and natural languages. For example,
Su et al. [21] use efficient multiview representation for 3D objects. Maturana et al. [14]
propose a volumetric occupancy grid representation for discrete point clouds. SPLATNet[22]
represents the point cloud data as a sparse set of samples in a high-dimensional lattice space.
However, the structure information of the point cloud will be inevitably lost during such
conversions.

To overcome the limitations of structured representation methods, Qi et al. [16, 17] pro-
pose to directly process the points with MLP-based network architectures for the first time.
Since Qi et al. pioneered this field, a number of point-based methods emerge out in the com-
munity. RandLA-Net[6] implements efficient large-scale point cloud learning by employing
random sampling to reduce the cloud resolution and introducing a novel local feature ag-
gregation module to preserve geometric details. Qiu et al. [18] augment the local context
by fully utilizing both geometric and semantic features in a bilateral structure. With the
advent of graph neural networks (GNNs) in recent years, graph-based methods are also ex-
tended to process point clouds. Wang et al. [29] propose EdgeConv in which the graph is
dynamically computed in each layer of the network for high-level point cloud tasks. Con-
sidering the success of the Transformer[26] in language processing and computer vision,
transformer/attention-based methods have also been applied in point cloud learning. The
PCT (Point cloud Transformer)[4] proposed by Gao et al. achieves state-of-the-art perfor-
mance on object-level point cloud tasks.

Some previous methods also attempt to define convolution operators in point cloud
domain. [5] and [30] define continuous convolutions for point clouds from the view of
Monte Carlo. However, these methods compute the convolution weights in an attentive way.
FPConv[12] performs a local flattening by learning a weight map to project surrounding
points onto a 2D grid, on which regular 2D convolutions can thus be applied. PAConv[31]
constructs the convolution kernel by dynamically assembling basic weight matrices, where
the coefficients are self-adaptively learned from point positions. Thomas et al. [25] propose
the kernel point convolution (KPConv) by borrowing concepts from image convolutions,
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where the kernel points are defined as the vertexes of a regular polygon. However, fixed
kernel representation makes the convolution sensitive to local geometric structures. Inspired
by [3], the authors further extend a deformable version dubbed deformable KPConv. Al-
though the deformable KPConv can induce flexible kernel points, the locations of the kernel
points are still unpredictable in this way. Nevertheless, KPConv has shown its ability in
point cloud learning, which enlightens researchers on devising discrete convolutions in point
cloud domain.

3 Methodology

3.1 Discrete Convolution on Point Cloud
The success of CNNs is mainly attributed to the employment of discrete convolution fil-
ters. On the one hand, the spatial locality of these convolution filters introduces translation
invariance to the network. The intrinsic invariance of the network can reduce the scale of
the hypothesis space of the model, thus facilitating the learning process. In addition, better
generalization performance can be achieved by introducing some known priors of invariance.
On the other hand, the discrete convolution filter sliding on the image grid can be regarded as
a template to match local patterns of the image, which allows the network to extract rich fea-
tures with various learnable filters. Analogous to image convolution, one can define spatially
localized discrete convolution in point cloud domain as:

f ?g(x) = ∑
xi∈N (x)

〈 f (xi),g(xi−x)〉, (1)

where x ∈ R3 denotes the coordinate of a point in 3D Euclidean space. f (x) : R3 → Rd

represents the feature of each point. N (x) is the set of local neighbors of x in the point cloud.
The key point of Eq. (1) is the form of the convolution kernel function g. An alternative
choice is to define g as a continuous function with respect to the local coordinate x̃i = xi−x,
which results in continuous convolution methods. For example, g := MLP(x̃i) is adopted
in [5, 30]. A discrete version can be obtained by defining a series of discrete kernel points
{yk ∈R3|k≤ K} with the associated learnable kernel weights {wk ∈Rd |k≤ K}, where K is
the number of kernel points. Subsequently, the convolution kernel g can be defined as:

g(x̃i) =
K

∑
k=1

h(yk, x̃i)wk, (2)

where h is a correlation function that associates each kernel point with corresponding point
features f (xi). Knowing this, Eq.(1) can be rewritten as:

f ?g(x) = ∑
xi∈N (x)

〈 f (xi),
K

∑
k=1

h(yk, x̃i)wk〉=
K

∑
k=1
〈wk, ∑

xi∈N (x)
h(yk, x̃i) f (xi)〉. (3)

3.2 Mixture Density Network for Kernel Representation
The key to discrete convolutions for point cloud is the representation of kernel points. A fixed
kernel representation impedes its generality to different geometric structures. Exploring a
flexible and universal kernel representation is necessary for point cloud learning with discrete
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convolutions. To address this problem, we propose to represent the discrete kernel points
with a GMM. In our representation, the locations of the kernel points can be represented
with the mean vectors of the GMM. And the covariance matrices determine the shape of
each kernel point, which controls the influence range of each kernel point. To be specific,
we use an anisotropic Gaussian to represent each kernel point. In this case, the kernel points
can be defined as {yk = (µk,Σk)|k ≤ K}, where µk ∈ R3, Σk ∈ R3×3 are the coordinate and
shape of each kernel point, respectively. Because we have the fact that a point cloud can be
viewed as a discrete sampling on a continuous 3D surface, the GMM is also a probability
distribution of the local geometric surface, which can be estimated from the observations
of a local geometric surface. The mixture distribution of a local geometric surface can be
denoted as a mixture model:

p(x̃|Θ) =
K

∑
k=1

πkNk(x̃; µk,Σk) s.t.
K

∑
k=1

πk = 1, (4)

where Θ = {πk,µk,Σk|k ≤ K} is the parameter set and πk is the mixture coefficient of each
Gaussian component. Nk is a 3D anisotropic normal distribution:

Nk(x̃; µk,Σk) =
1

(
√

2π)3(σ
(1)
k σ

(2)
k σ

(3)
k )

exp
(
− 1

2
(x̃−µk)

>
Σ
−1
k (x̃−µk)

)
, (5)

where we let Σk = diag
(
(σ

(1)
k )2,(σ

(2)
k )2,(σ

(3)
k )2

)
to reduce complexity.

The commonly used method to estimate Θ is the EM (Expectation Maximization) algo-
rithm, which alternately solves the latent variables and the parameters in an iterative process.
However, the EM estimation in the network may cause unstable training, which will be fur-
ther discussed in detail in the supplementary material. Instead, we propose to use a mixture
density network to estimate the GMM in this paper. So that the parameters of the GMM can
be easily optimized by the gradient descent algorithm in the back propagation of the network.
Specifically, we employ a mini PointNet-like network, denoted as fGMM, as the mixture den-
sity network. For a local neighbor set N (x), fGMM is a set function fGMM :N (x)→ Θ that
consists of two point-wise MLPs, an aggregation function A, and a softmax layer:

fGMM({x̃i|xi ∈N (x)}) :=


F = {fi = MLPl(x̃i;ωl)|xi ∈N (x)}
fg =A(F = {fi|xi ∈N (x)})
{π̂k,µk,Σk|k ≤ K}= MLPg(fg;ωg)

{πk|k ≤ K}= Softmax({π̂k|k ≤ K})

, (6)

where ωl and ωg are the parameters of the MLPs. The mixture coefficient πk is restricted to
∑

K
k=1 πk = 1, which can be implemented with a softmax layer in the network. By the way,

we correct the variance σ
(i)
k =

√
(σ

(i)
k )2 + ε to ensure positive-define.

The mixture density network can be optimized by minimizing the negative log likelihood
of the observations N (x). The likelihood loss for each point is computed as:

Llikelihood(ωl,ωg) =− ∑
xi∈N (x)

ln
{ K

∑
k=1

πk(ωl,ωg)Nk
(
x̃i; µk(ωl,ωg),Σk(ωl,ωg)

)}
. (7)

In training, the likelihood loss is regarded as a regularizer to the network. Consequently,
the total loss can be denoted as the linear combination of the task loss and the averaged
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likelihood loss:

Ltotal = Ltask +λ
1
L

L

∑
l=1

1
Nl

Nl

∑
n=1
L(n)likelihood, (8)

where λ is a weight factor, L is the number of AGMMConv layers in the network, and
Nl denotes the number of points in the lth layer. The likelihood loss ensures a probability
distribution representation for the local geometric surface. The learned kernel points can
thus be adaptive to local geometric structures.

3.3 Adaptive GMM Convolution
With the learned GMM representation for the discrete kernel points, we can define the dis-
crete convolution based on the GMM kernel points, which we dubbed AGMMConv (Adaptive
GMM Convolution). The AGMMConv can be described as following three steps according
to Eq. (3). Figure 2 shows the pipeline of the proposed AGMMConv overall.

Figure 2: The diagrammatic sketch of the proposed AGMMConv.

(1) Feature Association. The point features in N (x) are first associated with each kernel
point for the subsequent convolution via the correlation function h. In this paper, we intu-
itively define the correlation function h as the unnormalized density in each Gaussian:

h(yk, x̃i) = h(µk,Σk, x̃i) = exp
(
− 1

2
(x̃i−µk)

>
Σ
−1
k (x̃i−µk)

)
. (9)

On the one hand, the Mahalanobis distance in h is more robust to noises and outliers. On the
other hand, h can be obtained from the off-the-shelf mixture density network, which saves
lots of additional computations. The point feature f (xi) is then associated with each kernel
point yk with the correlation function h to generate the kernel feature:

f (yk) = ∑
xi∈N (x)

h(yk, x̃i) f (xi). (10)

The feature association can be viewed as an interpolation process, where the interpolation
weights are computed by the unnormalized density of the point in each Gaussian compo-
nent of the GMM. The Mahalanobis distance in h encodes both the length/scale and an-
gle/orientation information of neighbor points, thus can effectively capture the local geo-
metric structure. To emphasize this information in convolution, we concatenate each point
feature with an additional "1" (ones feature) before interpolation: f (xi) = f (xi)⊕1, where⊕
is a concatenating operation. Accordingly, each kernel point can collect the local geometric
information of neighbor points with the help of the "ones feature" during interpolation.
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(2) Pattern Matching. The pattern matching step is the same as the standard convolution
operator in regular domain. The kernel features { f (yk) ∈ Rd |k ≤ K} are transformed by a
series of shared kernel weights {wk ∈ Rd |k ≤ K}. It can be understood as a kind of tem-
plate to match the local patterns of the signal. This process can be denoted as a weighted
summation operation:

f ′(x) =
K

∑
k=1
〈wk, f (yk)〉. (11)

A vector version of f ′(x) can be obtained by multiple kernel weights (templates).
(3) Kernel Attention. An alternative strategy is to aggregate the kernel features solely with
the mixture coefficients {πk|k≤K} without using the kernel weights: f ′(x) = ∑

K
k=1 πk f (yk).

However, this simple aggregation strategy will limit the representation ability of the convo-
lution, which will be further discussed in the experiments. Interestingly, we propose that the
mixture coefficients can be used to re-weight the kernel points in an attentive way. Conse-
quently, our discrete convolution can be rewritten as:

f ′(x) =
K

∑
k=1

πk〈wk, f (yk)〉, (12)

where πk can be viewed as an attention to each kernel point. It is feasible to learn the number
of kernel points in convolution in this way. By setting a maximum number of kernel points,
the attention mechanism allows the convolution to attend to some important kernel points
while ignoring the others, which makes our AGMMConv more flexible and scalable.

3.4 Analysis
The AGMMConv consists of two parts, that is, the mixture density network and the discrete
convolution. For the one, the mixture density network is obviously permutation invariant.
For the other, the convolution operator only depends on the distance between the neighbor
points and kernel points, so it is permutation invariant, too. The composition of the two parts
remains permutation invariant. Besides, because of the spatial locality of the AGMMConv, it
is intrinsically invariant to translation as image convolution. Denote R ∈ R3×3 as a rotation
matrix in 3D Euclidean space. When a point cloud P = {xi|i≤ N} is rotated by R, we have
the rotated cloud P ′ = {x′i = Rxi|i ≤ N}. We start from a special case when K = 1. Let
N (x; µ,Σ) and N (x′; µ ′,Σ′) be the distribution of P and P ′, respectively. Since P ′ = RP ,
we have a conclusion that µ ′=Rµ and Σ′=RΣR>. The derivation is omitted here for layout
reasons, please refer to the supplementary material for details. Knowing this, it is easy to
find thatN (x′; µ ′,Σ′)=N (x; µ,Σ). Therefore, the correlation function h defined in Eq. (9) is
rotation invariant, which induces rotation invariant convolution. Consider the GMM version
when K > 1. There is no closed-form solution for a GMM because of the existence of
the latent variables. Since the solution of a single Gaussian is rotation equivariant, it is
easy to verify that the solution of a GMM is also rotation equivariant. Specifically, let Θ =
{πk,µk,Σk|k ≤ K} be a solution of the GMM p(x) before rotation. The solution of the
GMM p(Rx), after rotating by R, becomes Θ′ = {πk,Rµk,RΣkR>|k ≤ K}. In other words,
we can get the GMM of a point cloud after a rotation by rotating each Gaussian component
respectively. Meanwhile, the mixture coefficients {πk|k ≤ K} remain the same. In practice,
the likelihood function of the GMM may be multimodal, thus we cannot guarantee that it
will converge to the global minimum in optimizing. Nevertheless, we can say it is potentially
invariant to rotation at least, which will be further validated in the experiments.
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In this paper, we stand with KPConv and define a novel discrete convolution for point
cloud learning. Though both KPConv and our AGMMConv belong to discrete convolution,
they are essentially different in model construction. First and foremost, we learn the kernel
points with a GMM, which makes them adaptive to local geometric and robust to rigid trans-
formation. Second, KPConv simply associates the point features with linear interpolation.
Instead, we model the correlation function with a Gaussian function, which can well capture
the local geometric structure. Moreover, in network building, KPConv requires employing
grid samplings to determine some hyperparameters, while our adaptive kernel representation
is flexible and can avoid such limitations.

4 Experiments

4.1 Experimental Settings
The proposed method is evaluated on three public datasets, that is, ModelNet for object-level
tasks, S3DIS and Semantic3D for scene-level tasks. We devise an encoder and an encoder-
decoder architectures for classification and segmentation tasks, respectively. The encoder is
stacked with five convolution blocks, each of which consists of two successive AGMMConv
layers. The decoder contains five corresponding transposed AGMMConv layers to decoding
the point features. The number of kernels in each AGMMConv is set to K = 8 as default.
The weight factor of the likelihood loss is set to λ = 1e− 4. Codes are implemented with
PyTorch[15] and experiments are conducted on a single Titan RTX GPU (24GB). More
implementation details can be found in the supplementary material.

4.2 Evaluation
4.2.1 Object-Level Tasks

Classification. We evaluate the classification performance of the proposed method on the
ModelNet dataset. To reduce the complexity, we uniformly sample 1K points from each
object mesh to feed the network in both training and test. The FPS (farthest point sampling)
method is employed to reduce the cloud resolution with a sampling ratio of 0.5 after each
convolution block. The experiment results on the 10-class and 40-class subsets are shown in
Table 1 in terms of OA (Overall Accuracy).
Normal Estimation. The proposed method is further evaluated on ModelNet 40 for normal
estimation. Normal estimation is a more challenging task compared to classification, which
requires understanding local geometric structures of a point cloud. The experimental strategy
follows [16]. We employ the encoder-decoder network for this task. The absolute value of
cosine distance is taken as the loss and metric to evaluate the performance. The average
cosine distance on the test set is given in Table 1.

4.2.2 Scene-Level Tasks

Indoor Segmentation. We evaluate the segmentation performance of indoor scenes on the
S3DIS dataset. In data preparation, each area is first split by rooms, then each room is
initially sampled with a grid size of 0.04m. If the number of points in a room is larger
than 40k, we randomly select a center point and sample 40k nearest points in this room for
input. Otherwise, all the points in the room are fed to the network. This strategy avoids
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replacement sampling and ensures a uniform cloud resolution for each room. In test, each
room is evaluated multiple times to ensure the reduced cloud is tested completely. Finally,
per-point labels of the original point cloud are obtained by nearest projection. We report the
cross-validation mIoU (mean Intersection over Union) on all six areas in Table 2.
Outdoor Segmentation. To prove the scalability and robustness of the proposed method,
we further conduct experiments on the Semantic3D dataset which is an online benchmark
for outdoor scenes segmentation. The training set contains 15 scenes and the (reduced) test
set consists of 4 scenes. In training, we divide 2 scenes from the training set as a validation
set. The data is prepared similarly to indoor scenes. Each scene is first sampled with a grid
size of 0.06m. We use the same sampling strategy to sample 60K points from a scene to feed
the network. The test strategy is the same as that for the S3DIS dataset. We evaluate the
performance on the reduced-8 test set and submit the results to the benchmark website1. The
comparison results (mIoU) with some current popular methods are shown in Table 2.

Table 1: Experimental results on the
ModelNet dataset.

Methods 10-class 40-class normal
PointNet[16] - 89.2 0.47

PointNet++[17] - 91.9 0.29
ECC[20] 90.8 87.4 -

SO-Net[10] 94.1 90.9 -
Kd-Network[7] 93.3 90.6 -
SpecGCN[34] - 91.5 -

SpiderCNN[32] - 92.4 -
PCNN[1] 94.9 92.3 0.19

PointCNN[11] - 92.2 -
PointWeb[36] - 92.3 -

MC[5] - 90.9 0.16
PointConv[30] - 92.5 -
DGCNN[29] - 92.9 -
RS-CNN[13] - 93.6 0.15
FPConv[12] - 92.5 -
KPConv[25] - 92.9 -
PAConv[31] - 93.9 -

PCT[4] - 93.2 0.13
PointASNL[33] 95.9 93.2 -

Ours 94.4 92.5 0.10

Table 2: Experimental results on the
S3DIS and Semantic3D datasets.

Methods S3DIS Semantic3D
PoinNet[16] 47.6 -

PointCNN[11] 65.4 -
SnapNet[2] - 59.1

SEGCloud[23] - 61.3
RF_MSSF[24] - 62.7
MSDVN[19] - 65.3
SPGraph[28] 62.1 73.2
DGCNN[29] 56.1 -
DeepGCN[9] 60.0 -
ShellNet[35] 66.8 69.3
GACNet[27] - 70.8
PointWeb[36] 66.7 -
SegGCN[8] 68.5 -

PointASNL[33] 68.7 -
RandLA-Net[6] 70.0 77.4

FPConv[12] 68.7 -
KPConv[25] 70.6 74.6
PAConv[31] 69.3 -

BCM+AFM[18] 72.2 75.3
Ours 72.3 76.1

4.2.3 Discussion

From Table 1, our method can obtain competitive results on classification tasks and achieve
best performance on normal estimation. In Table 2, the proposed method achieves state-
of-the-art performance on the S3DIS dataset with the mIoU of 72.3%. Furthermore, our
method significantly surpasses KPConv in both indoor and outdoor scene segmentation,
which proves the effectiveness of our adaptive kernel representations. Besides, compared
to the simple classification tasks, we find that the proposed method has great advantages in
more complex tasks, such as normal estimation and scene segmentation. It can be explained
that our AGMMConv facilitates the network learning by introducing various priors of invari-
ance. This superiority would manifest significantly in more complex tasks. Moreover, it can
be seen that the proposed method performs better in indoor scenes. Because the distribution
of point clouds in outdoor scenes is usually more biased than that in indoor scenes, this may
cause the learning of the GMM unstable. We will try to address this problem in future work.
More experimental results and visualizations can be found in the supplementary material.

1http://www.semantic3d.net/view_results.php?chl=2
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4.3 Ablation Study

Kernel Numbers. To evaluate the influence of the number of kernel points on the algorithm,
we make a comparison of the performance with various number of kernels on the ModelNet
40 dataset. The training and test OA can be found in Table 3. Owing to the kernel atten-
tion mechanism, the performance does not significantly degenerate with the kernel numbers
increasing. The model performs better when the number of kernels is 8 or 16. We choose
K = 8 in our experiments considering the balance of performance and computations.
Robustness Test. In order to further prove the robustness of the AGMMConv, we test the 3D
objects recognition performance on the ModelNet 40 dataset under different test augmenta-
tions including random permutation, translation, and rotation. We compare the performance
of fixed kernels (polygon) and the proposed GMM kernels. The results are shown in Table
4. It can be seen that the proposed method is robust to rigid transformation.
Kernel Weights. As we stated in the previous section, the kernel weights that act as tem-
plates are important for the AGCMMConv. We compare the performance with/without the
kernel weights on classification (ModelNet 40) and segmentation (S3DIS (Area 5)) tasks.
The results are given in Table 5. The kernel weights increase the representation ability of the
network especially for more complex scene segmentation task.
Runtime Analysis. We analyze the runtime of the proposed method on the classification
and segmentation tasks. The running time including data preparation in each training and
test iteration is counted in Table 6. From the table, the proposed method is very efficient
on object-level classification tasks. Even for scene-level segmentation tasks with far larger
input size, the proposed method can also achieve promising time complexity.

Table 3: Performance with different num-
ber of kernels on ModelNet 40.

#num_kernels Training OA Test OA
1 96.24 90.88
2 96.32 91.25
4 96.59 91.25
8 97.98 92.50

16 98.03 92.26
32 97.83 91.53

Table 4: Test performance with different
augmentation on ModelNet 40.

Test Augmentations Kernel Types
Polygon GMM

None 91.21 92.50
Permutation 91.21 92.50

Translation [-0.2, +0.2] 91.21 92.50
Rotation [-180, +180] 46.96 91.65
Rotation + Translation 42.75 91.82

Table 5: Performance with/without the
kernel weights on different tasks.

Tasks Weights #params OA/mIoU

cls. No 4.7MB 91.64
Yes 6.2MB 92.50

seg. No 2.9MB 64.25
Yes 4.5MB 66.83

Table 6: Runtime of the proposed method
with different input sizes.

Tasks Size (B×N) Training (ms) Test (ms)

cls.
16×1K 107 45
32×1K 172 77
16×4K 339 181

seg. 8×40K 1250 588
4×60K 1562 940

5 Conclusion

In this paper, we propose a novel discrete convolution for point cloud learning dubbed AG-
MMConv. We first propose to represent the kernel points with a GMM. The GMM can effi-
ciently represent the local geometric of the point cloud, thus being adaptive to local geomet-
ric structures. Then we define the AGMMConv based on the learned kernel representations.
Besides, we further demonstrate the AGMMConv is robust to rigid transformation, which is
crucial for 3D objects recognition. Experiments on various datasets including object-level
and scene-level tasks show the effectiveness of the proposed method.
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