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Abstract

Human learning benefits from multi-modal inputs that often appear as rich semantics
(e.g., description of an object’s attributes while learning about it). This enables us to
learn generalizable concepts from very limited visual examples. However, current few-
shot learning (FSL) methods use numerical class labels to denote object classes which do
not provide rich semantic meanings about the learned concepts. In this work, we show
that by using ‘class-level’ language descriptions, that can be acquired with minimal an-
notation cost, we can improve the FSL performance. Given a support set and queries,
our main idea is to create a bottleneck visual feature (hybrid prototype) which is then
used to generate language descriptions of the classes as an auxiliary task during train-
ing. We develop a Transformer based forward and backward encoding mechanism to
relate visual and semantic tokens that can encode intricate relationships between the two
modalities. Forcing the prototypes to retain semantic information about class descrip-
tion acts as a regularizer on the visual features, improving their generalization to novel
classes at inference. Further, this strategy imposes a human prior on the learned repre-
sentations, ensuring that the model is faithfully relating visual and semantic concepts,
thereby improving model interpretability. Our experiments on four datasets and abla-
tions show the benefit of effectively modeling rich semantics for FSL. Code is available
at: https://github.com/MohamedAfham/RS_FSL.

1 Introduction
Traditional classification models use class labels for supervision, expressed in a numerical
form or as one-hot encoded vectors [13]. However, humans do not solely rely on such
numerical class-labels to acquire learning. Instead, humans learn by communicating through
natural language, which is grounded in a complex structure consisting of semantic attributes,
relationships and abstract representations. Psychologists and cognitive scientists have argued
natural language descriptions to be a central element of human learning [6, 21, 29]. The
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This bird has a white belly, black 
spots near the breast and 

secondaries, and a black eyebrow

Classification Boundaries 
without rich semantics

Classification Boundaries 
with rich semantics

This bird has a white throat with 
a light brown belly and abdomen

Small bird, beige with scattered black 
spots, goldenrod eyebrows, pale gray 

pointed bill, black eyes

Figure 1: In FSL setting, where we require generalizabil-
ity to novel classes with limited samples, modeling seman-
tic attributes of classes can help disambiguate confusing
classes. We suggest that the numerical class labels tradi-
tionally used in FSL are inadequate to represent diverse
semantic attributes of an object class, which can be mod-
eled via low-cost class-level language descriptions (col-
ored boxes). Our approach effectively utilizes language in-
formation to learn both highly discriminative and transfer-
able visual representations that help to avoid errors in am-
biguous cases (e.g., visually similar fine-grained classes).

depiction of semantic class labels with numerical IDs leads to a semantic gap between the
class semantic representation and the learned visual features.

We consider a few-shot learning setting where language descriptions for the seen (base)
classes are available during training but not for the novel (few-shot) class that appear dur-
ing inference. Remarkably, studying the potential of language descriptions has particular
relevance to FSL, where a model must learn to generalize from few-samples and several
categories can only be discriminated with subtle attribute-based differences (Fig. 1). We hy-
pothesize that by predicting natural language descriptions as an auxiliary task during train-
ing, the model can learn useful representations that help transfer better to novel tasks during
the inference stage. This helps the representations to explicitly model the shared semantics
between the few-shot samples so that the class descriptions can be successfully generated.

The language description task while learning to classify images forces the model to attain
following desirable attributes: (a) model high-level compositional patterns occurring in the
visual data e.g., attributes in fine-grained bird classes; (b) avoid over-fitting on a given FSL
task by imposing a regularizer demanding natural description from the class prototype; and
(c) provide intuitive explanation for the learned class concepts e.g., the description of an ob-
ject type, attributes, function and affordance in a human interpretable form. Importantly, the
error feedback obtained from such a supervised task (natural language description) can help
align a model with the ‘human prior’. Our RS-FSL approach is generic in nature and can be
plugged into existing baselines models or with other multi-task objectives (e.g., equivariant
self-supervised learning losses). Although we discard the language description module at
inference, it is useful as a debugging tool to understand the model’s behaviour in case of
wrong predictions (e.g., highlighting which attributes were mistaken or ambiguous).

Contributions. Our objective induces a generative task of natural language description for
few-shot classes that forces the model to learn correlations between same class samples such
that consistent class descriptions can be generated. The limited set of class-specific samples
acts as a bottleneck that encourages extraction of shared semantics. We then introduce a
novel transformer decoding approach for few-shot class description that relates the hybrid
prototypes (obtained using the collective support and query image features) with the corre-
sponding descriptions in both forward and backward directions. Our design allows modeling
long-range dependencies between the sequence elements compared to previous recurrent ar-
chitectures. Finally, our experiments on four datasets show consistent improvements across
the FSL tasks. We extensively ablate our approach and analyze its different variants. The
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proposed transformer decoder acts as a plug-and-play module and shows gains across popu-
lar FSL baselines namely ProtoNet [30], RFS [33] and Meta-baseline [4].

2 Related Work
Only a few-methods explore the potential of rich semantic descriptions in the context of FSL.
A predominant approach has been the incorporation of unsupervised word embeddings or a
set of manual attributes to represent class semantics. For example, [5] uses semantic em-
beddings of the labels or attributes to guide the latent representation of an auto-encoder as a
regularizer mechanism. Xing et al. [38] dynamically learn the class prototypes as a convex
combination of visual and semantic label embeddings (based on GloVe [24]). However, these
embeddings require manual labeling (in case of attributes) or remain noisy if acquired via
unsupervised learning. Additionally, representing rich semantics in a single vector remains
less flexible to encode the complex semantics. In contrast, our approach flexibly learns the
semantic representations with class-level language descriptions to improve upon the noisy
unsupervised word embeddings. Schwartz et al. [28] extended [38] to exploit various seman-
tics (category labels, text descriptions and manual attributes) in a joint framework. However,
they use language descriptions as inputs rather than an extra supervision signal to train the
visual backbone. Thus, these methods [28, 38] require attribute information or descriptions
for novel classes during inference which can be hard to acquire for few-shot classes.

Image-level captions have been used in [8, 39] to align visual and semantic spaces with a
multi-modal transformer model [14]. This can help learning from a limited set of base classes
and scales to unseen classes [39]. [9] models annotator rationale as a spatial attention and the
relevant attributes for a given input image. However, unlike our work, these methods do not
study the FSL problem where image-level captions can cause overfitting. Furthermore, they
require image-specific captions and rationales (not just “what” but also “why”) which can be
costly, even for a small number of base classes. Since acquiring high-quality explanations
[1, 22] from experts can be expensive, efforts have been made to reduce the manual cost
needed to acquire such annotations. To this end, ALICE model [19] acquires contrastive
natural language descriptions from human annotators about the most informative pairs of
object classes identified via active learning. In contrast, our approach only requires class-
level descriptions that are easy to acquire compared to image level semantic annotations.

Andreas et al. [1] use the language descriptions during the pertaining stage in FSL to
learn natural task structure. Once the model is pretrained to match images to natural descrip-
tions, it can be used to learn new concepts by aligning natural descriptions with the images at
inference. In contrast to inference stage alignment, LSL [22] introduced a GRU branch with
language supervision to enrich the backbone features and discards the branch during infer-
ence. However, decoding mechanism in [1, 22] does not explicitly encode both forward and
backward relations in the language, suffers in encoding long-term relationships and cannot
relate multiple class-level descriptions with the visual class prototypes.

3 Proposed Method

3.1 Preliminaries
Problem Settings. In the standard few-shot image classification setting, we have access to a
labelled dataset of base classes Cbase with enough number of examples in each class, and the
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Figure 2: Overall architecture of the RS-FSL. Fundamentally, it consists of a visual backbone
followed by a prototypical network to compute the classification loss (denoted by classifi-
cation branch). We aim at encoding visual-semantic relationships that are in turn harnessed
for enriching the visual features. To this end, we propose generating class-level language
descriptions constrained on a hybrid prototype via developing a transformer based forward
and backward decoding mechanism (denoted as language branch). Our method jointly trains
the classification and language losses.

aim is to learn concepts in novel classes Cnovel with few examples, given Cbase∩Cnovel = /0.
Pretraining. Following the recent works in FSL [4, 36], we pretrain the visual backbone,
parameterized by θ , on Cbase in a supervised manner. We assume access to a dataset of image
(x) and label (y ∈ Cbase) pairs: D = {xi,yi}M

i=1. The visual backbone maps the input image
x to a feature embedding space Rd by an embedding function fθ : x→ v. In turn, the linear
classifier fΘ : v→ p, parameterized by Θ, maps the features generated by fθ to the label
space RL where L denotes the number of classes in Cbase. We optimize both θ and Θ by
minimizing the standard cross-entropy loss:

Lpre(p,y) =− log
exp(py)

∑ j exp(p j)
(1)

Episodic Training. After pretraining the visual backbone, we adopt the episodic training
paradigm which has shown effectiveness for FSL. It simulates few-shot scenario faced at
test time via constructing episodes by sampling small number of few-shot classes from a
large labelled collection of classes Cbase. Specifically, each episode is created by sampling N
classes from the Cbase forming a support class set Csupp ⊂ Cbase. Then two different example
sets are sampled from these classes. The first is a support-set Se = {(si,yi)}N×K

i=1 comprising
K examples from each of N classes, and the second is a query-set Qe = {(q j,y j)}Q

j=1 contain-
ing Q examples from the same N classes. The episodic training for few-shot classification
boils down to minimizing, for each episode e, the loss of prediction on the examples in the
query-set (q j,y j) ∈ Qe, given the support set Se:

Lepi = E(Se,Qe)

Q

∑
j=1

logPθ (y j|q j,Se). (2)

Prototypical Networks. We develop proposed method on a popular metric-based meta-
learning method named Prototypical network [30], owing to its simplicity and effectiveness.
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However, ours is a plug-and-play training module which can work seamlessly with other
FSL methods (as demonstrated in Sec. 4.2). Prototypical networks leverage the support set
to compute a centroid (a.k.a prototype) for each class in a given episode, and query examples
are classified based on distance to each prototype. The model is a convolutional neural
network with parameters θ , that learns a d-dimensional space where examples from the
same class are clustered together and those of different classes are far apart. Formally, for
each episode e, a prototype pc corresponding to class c ∈ Cbase is computed by averaging the
embeddings of all support samples belonging to class c:

pc =
1
|Sc

e|
∑

(si,yi)∈Sc
e

fθ (x), (3)

where fθ is the pretrained visual backbone, and Sc
e is the subset of support belonging to class

c. The model generates a distribution over N classes in an episode after applying softmax
over cosine similarities between the embedding of the query q j and the prototypes pc:

Pθ (y = c|q j,Se) =
exp(τ.〈 fθ (q j),pc〉)

∑k exp(τ.〈 fθ (q j),pk〉)
, (4)

where 〈., .〉 is the cosine similarity, k ∈ Csupp, and τ is the learnable parameter to scale the
cosine similarity for computing logits [4]. The model is trained by minimizing Eq. 2. In the
following section, we propose capturing rich and shared class-level semantics for FSL tasks
via predicting natural language descriptions.

3.2 Capturing Rich Semantics for FSL
We show that by leveraging class-level semantic descriptions, the performance of FSL tasks
can be improved. To this end, we create a bottleneck visual feature (termed hybrid proto-
type) to generate the language descriptions of classes as an auxiliary task. We introduce a
language description branch featuring a Transformer based forward and backward decoding
mechanism to connect hybrid prototypes with the corresponding descriptions both in for-
ward and backward directions. This enforces the model to capture correlations between the
same class examples so as to produce consistent class level descriptions.The hybrid proto-
type that is obtained using the support and query visual features facilitates the extraction
of shared semantics. Furthermore, our language branch allows modelling long-range depen-
dencies between the sequence of token vectors compared to prior recurrent architectures. We
elaborate these components below.
Mapping visual features to language description. For each class c ∈ Cbase, we assume to
have dc class-level language descriptions Wc = {w1,w2, ...,wdc}. Each wi =(wi,1,wi,2, ....wi,Ti) :
i ∈ {1,dc} is a language description of variable length Ti tokens where wi,1 = 〈s〉 represents
the start of the sentence token and wi,Ti = 〈/s〉 denotes the end of the sentence token. Let p̃c
be the hybrid prototype formed after averaging the embeddings of support examples Sc

e and
query examples Qc

e of class c, as follows:

p̃c =
1

|Sc
e|+ |Qc

e|
∑

x∈(Sc
e∪ Qc

e)

fθ (x). (5)

Notably, the hybrid prototype p̃c contrasts with pc that only averages the support features.
Our language module, associates the hybrid prototype p̃c with the corresponding descriptions
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Figure 3: Transformer decoder architec-
ture (bottom box) for generating class-
level natural language descriptions based
on multi-head attention (top box). We
replicate the same architecture for both for-
ward and backward decoding mechanisms.
After the last Transformer layer, we apply
a linear layer to get output un-normalized
log probabilities over the token vocabulary.

Wc in both forward and backward directions. Specifically, the proposed transformer decoding
function gφ , parameterized by φ , takes the hybrid prototype p̃c and predicts class semantic
descriptions W̃c. It comprises a forward and a backward model which allows it to generate
each description w̃i token-by-token from left-to-right and right-to-left, respectively, and uses
the following language loss for training:

Llang(θ ,φ) =
1
2

( N

∑
i=1

Ti

∑
t=2
− loggφ (w̃i,t = wi,t | p̃c)+

N

∑
i=1

1

∑
t=Ti−1

− loggφ (w̃i,t = wi,t | p̃c)
)
.

We jointly train the (pretrained) visual backbone fθ and the language description branch
gφ , in an episodic manner, after combining both the classification and language losses:

Ltrain = Lepi +λLlang, (6)

where λ balances the contribution of Llang towards the joint loss Ltrain. Our overall objective
provides a learning signal that facilitates aligning the model with the human semantic prior
of which representations are more transferable than others. We discard the language descrip-
tion branch after the training loop during inference. However, it can be beneficial towards
understanding the model behaviour for incorrect predictions e.g. finding which attributes
were mistaken during inference.
Transformer Decoder Architecture. Inspired by recent advances in language modelling,
we propose to use Transformers [34], for decoding class-level descriptions in both forward
and backward directions (Fig. 3). Transformers feature multi-head self-attention and not
only can propagate the contextual information over sequence of description tokens but have
the expressive capability to relate the hybrid prototype to semantic tokens in class-level de-
scriptions. In a training episode, each image is accompanied with a corresponding class
description. The hybrid prototype p̃c of a given class is replicated to match the number of
descriptions available in the episode and denoted by p̃rep

c . To reduce the complexity of the
resulting feature tensor, it is projected through a linear layer. The projected hybrid prototype
p̃pro j

c is then fed to the decoder module.
We embed the class-level descriptions using the Embedding Module (Fig. 2) which is

initialised with pretrained GloVe [24]. The result is a set of embedded description tokens,
which are fed to both forward and backward transformer decoders. The decoder first per-
forms a multi-head self-attention over description token vectors and then applies multi-head
attention between the projected hybrid prototype and descriptive token vectors. In each
multi-head attention block, the inputs are transformed to query (Q), key (K) and value (V)
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triplets using a set of transformation matrices. Attention mechanism is similar to [34] where
the future elements of the description are masked to perform masked multi-head attention
(see architecture in Fig. 3). It then applies a two-layer fully connected network to each vec-
tor. All these operations are followed by dropout, enclosed in a residual connection, and
followed by layer normalization. After passing through transformer layers, we apply a linear
layer which is common to both forward and backward decoders of each vector to produce
un-normalized log probabilities over the token vectors. Following recent works [8], our
transformer employs GELU activation [12] instead of ReLU.

4 Experiments
Datasets. CU-Birds [37] is an image dataset with 200 different birds species each having
40-60 images. Following [31], we split the available classes into 100 for training, 50 for
validation and 50 for testing. VGG-Flowers is a fine-grained classification dataset compris-
ing 102 flowers categories. Following [31], we split the dataset into 51 for training, 26 for
validation and 25 for test classes. For both CUB and VGG-Flowers datasets, we acquire
natural language descriptions for the images from [26] which provides 10 captions per im-
age. Since our method leverages class-level descriptions, we sample the required number of
descriptions from the (available) captions of the images belonging to each class, but those
are consistently used for all the class images. miniImageNet [35] is a popular dataset for
few-shot classification tasks. It consists of 100 image classes extracted from the original
ImageNet dataset [7]. Each class contains 600 images of size 84×84. We follow the split-
ting protocol proposed by [35], and use 64 classes for training, 16 for validation, and 20 for
testing. Since, class level descriptions for this dataset are unavailable, we manually gathered
them from the web. Some representative examples of class-level descriptions for miniIm-
ageNet are shown in the supplementary material. ShapeWorld is a synthetic multi-modal
dataset proposed by [16]. It consists of 9000, 1000, and 4000 few-shot tasks for training,
validation and testing, respectively. Each task has a single support set of K = 4 images that
are representing a visual concept with an associated natural language description, which we
consider as the class-level descriptions. Each concept describes a spatial relation between
two objects, and each object is optionally qualified by color and/or shape, with 2-3 distractor
shapes around. The task is to predict whether a query image belongs to the concept or not.
Implementation Details. For fair comparisons with prior works, we deploy the following
CNN architectures as visual backbones: 4-layer convolutional architecture proposed in [30]
for CUB, ResNet-12 for miniImageNet [4, 17, 33], and ResNet-18 [31] for VGG-Flowers.
For evaluation on all datasets, we use the challenging FSL setting of 5-way 1-shot and re-
port accuracy averaged across few-shot tasks along with 95% confidence interval. During
pretraining stage, we use SGD optimizer with an initial learning rate of 0.05, momentum of
0.9, and weight decay of 0.0005. We train the model for 100 epochs with a batch size of
64 and the learning rate decays twice by a factor of 0.1 at 60 and 80 epochs. Both forward
and backward decoders are configured with a hidden layer size of 768, 12 attention heads,
a feed-forward dimension of 3072 and with a 0.1 dropout probability. We use Adam opti-
mizer with a constant learning rate of 0.0005 throughout and train the models for 600 epochs.
Standard data augmentation e.g., random crop, color jittering and random horizontal flipping
are applied during the meta-training stage. We fix λ = 5 in all experiments. τ is initialized
as 1 for experiments with CUB and VGG-Flowers while for miniImageNet experiments it’s
initialized as 10. We use 2 layers of transformer decoders based on validation and study
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miniImageNet CUB

Method Backbone Accuracy Method Backbone Accuracy

ProtoNet [30] Conv-4 55.50±0.70 MatchingNet [35] Conv-4 60.52±0.88
Matching Net [35] Conv-4 43.56±0.78 MAML [10] Conv-4 54.73±0.97

MAML[10] Conv-4 48.70±1.84 ProtoNet [30] Conv-4 50.46±0.88
Chen et al. [3] Conv-4 48.24±0.75 RFS [33] Conv-4 41.47±0.72

Relation Net[32] Conv-4 50.44±0.82 RelationNet [32] Conv-4 62.34±0.94
TADAM [23] ResNet-12 58.50±0.30 L3 [1] Conv-4 53.96±1.06

MetaOptNet [17] ResNet-12 62.64±0.61 LSL [22] Conv-4 61.24±0.96
Boosting [11] WRN-28-10 63.77±0.45 Chen et al. [3] Conv-4 60.53±0.83

RFS-Simple [33] ResNet-12 62.02±0.63 DN4-DA [18] Conv-4 53.15±0.84
RFS-Distill [33] ResNet-12 64.82±0.60 HP [15] Conv-4 64.02±0.24

Meta-Baseline [4] ResNet-12 63.17±0.23 Meta-Baseline [4] Conv-4 59.30±0.86

RS-FSL ResNet-12 65.33±0.83 RS-FSL Conv-4 65.66±0.90

Table 1: Comparison with prior works on CUB and miniImageNet. Our method, RS-FSL,
allows exploiting semantic information during training only.

the effect of different layers in Fig. 4. We use 20 class-level descriptions for both CUB and
VGG-Flowers while for miniImageNet we use all 5 descriptions available per class. During
inference, we discard the language description branch and rely on the visual backbone to
perform few-shot classification. To be consistent with previous works [3, 31], we sample
600 few-shot tasks from the set of novel classes. For ShapeWorld dataset, following [22]
we train for 50 epochs with a constant learning rate of 0.00005 with Adam optimizer. Dur-
ing training, we use λ = 20 and similar transformer decoder architecture parameters as the
experiments in other datasets.

4.1 Comparison with state-of-the-art
We compare the performance of our method with eleven existing top performing approaches
on CUB dataset in Tab. 1 (right). Our method delivers a significant improvement of 6.36%
over a strong baseline method [4]. Tab. 1 (left) reports experimental results on miniIma-
geNet. RS-FSL provides an improvement of 2.16% over the competitive baseline [4]. Com-
pared to prior works, our method attains a higher accuracy of 65.33% and demonstrates the
best performance. Experimental results for ShapeWorld dataset are reported in Tab. 2(b).
RS-FSL outperforms the existing best performing method LSL [22] by a margin of 1.15%.
Further, the results for VGG-Flowers dataset are shown in Tab. 2(a). RS-FSL performs fa-
vorably against all competing methods and achieves the best accuracy of 75.33%. Overall,
RS-FSL consistently show gains on all four datasets. We note the improvement is more
significant in CUB as compared to others since the class samples conform better with the
language descriptions as compared to e.g., Flowers dataset. Thus our class-level descrip-
tions show more effectiveness there. The increment on miniImageNet is relatively less pro-
nounced due to the limited class descriptions obtained manually by us (only 5 per class). We
also display some qualitative examples in supplementary material which show that RS-FSL
encourages the model to focus on semantically relevant visual regions.

4.2 Analysis and Ablation Study
We perform all ablation experiments on CUB dataset with a Conv-4 visual backbone archi-
tecture following ProtoNet [30] baseline.
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(a) Performance on VGG-Flowers

Method Accuracy
ProtoNet [30] 72.38±0.98

Matching Net [35] 73.51±0.94
MAML[10] 65.46±1.05

Chen et al. [3] 74.09±0.84
Relation Net[32] 55.59±1.09
Meta-Baseline [4] 73.35±0.98

RS-FSL 75.33±0.96

(b) Performance on ShapeWorld

Method Accuracy
ProtoNet [30]† 50.91±1.10

L3 [1]† 62.28±1.09
LSL [22] 63.25±1.06
RS-FSL 64.40±0.99

Table 2: Comparison on VGG-Flowers and ShapeWorld. † Results reported in [22].

The effect of different baselines and word embeddings. To demonstrate the generalizabil-
ity of our approach, we show its improvements across three popular baseline FSL approaches
both with and without using language prediction during training (see Tab. 3(a)). We note
that the proposed language prediction mechanism constrained on a bottleneck visual feature
(hybrid prototype) consistently improves the performance under all three baseline methods:
ProtoNet [30], RFS [33], and Meta-Baseline [4]. Tab. 3(b) reports the impact on perfor-
mance when using three different word embeddings to represent the words: Word2Vec [20]
, GloVE [24], and fastText [2]. Our method retains similar accuracies under both Word2Vec
and GloVe, however, it performs slightly inferior when deploying fastText. This reveals that
RS-FSL is robust to the choice of word embeddings and favorable gains are obtained over
the baseline method regardless of the embedding type used.

(a) Effect of different baselines

Baseline Backbone Without RS With RS

ProtoNet [30] Conv-4 57.97±0.96 63.86±0.91
RFS [33] Conv-4 44.93±0.76 46.84±0.86

Meta-Baseline [4] Conv-4 59.30±0.86 65.66±0.90

(b) Impact of Different Word embeddings

Word Embedding Backbone Accuracy % gain
over baseline

Word2Vec Conv-4 63.28±0.95 5.31
GloVe Conv-4 63.86±0.91 5.89

fastText Conv-4 61.77±0.98 3.80

Table 3: (a) Performance of different baselines both with and without our rich semantic (RS)
modeling and (b) performance when using three different word embeddings.

Number of class-level descriptions. Fig. 4 (left) shows that upon increasing the number
of class-level descriptions from 1 to 20 the accuracy peaks to a maximum of 63.86%, how-
ever, it starts to saturate after increasing beyond 20. This could be because beyond a certain
number of class-level descriptions, the semantic attributes collected from the available de-
scriptions possibly become saturated, rendering the additional descriptions redundant.

Figure 4: Performance upon varying the number of
class-level descriptions (left) and the number of Trans-
former decoder layers (right).

 
This bird has a fat bill and a short stubby tail 

with a blue streak on its wing 

This large with red eyes a belly and burgundy 

colored throat 
 

This bird is brown and greyish with a very dark 

eye and black feathers on its wing 
 

 
This is a dark orange bird with a yellow wings 

flank and tail and white throat  

Query 

Image 
 

Prediction Generated Description 

Figure 5: Class-level descriptions
generated by RS-FSL for novel
query images during inference.
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Method Backbone Accuracy

Forward Decoder Conv-4 62.03 ± 0.93
Bidirectional Decoder Conv-4 63.86 ± 0.91

Table 4: Performance using only the for-
ward decoding and the developed bidirec-
tional decoding.

Fig. 4 (right) shows that our method retains the highest accuracy (63.86%) when employing
two Transformer layers. However, it starts to deteriorate after further increasing the number
of layers i.e. 3 to 5. The inferior performance is most likely due to over-fitting caused by the
over-parameterization of the language description model given a relatively small dataset.
Language decoding mechanisms. We replace the bidirectional language decoding mech-
anism with just the forward decoding and observe that the former improves accuracy by
1.83% compared to latter (Tab. 4). Bidirectional decoding can better relate the visual cues
with language semantics as it can model two-way interaction between the tokens, thereby
facilitating the learning of generalizable visual representations vital for few-shot scenarios.
Auxiliary self-supervision. We compare the performance of different auxiliary self-supervi-
sed approaches with our proposed method (Tab. 5). The first auxiliary self-supervised task
is predicting the rotation angle of the visual input [25, 27], and the others are predicting lan-
guage using LSTM-GRU based recurrent architecture (ProtoNet +GRU) [22] and predicting
the semantic word embedding corresponding to the prototype (ProtoNet + Word Embed-
dings). We observe that the proposed transformer based (bidirectional) language decoding
mechanism significantly improves the performance (5.97%) over the method that is not us-
ing any auxiliary self-supervision (ProtoNet (without semantics)). Further, our approach
outperforms the other auxiliary self-supervision methods, Proto+Rotation, Proto+Word Em-
beddings and Proto+GRU, by a margin of 4.6%, 3.61% and 2.62% respectively.

Fig. 5 shows class-level descriptions generated by RS-FSL for novel query images (in
CUB dataset) during inference. We note that generated descriptions allow us interpreting the
model behaviour for incorrect prediction, e.g. finding the bird attributes that are confused.

Method Accuracy

ProtoNet (without semantics) 57.97±0.96
ProtoNet + Rotation 59.20±0.97
ProtoNet + Word Embeddings 60.25±0.93
ProtoNet + GRU [22] 61.24±0.96
RS-FSL + Class Descriptions 63.86±0.91

Table 5: Comparison between differ-
ent auxiliary training methods. Aver-
age few-shot 5-way 1-shot accuracy re-
ported with 95% confidence interval

Extra Cost vs Performance boost. We use Nvidia-RTX Quadro 6000 single-GPU for our
training. We observed that training in miniImageNet dataset without auxiliary supervision
took around 4 hours for training while RS-FSL took 5 hours with additional transformer
decoder layers. Further our model obtains a performance boost of 2% over the baseline in
miniImageNet (Tab. 1 left).

5 Conclusion
We presented a new FSL approach that models rich semantics shared across few-shot exam-
ples. This is realized by leveraging class-level descriptions, available with less annotation
effort. We create a hybrid prototype which is used to produce class-level language predic-
tions as an auxiliary task while training. We develop a Transformer based bi-directional
decoding mechanism to connect visual cues with semantic descriptions to enrich the visual
features. Experiments on four datasets show the benefit of our approach.
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