
LAM ET AL.: PAYING ATTENTION TO VARYING RECEPTIVE FIELDS 1

Paying Attention to Varying Receptive
Fields: Object Detection with Atrous Filters
and Vision Transformers
Arthur Lam1

alam0015@student.monash.edu

JunYi Lim2

jun.lim@monash.edu

Ricky Sutopo2

ricky.sutopo@monash.edu

Vishnu Monn Baskaran1

vishnu.monn@monash.edu

1 School of Information Technology
Monash University Malaysia
Selangor, Malaysia

2 School of Engineering
Monash University Malaysia
Selangor, Malaysia

Abstract

Object detection represents a critical component in computer vision based on its
unique ability to identify the location of one or more objects in an image or video. Given
its importance, various approaches were proposed in an attempt to extract meaningful
and representative features across different image scales. One such approach would be
to vary the receptive fields during the feature extraction process. However, varying and
adjusting the receptive field adds complexity to the process of scene understanding by
introducing a higher degree of unimportant semantics into the feature maps. To solve
this problem, we propose a novel object detection framework by unifying dilation mod-
ules (or atrous convolutions) with a vision transformer (DIL-ViT). The proposed model
leverages atrous convolutions to generate rich multi-scale feature maps and employs a
self-attention mechanism to enrich important backbone features. Specifically, the dila-
tion (i.e., DIL) module enables feature fusions across varying scales from a single input
feature map of specific scales. Through this method, we incorporate coarse semantics
and fine details into the feature maps by convolving the features with different atrous
rates in a multi-branch multi-level structure. By embedding DIL into various object de-
tectors, we observe notable improvements in all of the compared evaluation metrics using
the MS-COCO dataset. To further enhance the feature maps produced by the DIL, we
then apply channel-wise attention using a vision transformer (i.e., ViT). Crucially, this
approach removes unnecessary semantics present in the fused multi-scale feature map.
Experimental results of DIL-ViT on the MS-COCO dataset exhibit substantial improve-
ments in all of the compared evaluation metrics.

1 Introduction
In the field of computer vision, object detection represents a fundamental method of detect-
ing instances of semantic objects and its locations in an image or a sequence of images.
This is critical in various domains which include human behavioral analytics, autonomous
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Figure 1: Overall illustration of DIL-ViT, which consists of atrous filters with different dila-
tion rates to capture the varying receptive fields and channel-wise attention using ViT.

vehicles and face recognition. Given these benefits, a multitude of object detectors using
deep neural networks has emerged in recent years, which in turn cements their position as an
indispensable component in computer vision systems.

In spite of the advances made in the field of object detection, the task of extracting
and recognizing features of objects at varying scales has always been a long-standing chal-
lenge. This is in part due to the fact that object detectors extract different features at dif-
ferent scales. To tackle this challenge, techniques were proposed by fusing feature maps
of varying scales from specific levels of the backbone convolutional neural network (CNN)
[13, 22, 27, 31, 35, 36]. These techniques were largely inspired by an image pyramid ar-
chitecture [1] and therefore rely heavily on a feature fusion process which incorporates fea-
tures from varying receptive fields. This process uses a fixed sampling grid during feature
extraction, limiting the receptive field and, consequently produces features which are less
fine-grained. In addition, the process of fusing feature maps of different scales in a feature
pyramid structure potentially reduces the ability of a detector to learn scale-specific features
contributed from each scale of the feature map [8].

Apart from that, multi-scale feature maps introduce unwanted or unimportant seman-
tics. This raises the risk that the detector head takes into account irrelevant background
features that do not contribute to the representation learning of object features. Recently,
several works have emerged which utilize transformers for computer vision tasks. Although
transformer models are more well-known for solving natural language processing (NLP)
problems, researchers have extended and applied the necessary adjustments in order to ex-
ploit the strong representational ability of the self-attention mechanism in transformers for
object detection. Previous work by [26] proposes to apply self-attention only in local neigh-
bourhoods of an input image to differentiate important features over irrelevant background
features. Alternatively, [9] takes a similar approach by proposing Sparse Transformers that
employ scalable approximations to global self-attention onto images. However, these spe-
cialized attention architectures do not apply global self-attention onto full-sized images or
feature maps, which is crucial for amplifying important foreground features.

Nevertheless, some of the most notable approaches of utilizing transformers for the ob-
ject detection task include using only a pure transformer [11] without relying on a CNN.
Even so, the transformer could still be embedded into any traditional deep learning frame-
work by modifying the input to accept a feature map extracted directly from the backbone
CNN. However, such a hybrid approach would require the process of splitting and flattening
the feature map into a sequence of patches to be fed into the standard transformer module [4].
Despite that, the chosen inputs of these state-of-the-art models lack multi-scale information
which can provide rich semantic information to fully utilize the self-attention mechanism.

To solve the aforementioned problems, in this paper, we propose a novel object detection
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framework by unifying dilation modules (or atrous convolutions) with a vision transformer
(DIL-ViT), as illustrated in Fig. 1. Here, the proposed model leverages atrous convolutions
to generate rich multi-scale feature maps and employs a self-attention mechanism to enrich
important backbone features. Specifically, the dilation (i.e., DIL) module enables feature
fusions across varying scales from a single input feature map of specific scales. Through this
method, we incorporate coarse semantics and fine details into the feature maps by convolving
the features with different atrous rates in a multi-branch multi-level structure. To further
enhance the feature maps produced by DIL, we apply channel-wise attention using a vision
transformer (i.e., ViT). Crucially, this approach removes unnecessary semantics present in
the fused multi-scale feature map. The contributions in this paper are summarized as follows:

• We first put forward a novel feature fusion module which produces fused multi-scale
feature maps from a single feature map of specific scale. The feature fusion module,
DIL possesses a multi-branch, multi-level architecture which aggregates multi-scale
features through a series of branched atrous convolutions of varying dilation rates. We
also demonstrate the modularity of DIL to improve baseline performances by integrat-
ing it into different architectures as the model neck.

• Next, we produce a variant of the Recursive Feature Pyramid (RFP) by integrating
vision transformers (i.e., RFP-ViT) as the connecting module to recursively apply
channel-wise attention onto the spatially distant semantic information present in the
multi-scale fused feature maps produced in DIL.

• Then, we propose a model architecture, DIL-ViT which leverages the ability of atrous
convolutions to vary the receptive field and a self-attention mechanism to effectively
produce fused multi-scale feature maps with strict attention on important semantic
information for better detection performance.

2 Related Works
Object Detection. Deep learning baselines for object detection can be mainly divided into
two types of approaches, namely one-stage approaches and two-stage approaches. Firstly,
one-stage approaches such as SSD [25] and YOLO [28] treat object detection as both a
regression and classification task [37]. They perform object detection by learning the prob-
abilities of object classes and the coordinates of the bounding boxes for a given input image
[17]. Two-stage approaches utilize an additional mechanism called the Region Proposal
Network (RPN) to generate regions of interests before the regression and classification step.
Two-stage approaches such as the RCNN [14] and Faster-RCNN [29] achieve competitive
results that outperform most one-stage detectors. Motivated by two-stage approaches, our
proposed model adopts a two-stage approach with Cascade-RCNN [2] as the baseline archi-
tecture to achieve competitive results. A table summarizing the state-of-the-art approaches
of object detection using deep learning is available in the supplemental material.
Multi-scale Features. To overcome the challenge of extracting and processing multi-scale
features, early solutions utilize an image pyramid formed by the resized input image of vary-
ing scales. Although this approach improves detection accuracy, it is computationally expen-
sive. [22] proposes a top-down pathway to enhance the pyramidal feature hierarchy created
from backbone networks. Based on this approach, several works [7, 13, 24, 30, 36, 38]
emerged which leverage multi-scale feature maps. However, most of these approaches in-
herently use backbone features for predictions [3, 25] or simply concatenate features without
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attention [22, 24, 36]. To tackle this issue, [31] proposes a Bi-directional Feature Pyramid
Network (BiFPN) which introduces learnable weights between cross-scale connections that
penalize insignificant features. The drawback here is that these approaches rely on multiple
feature maps with varying scale, which impacts the computational speed of the model during
the feature fusion process.

To efficiently produce features which are more robust and representative of the fore-
ground objects, parallel branching schemes have been adopted which utilize varying atrous
rates or kernel sizes. Atrous Spatial Pyramid Pooling (ASPP) [6] proposes to employ sev-
eral atrous convolutional layers with different sampling rates in parallel as a segmentation
module to extract features. DetectoRS [27] takes a similar approach by applying dynamic
convolutions to the network using switchable atrous convolution (SAC). However, the SAC
module potentially disregards key semantics present in larger contexts as only a single extra
dilation filter is applied [8]. Hence, we apply a greater emphasis on varying the receptive
field using the DIL method proposed in this paper to capture complex object features.
Transformer Models. More recently, the transformer model [32], which is the de-facto net-
work for natural language processing, has been adopted for computer vision tasks such as
object classification, segmentation and detection. Here, ViT [11] applies a pure transformer
model by splitting and flattening an input image into a sequence of smaller image patches be-
fore applying self-attention. Subsequently, [4] proposes an end-to-end transformer pipeline
for object detection tasks (i.e., DETR) by using set predictions. The aforementioned ap-
proach further improves object localization, by supplementing flattened image features with
additional positional encodings before being processed in the encoder stage. Nevertheless,
DETR comes with several limitations such as longer training times and poor detection per-
formance on small objects. Unlike previous works, our proposed vision transformer module
accepts a multi-scale fused feature map as the input to the transformer to improve the perfor-
mance of the self-attention mechanism on varying object scales. Furthermore, we produce
a variant of the RFP architecture by embedding the transformer module onto the lateral
connections. This way, the transformer module is able to recursively apply channel-wise
attention onto the input feature maps to further enrich and produce fine-grained semantics.

3 Methodology
In this section, we first discuss the formulation of DIL and ViT, followed by how each of
these components are embedded onto the overall network architecture, DIL-ViT.

3.1 Dilation Module

3.1.1 Atrous Convolutions

Although deeper networks with different kernel sizes are encouraged for accuracy and gen-
erating multi-scale receptive fields, it is inevitable that these repeated convolutions require
more parameters to be trained. Recently, dilated convolutions have proven to be an effective
method to resample features for enhancing multi-scale representation. To elaborate, atrous
convolutions are able to effectively enlarge the receptive fields of filters and provide dense
feature extraction [16] with no additional cost of increasing the number of network param-
eters. To illustrate the process, the output y[i][ j] of atrous convolution of a 2-D input signal
x[i][ j] and f [h][w] filter of size (H,W) could be formulated as in (1).

y[i][ j] =
H

∑
h=1

W

∑
w=1

x[i+ r ∗h][ j+ r ∗w] f [h][w] (1)
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An additional parameter r denotes the dilation rate, which corresponds to the stride with
which the input signal is sampled. By specifying r to be greater than 1, the algorithm
stretches filters by a factor of r and introduces zeros in between filter values.

3.1.2 DIL Structure

Our proposed DIL module is constructed using parallel branches consisting of atrous convo-
lutions with different atrous rates of r, repeated through multiple levels of l depending on the
desired scale and complexity as shown in Fig. 2. First, the module starts by applying a 1×1
convolution to split up the input feature map X of arbitrary size into four parts (channel-wise,
DX ) where the channels of the input to each branch is 1/4 the number of channels (DX/4) of
the input to the module. Next, these inputs are fed into the respective branches where each
branch b consist of a single 3× 3 convolution with different atrous rates. The parameters
for each convolution such as the dilation rate rbl are set accordingly to craft the effective re-
ceptive field to improve learning of scale-specific features. To elaborate, the parameters that
are set in the default setting of each branch is rate = [1,2,3,6]. Following that, the outputs
of each parallel branch ybl are then activated using a ReLU function before concatenation
to form an intermediary feature map Yi on each specific level. According to the number of
levels repeated, multiple intermediary feature maps that contain multi-level semantics are
obtained with very minimal computational cost [36]. Finally, to produce the final output
feature map Y , the level-wise feature maps are concatenated and proceeded by a 1×1 con-
volution to compress and resize the features before the addition of a shortcut connection used
to effectively propagate the gradients.

To summarise, the entire module structure can be expressed as shown in (2) where the
output feature map Xout can be produced from the element-wise addition of the input to
the ResNet block Xin and the output of DIL XDIL where Concat corresponds to a channel-
wise concatenation and fbi represents the corresponding atrous convolution operation for the
particular branch and level, i.e., ∀b = 1, ...,4 and ∀i = 1, ..., i.

XDIL = ∀i Concat(∀b Concat( fbi(Xi))), (2)

To demonstrate the flexibility and modularity of DIL, we compare its performance as a neck
across various object detection architectures. Additionally, we perform an empirical anal-
ysis on the scalability of DIL. Tabulation and analysis of these results are available in the
supplemental material.

3.1.3 Dilation Module In The Backbone

For the overall architecture of our proposed dilation network, we employ the ResNet back-
bone and make several changes to its design to incorporate DIL. As seen in Fig. 2, the inputs
for the first block of each ResNet stage are fed into both the original pipeline with short-
cut connections and DIL. Next, the outputs of each stage are combined by element-wise
addition followed by a ReLU activation function. This essentially transforms the original
bottleneck block to combine feature maps from three different connections. Equation (3)
presents the aforementioned process of feature combination, where y is the respective output
of the corresponding bottleneck block, x is the input, F(x) represents the series of convolu-
tions employed in the original bottleneck block implementation and DIL(x) represents the
convolutions applied in DIL.

y = x+F(x)+DIL(x) (3)
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Figure 2: Left: The first bottleneck block of each stage in ResNet is replaced with a version
which incorporates DIL in the residual connection. Right: The proposed DIL consists of
multiple repeatable levels of atrous convolutions with adjustable rates (denoted by different
colors) in a multi-branch scheme to enhance multi-level and multi-scale features into the
chosen input feature map. Each level of DIL consists of four branches of 3×3 convolutions.
The lighter and darker colors represent low-level and high-level semantics respectively.

The purpose of placing DIL at the first block of every stage is to allow the feature maps
to be enriched with features sourced from varying receptive fields. As such, the following
ResNet blocks in the current stage are able to learn distinctive representations of objects with
different aspect ratios to further enhance the backbone feature maps.

3.2 Transformer Module

3.2.1 Vision Transformer

In the transformer module, the output feature maps from the convolution operations are fed
directly into the vision transformer to further process the high-level information as shown
in Figure 4. Similar to how it can relate distant semantics in a sentence, the self-attention
module can be applied to relate long-range semantics across different receptive fields [11].
Therefore, we apply the transformer module after the backbone to enhance the ability of the
model to focus on high-level features across scales. The self-attention mechanism extracts
the spatial relationship from high-level features by first transforming the input into a set of
linearized patch embeddings. This is done to avoid the use of a fixed pixel array represen-
tation, which would increase the computational complexity. Each patch then undergoes a
2D-convolution to a fixed number of channels followed by a linear projection into a fixed
hidden representation to generate the query q, key k and value v vectors. Then, the softmax
function is applied to the final output to obtain a probability distribution across the channels.
Finally, the embeddings are projected back onto the input feature map X via a channel-wise
multiplication to obtain the channel-wise attended feature map Y as shown in (4).

Y = so f tmax(so f tmax(
QKT
√

dk
)V︸ ︷︷ ︸

A

) ·X (4)

where, Q, K and V represent the query, key and value matrices, respectively, dk represents
the dimensions of the key, X ∈ Rh×w×c denotes the input feature map, and A represents the
self-attention mechanism. Specifically, we allocate a total of 768 channels for the output
embeddings.
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Figure 3: An overview of the proposed architecture. Our architecture utilizes the ResNet
backbone as its baseline with the addition of DIL in the first bottleneck in each ResNet stage.
The backbone features are then extracted and used to build a RFP [27] which integrates
the transformer module into the lateral connections between the top-down and bottom-up
pathways. The features are then subsequently fed into the prediction layers to produce and
compute bounding box and category scores.

3.2.2 Vision Transformers in the Neck

In order to maximise the benefit of the multi-scale feature maps produced from the back-
bone, we employ RFP [27] as the model neck and replace the ASPP connecting module
with the proposed vision transformer module. The removal of ASPP module greatly im-
proves the speed of the network and enables the RFP to focus on capturing semantically
meaningful information to enrich the feature maps. Specifically, we extract the feature map
outputs from the last residual block of each stage. Thus, each transformer module receives a
fused multi-scale feature map as the input to aggregate spatially distant features using cross-
scale information. Finally, the embeddings are normalized by applying the softmax function
onto the outputs followed by a projection back onto the input feature maps. Therefore, this
process applies attention onto the image contexts at varying receptive fields. By mapping
the long range dependencies across the channels of the feature map for feature refinement,
the attention module is able to further emphasise important semantics on each scale of the
feature maps in the feature pyramid. Subsequently, the detector heads can easily capture
object-relevant features across multiple scales to improve detection accuracy.

3.3 DIL-ViT

Additionally, we propose a hybrid convolutional-transformer architecture, namely, DIL-ViT,
which combines DIL and ViT into a single component. The illustration in Fig. 3 shows the
overall architecture of DIL-ViT. We employ ResNet as the backbone network and add DIL
to the first block of each stage. We then extract the feature map outputs from each stages last
residual block from the backbone network. These feature maps of varying scales are then
passed into a modified RFP embedded with ViT to recursively apply channel-wise atten-
tion onto the fused multi-scale feature maps generated from the backbone. The final output
feature resulting from the RFP top-down pathway are then fed into the prediction layers.
The prediction layers consist of a Cascade ROI head followed by standard classification and
regression heads to produce and compute bounding box and category scores respectively.
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4 Experiments
A series of extensive experiments were carried out to evaluate the performance of the pro-
posed architectures against various object detectors. These experiments were conducted
using the MS COCO dataset [21] which contains a total of 80 object classes varying over
multiple scales and orientations. For training, the train2017 set was used whereas test-dev
was used to consolidate results for comparisons with other state-of-the-art object detectors.
Additionally, the val2017 dataset was also used to evaluate the results for analysis study. The
COCO metric of Average Precision (AP) was chosen to evaluate the overall performance, by
measuring over multiple intersection-over-union (IoU) thresholds and over small, medium
and large objects. Following common practice, the backbone network used in the proposed
architecture is first pre-trained on the ImageNet dataset and subsequently fine-tuned on the
MS COCO dataset.

Training and Implementation Details. The implementation for the proposed architecture
was based on the MMDetection PyTorch framework [5]. The training and testing settings
that were employed are common to the Cascade R-CNN baseline, utilizing the same bound-
ing box and classification loss functions, detection heads, and different data augmentation
techniques, to improve training.

We trained the proposed architecture on a compute platform configured with an Intel
Core i9-10920X processor, 64 GBytes of memory and an NVIDIA RTX 8000 graphics pro-
cessor unit (GPU). We employed a single-scale training pipeline which first resizes input
images to a fixed scale of 1333×800 followed by horizontal or vertical flipping with a flip
ratio of 0.5. An SGD optimiser is used with a learning rate of 0.02, weight decay of 1e−4
and momentum of 0.9 alongside a batch size of 8 images per GPU. The learning policy de-
fined for training was a linear warmup strategy of 500 iterations with a ratio of 1e− 3 and
trained for a total of 12 epochs. Experiments were conducted with test-time augmentation
(TTA) enabled which included multi-scale testing through resizing and horizontal flipping.

State-of-the-art Comparison. In this section, we analyse the performance of the proposed
DIL-ViT module using ResNet-50, ResNet-101 and ResNeXt-101-32×4d, as the backbone
network to act as the baseline model. The performance of these architectures was compared
against a range of one-stage and two-stage object detectors which serves as benchmark. Ta-
ble 1 tabulates the results of the aforementioned proposed and benchmarked object detectors
tested on the MS COCO test-dev using the COCO evaluation metrics. Based on these tabu-
lated results, our proposed DIL-ViT architecture achieves competitive AP scores of 46.5%,
48.3% and 50.1% using the ResNet-50, ResNet-101 and ResNeXt-101-32×4d backbones,
respectively. We can also observe that the AP across objects of different sizes exhibits im-
proved accuracy. These improvements are a result of using the atrous filters and a vision
transformer to incorporate and effectively relate multi-scale spatial information into the fea-
ture maps.

Ablation Study. In this section, we have included additional experiments on the COCO
val2017 set to further evaluate the impact of each component on the overall architecture. We
validate the overall model architecture using the baseline Cascade-RCNN architecture with
ResNet-50+FPN as its backbone and alternating the addition of DIL and ViT. Compared
to the baseline architecture, the addition of DIL successfully improved the AP by 3.3%,
whereas ViT increased the AP by 2.5%, as shown in Table 2. Furthermore, it is clear that
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Table 1: Performance comparison of our proposed DIL-ViT model against one- and two-
stage detectors on the MS COCO test-dev subset.

Method Backbone Avg. Precision, IoU Avg.Precision, Area
0.5:0.95 0.5 0.75 S M L

one-stage:
DETR [4] ResNet-50 40.1 60.6 42.0 18.3 43.3 59.5

AutoAssign [39] ResNet-50 40.4 59.6 43.7 22.7 44.1 52.9
RetinaNet [23] ResNeXt-101 40.8 61.1 44.1 24.1 44.2 51.2
CornerNet [18] Hourglass-104 42.1 57.8 45.3 20.8 44.8 56.7

GFL [19] ResNet-50 42.9 61.2 46.5 27.3 46.9 53.3
M2Det [36] VGG-16 44.2 64.6 49.3 29.2 47.9 55.1

Deformable-DETR [41] ResNet-50 44.5 63.2 48.9 28.0 47.8 58.8
CentripetalNet [10] Hourglass-104 44.6 62.3 47.7 25.9 48.2 59.8

CentreNet [12] Hourglass-104 44.9 62.4 48.1 25.6 47.4 57.4
two-stage:

Mask R-CNN [15] ResNet-101 39.8 62.3 43.4 22.1 43.2 51.2
SABL [34] Cascade + ResNet-50 41.6 59.1 44.6 23.1 45.0 55.1

Cascade R-CNN [2] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2
SCNet [33] ResNet-50 43.5 62.9 47.4 26.0 46.9 56.8

DetectoRS [27] Cascade + ResNet-50 45.0 64.3 49.1 26.4 49.3 59.7
DCN-v2 [40] ResNet-101 46.0 67.9 50.8 27.8 49.1 59.5

TridentNet [20] ResNet-101-Deformable 46.8 67.6 51.5 28.0 51.2 60.5
PANet [24] ResNeXt-101 47.4 67.2 51.8 30.1 51.7 60.0

DIL-ViT (Ours) Cascade + ResNet-50 46.5 65.1 50.6 26.7 49.6 59.4
DIL-ViT (Ours) Cascade + ResNet-101 48.3 66.8 53.1 27.8 52 61.9
DIL-ViT (Ours) Cascade + ResNeXt-101-32×4d 50.1 68.1 54.8 29.1 53.4 63.2

Table 2: Ablation study of the proposed architecture on COCO val2017.

Cascade DIL ViT Avg. Precision, IoU Avg.Precision, Area
0.5:0.95 0.5 0.75 S M L

X 40.3 58.6 44.0 22.5 43.8 52.9
X X 43.6 61.4 47.2 25.9 46.9 56.6
X X 42.8 59.9 46.8 25.1 46.2 56.1
X X X 46.2 64.6 50.0 27.2 50.2 60.9

DIL has contributed more to the increase in detection accuracy, which can be associated with
its ability to learn better representations of the objects by varying the receptive field. There-
fore, we verify that DIL performs better as compared to a traditional multi-scale pyramidal
architecture such as the FPN where the receptive field is limited to a fixed set of feature map
scales. Thus, DIL is shown to be capable of improving detection performance across all ob-
ject scales. Additionally, experimental results shown in Table 3 suggest that additional atrous
branches in DIL would increase the receptive field which in turn increases the accuracy of
the model. Nevertheless, we do observe a substantially increased trade-off of complexity
from the additional atrous branches for marginally higher detection accuracy.

Qualitative Analysis. To better understand the impact of the self-attention mechanism in
ViT, we visualise the heatmaps produced before and after employing ViT. Figure 4 clearly il-
lustrates that prior to the application of the self-attention mechanism (first row), the heatmap
produced by the model is less refined. This can be explained by the high activation on both
foreground and background features. After the application of the self-attention mechanism
(second row), more distinctive feature maps are produced by applying feature importance
onto the foreground objects (as indicated by the red regions) and less emphasis on irrelevant
semantic information (as indicated by the blue regions). Therefore, it can be inferred that
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Figure 4: Visualisations of the heatmaps produced by the self-attention mechanism in ViT.
For example, in the first column of images the attention (red) towards the persons in the
image is shown and other unimportant semantic information (blue) are less emphasized. Top
row: Before applying ViT. Bottom row: After applying ViT.

Table 3: Ablation study on the number of atrous branches in DIL using the SSD-300 baseline
on COCO val2017. * indicates the SSD-300 baseline with no atrous branches.

Branches Avg. Precision, IoU Avg.Precision, Area
0.5:0.95 0.5 0.75 S M L

* 25.6 43.8 26.3 6.8 27.8 42.2
2 26.3 44.7 27.2 7.3 28.4 43.1
4 27.4 45.4 28.4 8.8 29.3 43.9
8 28.9 46.8 29.1 9.4 30.2 44.8

ViT enhances the feature extraction process using the self-attention mechanism by relating
spatially distant features present in the feature map and focusing solely on the important
features. The supplemental material includes additional analysis in visualizing the inferred
bounding box outputs of images with varying degrees of scene complexity.

5 Conclusion
In this paper, we put forward a novel method of unifying the dilation module with a vision
transformer (i.e., DIL-ViT). This method addresses the issue of the high degree of less im-
portant semantics, which was caused by the variations of receptive fields during the feature
extraction process. The proposed model leverages atrous convolutions to generate rich multi-
scale feature maps and employs a self-attention mechanism to enhance important backbone
features. By integrating DIL into various object detectors, we observe notable improvements
in detection accuracies with minimal impact to the inferring speed. As a whole, the ability of
DIL-ViT to apply attention onto specific receptive fields has the potential to yield beneficial
impacts in object detection. For future research, we could extend the applicability of our
work into the domain of spatio-temporal object detection.
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