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Abstract

Deep metric learning aims to learn an embedding space where the distance between
data reflects their class equivalence, even when their classes are unseen during training.
However, the limited number of classes available in training precludes generalization of
the learned embedding space. Motivated by this, we introduce a new data augmentation
approach that synthesizes novel classes and their embedding vectors. Our approach can
provide rich semantic information to an embedding model and improve its generalization
by augmenting training data with novel classes unavailable in the original data. We
implement this idea by learning and exploiting a conditional generative model, which,
given a class label and a noise, produces a random embedding vector of the class. Our
proposed generator allows the loss to use richer class relations by augmenting realistic
and diverse classes, resulting in better generalization to unseen samples. Experimental
results on public benchmark datasets demonstrate that our method clearly enhances the
performance of proxy-based losses.

1 Introduction
Deep metric learning is the task of learning an embedding space where data of the same
class are placed closely so that the distance between data reflects their class equivalence. It
has been a driving force behind recent advances in numerous computer vision and machine
learning tasks including image retrieval [15, 31, 32], face identification [5, 30], person re-
identification [4], and representation learning [3, 15]. The main reason for adopting deep
metric learning in these tasks is its generalization capability; the learned embedding space is
expected to be well generalized to unseen classes so that it can be used to predict the class
equivalence of a pair of data even when their classes are unavailable during training.

Various ways to improve the performance of deep metric learning have been studied so
far, such as advanced loss functions [16, 26, 31, 32, 36], ensemble methods [17, 27], reg-
ularization techniques [14, 25], sample mining [12, 37], and sample generation [18, 21].
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Figure 1: Our motivation and conceptual diagram. Left: Accuracy in Recall@1 versus
the number of training classes with Proxy-Anchor loss on the Cars-196 dataset. The total
number of samples used for training is fixed (Please see the first footnote.). Right: Com-
parison between proxy-based metric learning with and without L2A-NC. Black, empty, and
colored nodes denote proxies, real embedding vectors, and synthetic embedding vectors of
augmented classes, respectively. Also, different shapes indicate different classes.

Although the effectiveness of these methods has been demonstrated, we believe their gen-
eralization capability could be further improved in the sense that they are inherently limited
only to classes available in a training set.

In this paper, we argue that the number of training classes is relatively more important
than that of training samples in deep metric learning. We demonstrate the importance of
the number of training classes by validating generalization ability while varying the number
of training classes but fixing the total number of samples used in training. Specifically,
for the test split of Cars-196 (i.e. 8,131 images of the latter 98 classes), we measure the
performances of models whose size of training classes ranges from 25% (24 classes) of total
training classes to 100% (98 classes); reversely, the number of samples per training class
decreases from 82.2 (for 25%) to 20.1 (for 100%) so that all models are trained with the
same training sample size 1. As shown in Figure 1 (left), a larger number of classes lead to
better performance although the number of samples per class becomes smaller. It is natural
since more diverse classes would offer richer semantic relations between training classes.
According to this observation, we remark the existing sample generation methods for deep
metric learning are limited to leverage impoverished relations between given training classes.

Meanwhile, a recently proposed method [16] aims to synthesize new classes through lin-
ear interpolation between data representations of real classes so that inter-class relations with
synthetic classes can yield better supervisory signals beyond relations between real classes.
However, since this approach heavily relies on the data representations of real classes, the
generated classes cannot cover a broad range of data characteristics, resulting in limitations
in improving generalization.

In this paper, we introduce a novel data augmentation method that resolves the afore-
mentioned issues. The key idea is to synthesize novel classes and their embedding vectors
through a conditional generative model, which is an auxiliary module trained together with
the main embedding network. We thus call it Learning to Augment Novel Classes, dubbed
L2A-NC. Specifically, the conditional generative model, given a class label and a noise (i.e.,
a latent variable), produces a random embedding vector of the class. The model is trained by
a metric learning loss like the main embedding network so that the novel classes and their

1The fixed size of training data is 1,975 and # of samples per training class is uniform.
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embedding vectors become discriminative. At the same time, it is regularized to produce re-
alistic embedding vectors by minimizing divergence between distributions of synthetic and
real embedding vectors. As a result, novel classes have distributions that fit in between those
of real classes in the learned embedding space (Figure 1 (right)). The proposed method thus
can synthesize realistic and discriminative novel classes thanks to the powerful expressive-
ness of deep neural networks trained with carefully designed loss functions. Consequently,
these novel classes unavailable in original data help the main embedding network learn a bet-
ter generalized embedding space. In summary, the contribution of this paper is three-fold:

• We introduce a novel data augmentation framework for deep metric learning, called
L2A-NC, which synthesizes novel classes and corresponding embedding vectors to be
augmented as additional training data through a conditional generative model.

• We design architecture and its training strategy that enable the generator to define
novel classes and produce realistic and discriminative embedding vectors.

• It is demonstrated on public benchmarks that L2A-NC clearly enables non-trivial per-
formance improvement of proxy-based losses.

2 Related Work

Proxy-based losses for deep metric learning. The loss functions for metric learning can
be categorized into two types as pair-based and proxy-based losses. The pair-based losses
are based on the pairwise relations between data in the embedding space. However, they
have high training complexity since the number of tuples increases exponentially with the
number of training data, forcing a careful tuple sampling technique. Proxy-based losses
are proposed to alleviate the complexity issue by replacing samples with a small number of
proxies, which are learnable parameters representing each class. Proxy-NCA [26] is the first
proxy-based method that pushes a sample to its positive proxy but repels against its negative
proxies. Similarly, SoftTriple [28] assigns multiple proxies within one class to reflect intra-
class variance. Proxy-Anchor [16] leverages data-to-data relations via forming a proxy as an
anchor.
Sample generation for deep metric learning. Sample generation methods are motivated to
provide potentially informative samples which do not exist in the original data. [8, 21, 38]
exploit generative models to synthesize synthetic embedding vectors. To reduce training
complexity, [11, 18] are proposed to generate synthetic embedding vectors by simple alge-
braic operation in the embedding space. However, these techniques are only coupled with
pair-based losses and limited to synthesizing embedding vectors of existing classes.
Virtual class synthesis. Recently, several approaches have been proposed to utilize virtual
classes in various areas. Virtual softmax [2] injects additional weight as a virtual negative
class for softmax function. Proxy Synthesis [10] exploits virtual classes synthesized by linear
interpolation between data representations of real classes. Different from them, our method
synthesizes novel classes by a generative model, which utilizes the expressiveness of deep
neural networks. In addition, most recently, VirFace [20] has been proposed to exploit unla-
beled data as samples of virtual classes. Similar to our method, this approach introduces a
VAE network to generate instances of virtual classes, but it also requires additional unlabeled
data to train a generative model.
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Figure 2: The overall framework of L2A-NC. Given a novel class label and a latent variable,
the conditional generative model g produces an embedding vector of the class while the main
model f computes that of training images. In our framework, a proxy-based loss takes both
of real and synthetic embedding vectors (Please refer Sec. 3 for details).

3 Our Approach
As a way to improve the generalization of deep metric learning, we propose a new data
augmentation method called L2A-NC, which synthesizes novel classes and their embed-
ding vectors. Our method learns and utilizes a conditional generative network that models
novel classes and produces their embedding vectors, which are incorporated with any proxy-
based losses to help them construct a more discriminative embedding space. The overall
framework of L2A-NC is illustrated in Figure. 2. In the rest of this section, we review the
proxy-based metric learning losses, present details of the conditional generator, describe the
training procedure incorporating L2A-NC, and analyze the effectiveness of novel classes
with comparison to an existing class augmentation method.

3.1 Background: Proxy-based Losses
Suppose that we aim to learn an embedding network f parameterized by θ f and learnable
proxies P = [p1, ..., pC]. Let X = [x1, ...,xN ] be embedding vectors (i.e., the outputs of f )
and Y = [y1, ...,yN ] be their corresponding labels, where yi ∈ {1, ...,C}. A proxy-based loss
optimized with respect to θ f and P is denoted by Jmet(X ,Y,P).

In practice, however, proxy-based losses can be further enhanced in the sense that they
are inherently limited only to training classes. From this perspective, this paper proposes a
new data augmentation method to synthesize novel classes and their embedding vectors.

3.2 Conditional Generator
To synthesize novel classes, we train a conditional generator g which produces embedding
vectors X̃ = [x̃1, ..., x̃M] of novel classes given corresponding labels Ỹ = [ỹ1, ..., ỹM], where
ỹ j ∈ {C+1, ...,C+C̃}, and latent variables Z for the stochastic generation:

X̃ = g(Ỹ ,Z). (1)

Besides, corresponding proxies of novel classes P̃ = [pC+1, ..., pC+C̃] are learnable, thus, first
randomly initialized and updated via a specified proxy-based loss just as real-class proxies
P. Along with this conditional generation process, it is necessary to regularize our gener-
ator to produce realistic embedding vectors which are not far from the distribution of real
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embedding vectors; this is in line with previous data augmentation methods for deep met-
ric learning [8, 30, 38]. Furthermore, novel classes have to be discriminative so that they
become diverse and independent from each other like real classes of the original dataset.
Loss functions. To guarantee that our generator produces realistic and discriminative em-
bedding vectors, we introduce two loss functions for its training: A divergence loss Jdiv and
a proxy-based loss Jmet . First, the generator is encouraged to fit its generated distributions in
between those of real embedding vectors by minimizing the divergence loss.

As the Wasserstein distance has demonstrated its effectiveness in generative models [1, 9]
and other applications [22, 39], it is a good candidate for the divergence loss defined as:

W(p,q) = inf
γ∈Π(p,q)

Exp, xq∼γ [c(xp,xq)], (2)

where Π(p,q) is the set of all joint distributions γ(xp,xq) and c(·, ·) denotes a cost function.
This distance is usually interpreted as the minimum cost to turn the distribution q into the dis-
tribution p. However, since the optimization problem in Eq. (2) is generally intractable, we
resort to the entropy-regularized Sinkhorn distance [6]. In addition, to evaluate the Wasser-
stein distance on given mini-batches of Xp, Xq, we choose Sinkhorn AutoDiff [9] proposed
as an approximate of the distance:

Wc(Xp,Xq) = inf
M∈M

[M�C], (3)

where the cost function c becomes the cost matrix C, where Ci, j = c(xp
i ,x

q
j), and the coupling

distribution γ becomes the soft matching matrix M whose all rows and columns sum to
one. Although it is able to perform efficient optimization on GPUs, its gradients become
no longer an unbiased gradient estimator when using mini-batches. Therefore, we finally
adopt Mini-batch Energy Distance [29], which results in unbiased mini-batch gradients, as
the divergence loss which is given by

Jdiv(X , X̃) =2E[Wc(X1, X̃1)]−E[Wc(X1,X2)]−E[Wc(X̃1, X̃2)], (4)

where X divided into X1 and X2 is a mini-batch from real data and X̃ divided into X̃1 and X̃2
is a mini-batch from generated data. For a cost function c, we adopt the cosine distance.

Second, we train the generator to produce discriminative embedding vectors. To this
end, the generator aims to minimize a proxy-based loss that takes not only novel-class data
but real-class data so that novel classes become diverse and offer richer class relations to an
embedding model. Formally, the objective is given by

Jmet(X ∪ X̃ ,Y ∪ Ỹ ,P∪ P̃). (5)

3.3 Proxy-based Metric Learning with L2A-NC
This section illustrates the overall pipeline of our method. We first pretrain the embedding
function f alone via a specific proxy-based loss Jmet :

min
θ f ,P

Jmet(X ,Y,P). (6)

Then, we pretrain the conditional generator to optimize Jdiv(X , X̃) and Jmet(X̃ ,Ỹ , P̃) in ad-
vance since it is difficult for the generator to synthesize realistic and discriminative embed-
ding vectors from scratch. Finally, in the joint training phase, the two networks f and g are
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Figure 3: Cosine-similarity comparison. Left: One between embedding vectors and proxies
of the same novel class. Right: One between proxies of real classes and those of novel
classes.

learned by optimizing the following common objective:

min
θ f ,θg,P,P̃

Jmet(X ∪ X̃ ,Y ∪ Ỹ ,P∪ P̃)+λdivJdiv(X , X̃), (7)

where λdiv is a hyperparameter to balance the two losses. Note that Jdiv is optimized with
respect to X̃ only, and encourages the generator to produce realistic embedding vectors in the
joint training phase also. The overall training pipeline of L2A-NC is summarized in Section
1 of the supplementary material.

3.4 Analysis of L2A-NC
In this section, we briefly review Proxy Synthesis (PS) [10], an existing class augmentation
method. Next, we analyze and compare the effectiveness of novel classes from PS and ours.
Review of Proxy Synthesis (PS). As an existing method, PS synthesizes a synthetic proxy
and a synthetic embedding vector by linear interpolation between proxies of different real
classes, and embedding vectors of different real classes, respectively as

(p̃, x̃) = (Iλps(pi, p j), Iλps(xi,x j)) (8)

where yi 6= y j, x̃ ∈ X̃ , p̃ ∈ P̃, and Iλps(a,b) = λpsa + (1− λpsb) is a linear interpolation
function with λps ∼ Beta(α,α) for α ∈ (0,∞), and λps ∈ [0,1].
Comparison to PS on the validity of novel classes. As previously discussed, learning with
diverse classes improves performance as they allow to provide richer semantic relations. In
this context, we verify that the proposed method can generate semantic and diverse classes
like real classes, and compare it with PS2. To this end, suppose s(vi,v j) denotes the cosine-
similarity between two vectors, vi and v j. Let x̃i and p̃i = pC+i be an embedding vector
and proxy of an arbitrary novel class label ỹi. Next, we consider two cosine-similarities: one
between embedding vectors and a proxy of the same novel class and another between proxies
of real classes and those of novel classes (i.e. s(x̃i, p̃i) and s(p j, p̃i), ∀i ∈ {1, ...,C̃},∀ j ∈
{1, ...,C}). As shown in Figure 3 (left), L2A-NC clearly shows high values of s(x̃i, p̃i) while
PS shows negative values on both mean and minimum on average. This suggests that L2A-
NC generates novel classes that better preserve semantic properties while classes generated
by PS fail to preserve their own semantics. Figure 3 (right) shows that PS shows higher
values of s(p j, p̃i) than L2A-NC on both mean and maximum on average. This suggests that

2We adapt the official code from https://github.com/navervision/proxy-synthesis
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CUB Cars SOP In-Shop
Method Batch R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100 R@1 R@10 R@20
Norm-softmax 128 64.9 76.0 84.3 83.3 89.7 94.1 78.6 90.5 96.0 90.4 97.7 98.5
+ PS [10] 128 66.0 76.6 85.0 84.7 90.7 94.6 79.6 90.9 96.2 91.5 98.1 98.7
+ L2A-NC 128 66.8 77.0 85.6 86.0 91.8 95.2 79.4 91.0 96.2 91.9 98.2 98.8
Cosface [35] 128 65.7 76.2 84.7 83.6 89.9 94.2 78.6 90.4 95.8 90.7 97.6 98.3
+ PS [10] 128 66.6 76.8 84.6 84.6 90.8 94.3 79.3 90.7 95.9 91.4 97.8 98.5
+ L2A-NC 128 67.6 77.5 85.3 85.2 90.8 94.7 79.3 91.0 96.2 91.9 98.2 98.7
Proxy-NCA [26] 128 65.1 76.1 85.0 83.7 90.4 94.1 78.1 90.0 95.9 90.0 97.7 98.4
+ PS [10] 128 66.4 76.8 85.1 84.5 90.8 94.4 79.1 90.6 95.9 91.4 98.0 98.7
+ L2A-NC 128 67.7 77.9 86.1 85.9 91.9 95.3 79.3 91.0 96.3 91.7 98.3 98.9
SoftTriple [28]† 128 66.3 76.8 84.7 84.9 90.5 94.3 79.0 90.7 96.1 91.1 97.8 98.4
+ PS [10] 128 66.6 76.8 85.1 85.3 91.0 94.8 79.5 90.6 96.0 91.8 98.1 98.7
+ L2A-NC 128 68.0 78.0 85.4 86.0 91.4 95.0 79.4 91.1 96.3 91.6 98.2 98.7
Proxy-Anchor [16]‡ 180 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2 91.9 98.1 98.7
+ PS [10] 180 69.2 79.5 87.2 86.9 92.4 95.2 79.8 90.9 96.4 91.9 98.2 98.8
+ L2A-NC 180 69.7 79.1 86.4 87.9 92.8 95.4 79.9 91.2 96.1 92.3 98.3 98.7
Average boost PS [10] (+0.7) (+0.5) (+0.4) (+0.8) (+0.7) (+0.3) (+0.8) (+0.3) (+0.1) (+0.8) (+0.3) (+0.2)

L2A-NC (+1.7) (+1.1) (+0.8) (+1.8) (+1.3) (+0.8) (+0.8) (+0.6) (+0.2) (+1.0) (+0.5) (+0.3)

Table 1: Comparison with the state-of-the-art methods. Image retrieval performance is
measured as Recall@K (%) on the public benchmark datasets. †: For a fair comparison, we
reproduced SoftTriple with the batch size of 128 using the author’s official code and replace
the original SoftTriple whose batch size is 32. ‡: It is reported by the authors.

CUB Cars
Method NMI F1 R@1 R@2 R@4 NMI F1 R@1 R@2 R@4
Triplet† 58.1 24.2 48.3 61.9 73.0 57.4 22.6 60.3 73.4 83.5
+ EE [18] 60.5 27.0 51.7 63.5 74.5 63.1 32.0 71.6 80.7 87.5
+ PS [10] 58.1 24.8 50.9 62.0 72.8 57.9 24.0 62.8 73.8 82.3
+ L2A-NC 59.4 26.0 53.6 65.3 75.6 61.6 29.2 73.0 81.9 88.2
MS [36] 62.8 31.2 56.2 68.3 79.1 62.4 30.2 75.0 83.1 89.5
+ EE [18] 63.3 32.5 57.4 68.7 79.5 63.5 33.5 76.1 84.2 89.8
+ PS [10] 61.1 29.5 55.9 68.1 78.1 58.0 25.0 71.8 80.9 87.6
+ L2A-NC 66.1 35.8 60.6 72.5 82.2 68.1 37.9 81.2 88.4 93.0
EE [18] (+1.4) (+2.0) (+2.3) (+1.0) (+0.9) (+3.4) (+6.5) (+6.1) (+4.2) (+2.1)
PS [10] (-0.8) (-0.5) (+1.1) (0.0) (-0.6) (-1.9) (-1.9) (-1.9) (-0.3) (-1.5)
L2A-NC (+2.3) (+3.2) (+4.9) (+3.8) (+2.9) (+4.9) (+7.1) (+9.5) (+6.9) (+4.1)

Table 2: Comparison with the existing pair-based losses. NMI and F1 (%) are measured for
clustering performance. Recall@K (%) is measured for retrieval performance. † denotes the
triplet loss with hard tuple mining.

PS synthesizes classes that are highly redundant to real classes and lead to limited signals
while L2A-NC generates diverse classes which provide richer semantic relations.

4 Experiments
In this section, to demonstrate the superiority of our framework, we compare L2A-NC with
state-of-the-art methods and provide an in-depth analysis. Especially, we remark that L2A-
NC also can be seamlessly incorporated with pair-based losses. Therefore, we further eval-
uate L2A-NC on pair-based losses as well as proxy-based losses.

4.1 Setup
Datasets. Combinations of L2A-NC and proxy-based losses are evaluated on benchmark
datasets for deep metric learning: CUB-200-2011 (CUB) [34], Cars-196 (Cars) [19], Stan-
ford Online Product (SOP) [32], and In-shop Clothes Retrieval (In-Shop) [23]. For splitting

Citation
Citation
{Geonmoprotect unhbox voidb@x protect penalty @M  {}Gu and Kim} 2021

Citation
Citation
{Wang, Wang, Zhou, Ji, Gong, Zhou, Li, and Liu} 2018

Citation
Citation
{Geonmoprotect unhbox voidb@x protect penalty @M  {}Gu and Kim} 2021

Citation
Citation
{Movshovitz-Attias, Toshev, Leung, Ioffe, and Singh} 2017

Citation
Citation
{Geonmoprotect unhbox voidb@x protect penalty @M  {}Gu and Kim} 2021

Citation
Citation
{Qian, Shang, Sun, Hu, Li, and Jin} 2019

Citation
Citation
{Geonmoprotect unhbox voidb@x protect penalty @M  {}Gu and Kim} 2021

Citation
Citation
{Kim, Kim, Cho, and Kwak} 2020

Citation
Citation
{Geonmoprotect unhbox voidb@x protect penalty @M  {}Gu and Kim} 2021

Citation
Citation
{Geonmoprotect unhbox voidb@x protect penalty @M  {}Gu and Kim} 2021

Citation
Citation
{Ko and Gu} 2020

Citation
Citation
{Geonmoprotect unhbox voidb@x protect penalty @M  {}Gu and Kim} 2021

Citation
Citation
{Wang, Han, Huang, Dong, and Scott} 2019

Citation
Citation
{Ko and Gu} 2020

Citation
Citation
{Geonmoprotect unhbox voidb@x protect penalty @M  {}Gu and Kim} 2021

Citation
Citation
{Ko and Gu} 2020

Citation
Citation
{Geonmoprotect unhbox voidb@x protect penalty @M  {}Gu and Kim} 2021

Citation
Citation
{Wah, Branson, Welinder, Perona, and Belongie} 2011

Citation
Citation
{Krause, Stark, Deng, and Fei-Fei} 2013

Citation
Citation
{Song, Xiang, Jegelka, and Savarese} 2016

Citation
Citation
{Liu, Luo, Qiu, Wang, and Tang} 2016



8LEE ET AL.: LEARNING TO GENERATE NOVEL CLASSES FOR DEEP METRIC LEARNING

(c)
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Query Proxy Anchor + L2A-NCProxy Anchor

Figure 4: Qualitative results of the vanilla Proxy-Anchor [16] and that combined with L2A-
NC on the (a) CUB, (b) Cars, and (c) SOP datasets. Images with green boundary are correct
results while those with red boundary are failure cases.

training and test sets, we directly follow the widely used setting in [32]. For comparison
with existing pair-based losses, CUB and Cars are adopted.

Network architectures. We adopt ImageNet pre-trained BatchNorm Inception [13] and
GoogleNet [33] for experiments associated with proxy-based losses and pair-based losses,
respectively. For all experiments, the dimensionality of embedding vectors is 512. The
conditional generator consists of 4 fully connected layers; a conditional batch normalization
layer [7] is inserted between every pair of layers so that the class information is injected.
Also, the dimension of input noise for the generator is fixed to 16 for all experiments.

Details of training. In the pretraining stage, the main embedding models are trained by
directly following the setting (e.g. batch size) presented in PS [10], while the conditional
generator is optimized by AdamW [24] with the learning rate of 1e-4 for all datasets. In the
joint training stage, the learning rate of the embedding network is set to 5e-5 for all datasets.
For the main embedding models incorporated with pair-based losses, we directly follow the
setting in [18] and apply our framework described above.

4.2 Comparison with State of the Art

Results on proxy-based losses. As summarized in Table 1, we observe that L2A-NC in-
corporated with proxy-based losses achieves non-trivial performance boosts in all datasets.
Especially, on the CUB and Cars datasets, our method outperforms the vanilla method and
PS [16] by a non-trivial margin (by 1.7%p and 1.0%p, respectively, in average Recall@1.).
However, on the SOP and In-Shop datasets, we find the tendency that performance boosts of
L2A-NC decreases compared to those on the CUB and Cars datasets, though L2A-NC still
shows competitive or better performance boosts than PS. We conjecture this is because the
SOP and In-Shop datasets have already a lot of training classes (11,318 and 3,997, respec-
tively) which are about 113 and 40 times compared to those of CUB or Cars. Nevertheless,
compared to PS, L2A-NC achieves more performance boosts except for R@1 on the SOP.

Results on pair-based losses. As shown in Table 2, L2A-NC outperforms not only the
vanilla loss but also PS. We find that PS fails to boost pair-based losses in most cases even
though it shows its effectiveness with proxy-based ones. Since pair-based losses are known
to be more vulnerable to noisy labels or outliers than proxy-based losses, we conjecture it is
because noisy synthetic classes and their embedding vectors of PS hamper model generaliza-
tion from scratch, which is discussed in Sec. 3.4. Furthermore, even when compared to the
current state-of-the-art sample generation method, Embedding Expansion (EE) [18], dedi-
cated to pair-based losses, our method achieves larger performance improvements. Note that
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Dataset +0% +25% +50% +100% +200%
CUB 69.1 69.3 69.6 69.5 69.7
SOP 79.2 79.3 79.5 79.5 79.9
In-Shop 91.9 92.0 92.2 92.2 92.3

Dataset Vanilla L2A-EC L2A-NC (Ours)
CUB 69.1 69.2 69.7
Cars 86.4 86.8 87.9
In-Shop 91.9 91.8 92.3

Table 3: Ablation studies on proposed L2A-NC. Left: Recall@1 versus the number of novel
classes. Right: Comparison between L2A-EC and L2A-NC in Recall@1.

Figure 5: t-SNE visualizations of the learned embedding space. Left: Embedding vectors
of both real and novel classes. Right: Embedding vectors of novel classes only.

no proxies are introduced in any procedure of ours and PS in Table 2 for a fair comparison.

4.3 In-depth Analysis on L2A-NC
Image retrieval results. We further demonstrate the superiority of L2A-NC through qualita-
tive results of image retrieval. Figure. 4 presents image retrieval examples of Proxy-Anchor
loss incorporating L2A-NC and those of the vanilla Proxy-Anchor. We observe that results
of the vanilla Proxy-Anchor are mostly incorrect and biased towards backgrounds rather
than target objects, whereas L2A-NC enables retrieval of correct images regardless of back-
ground. For example, the vanilla version failed to retrieve even a single correct image for
the Cars and SOP. However, the version incorporating L2A-NC retrieved correct images al-
though colors or viewpoints of target objects are substantially different from those of the
query. We demonstrate that L2A-NC functions as desired to regularize the vanilla method
not to be biased towards certain prevailing features in the dataset (e.g., background or view-
point) by augmenting novel classes unavailable in the original data.
Impact of the number of novel classes. Thanks to the architecture of our conditional gener-
ator, L2A-NC can define and synthesize an arbitrary number of novel classes. To investigate
the impact of the number of novel classes, we evaluate the performance of L2A-NC incor-
porated with Proxy-Anchor loss on the CUB, SOP, and In-Shop while varying the number of
novel classes. As shown in Table 3 (left), the performance increases by adding more novel
classes to some degree, but there is an upper bound of the effectiveness; it is natural since too
many novel classes may prevent the embedding model from understanding relations between
classes, leading to unstable training. In experiments, we fixed the number of novel classes
for all datasets: 200% of the number of existing classes.
Importance of generating novel classes. To verify that our performance boost is attributed
to the augmentation of embedding vectors of novel classes, we compare L2A-NC with its
variant that produces synthetic embedding vectors of existing classes; we call it L2A-EC.
L2A-NC and L2A-EC are incorporated with Proxy-Anchor loss and compared on the CUB
and the Cars in terms of Recall@1. As shown in Table 3 (right), compared to L2A-NC, L2A-
EC provided smaller improvements and even slightly worsened the vanilla method. These
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Class pair Mean of minimum KL divergence
Train–Test 56.7
Novel–Test 27.9

Table 4: Quantitative analysis about how
closely training and novel classes approx-
imate unseen test classes on the CUB.

Method sec / iter # of parameters R@1 boost
Vanilla 0.28 11.85M -
PS [10] 0.37 11.85M 1.1
Ours 0.43 12.24M 1.9

Table 5: Performance boost over training com-
plexity.

results are consistent with our hypothesis that novel classes unavailable in the original dataset
would provide richer signals than existing class data.

t-SNE visualization. To illustrate how embedding vectors of novel classes offer additional
signals, we visualize the learned embedding space. As shown in Figure 5, the generator
synthesizes embedding vectors that are realistic and discriminative. In detail, Figure 5 (left)
shows that embedding vectors of novel classes are located in between those of real classes
with forming their own clusters where embedding vectors of real classes do not exist. In
addition, Figure 5 (right) shows how novel classes are discriminative to each other. With
these results, we demonstrate how novel classes unavailable in the original dataset can offer
additional signals, which lead to better generalization on unseen classes.

Relation between novel classes and test classes. To demonstrate that the novel classes
we generate affect the robustness on unseen classes, we investigate how well the novel and
unseen test classes are aligned to each other in the learned embedding space. Specifically, we
quantify the degree of alignment through KL divergence: Each novel class is first matched
with its nearest test class with the minimum KL divergence, then the minimum divergence
values of all novel classes are averaged. We measure this score for training classes as well
for comparison. The results in Table 4 demonstrate that novel classes better approximate
test classes than training classes even though the conditional generator of L2A-NC is not
aware of test data; this suggests that the proposed method has the potential to improve the
generalization of the learned embedding space.

Training complexity. To be a promising option for practical usage, it is quite desirable for
L2A-NC to offer an appealing trade-off between performance boost and training complexity.
As shown in Table 53, compared to PS [10], L2A-NC achieves about 1.7 times more per-
formance boost averaged over every benchmark when incorporated with Proxy-NCA at the
cost of only 16% and 3% increase in training time and parameters. This result is brought by
our lightweight design: the generator consists of only a few layers and holding in memory
novel-class proxies is also negligible as well.

5 Conclusion

We have presented a novel data augmentation method for deep metric learning. Distinct
from existing techniques, the proposed method synthesizes novel classes and their embed-
ding vectors through a conditional generative model. Thanks to the carefully designed loss
functions and its architecture, the generator synthesizes novel classes that are realistic and
discriminative so it can offer richer semantic relations to an embedding model. As a re-
sult, our method enabled both proxy-based and pair-based losses to improve the quality and
search performance of the learned embedding space.

3All the results were produced on a NVIDIA TITAN RTX GPU.
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