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Abstract

Hepatocellular carcinoma (HCC) is one of the most common cancers with high mor-
tality. In clinic, pathology grade assessment is laborious work with high divergence and
misdiagnosis rate. Many computer-assisted grading methods were proposed to increase
the objectivity of diagnosis and reduce workload. With massive accurate annotation,
deep learning based methods have achieved promising results in tumor grading. How-
ever, annotating pathology images is very time-consuming and hard to be precise. The
inevitable noises caused by manual annotation have been ignored by existing tumor grad-
ing methods, which leads to serious performance degradation. In this paper, we propose
a Tendentious Noise-rectifying Framework (TNF) for HCC grading on pathology im-
ages with noisy annotations. A fundamental way to reduce the negative impact of those
noisy data is finding and rectifying those noises. So, we devise a noise-rectifying loss to
rectify those noisy labels with high confidence. The rectifying tendency is dynamically
adjusted by the feature polymer that contains structural information of a large local area
of pathology image. We collect 415 hepatocellular biopsy slides and crop 20,000 patches
as the dataset. Exhaustive experiments on this dataset demonstrate that, with the noise-
rectifying loss, TNF achieves state-of-the-art performance and finds out the carcinoma
cells in the healthy area, which has significant meaning for the diagnosis of HCC.

1 Introduction
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancer with the
second highest mortality rate among men [3]. Clinically, pathology slides are regarded as
the ‘gold standard’ and can provide better evidence for diagnosing the disease than CT and
X-ray samples. The pathological grading of HCC has significant implications for prognostic
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[19]. However, the grading results can be highly subjective and susceptible to misdiagnosis,
and the process is also time-consuming. So, it’s meaningful to develop an accurate and
objective method for the HCC grading in pathology images.

Recently, deep learning approaches have achieved promising results in the medical image
analysis area, such as pneumonia detection [11, 23], diabetic retinopathy detection [12],
breast masses segmentation [7, 14], etc. Unlike these examples, the pathology slides of
HCC have some unique characteristics. First of all, the size of the Whole-slide Images
(WSIs) in the collected HCC dataset is up to 200,000 pixels wide, which is much larger
than images of regular datasets. Since the diagnosis mainly bases on cellular level view and
downsampling of the whole slides will lose critical information, the slides need to be cropped
into small patches before inputting to the model. In this condition, a small deviation of the
boundary will lead to many mislabeled patches. The ultra-large size makes the annotating
very complicated and results in a particularly high noise rate. Secondly, although in most
slides, cells of the same HCC slides have homogeneous grades, there still contains regions
mixed of carcinoma cells and normal cells. Since it’s impractical to check out every small
area because of the large size of the WSIs, some components like blood vessels located in the
tumor region or small clusters of carcinoma cells outside the tumor will be easily neglected.
Those unique characteristics bring the inevitable noisy annotations, which leads to serious
performance degradation and overfitting of existing methods [1, 17].

In order to have a clear understanding of this dataset, a sample of HCC slide is shown
in Fig. 1. Here the tumor in this slide belongs to the grade 2, so all the patches located
within the tumor region (blue circle) are annotated as grade 2 (cancerous) and the others are
annotated as grade 0 (healthy). Besides, considering the potential errors, all patches have the
reversed labels (healthy→ cancerous, cancerous→ healthy), which provides the opportunity
for rectifying mislabeled samples.

Figure 1: Illustration of 50x patches in a HCC slide. The blue circle in the middle figure
is the annotation of the tumor. In this slide the tumor belongs to the grade 2. All patches
cropped from tumor region are annotated as grade 2 and the reversed labels are grade 0.
Labels of patches cropped outside this region are opposite. Some examples of the ground
truth being consistent with the annotated or reversed labels are also shown.

In view of HCC samples’ characteristics, the structural information can be utilized to
rectify the mislabeled patches. We propose the Tendentious Noise-rectifying Framework
(TNF) for HCC grading with noisy annotations. TNF takes two inputs: small-scaled patches
and corresponding large-scaled feature polymers, representing the cellular information and
the surrounding structure of each patch. Besides, noise-rectifying (NR) loss is proposed with
two optimizing targets toward the annotated and reversed labels. The tendencies to these two
labels in NR is determined by the surrounding structure extracted from feature polymer. The
NR loss and feature polymer make the combined effect of rectifying the influence of the
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noise. Moreover, an HCC dataset is collected, containing 20,000 patches from 415 WSIs
with rough annotations by pathologists. Exhaustive experiments demonstrate the excellent
performance of TNF on this dataset.

In summary, our main contribution is the first rectifying noise by integrating cellular
and structural information for HCC grading. Also, The NR loss and feature polymer are
designed according to the essential cause of the noise. With the combined effect of these two
components, the model will be optimized selectively on the annotated or reversed labels,
lessening the overfitting of incorrect labels.

2 Related Work

In this section, we survey two most related areas: computer-aided diagnosis on tumor and
noisy label learning.

Computer-aided Tumor Diagnosis. For existing works aiming at tumor diagnosis, some
researchers employed traditional machine learning methods such as random forest [16, 21]
and support vector machine [9]. But the performance of these methods highly relies on
the quality of hand-crafted features. Aiming at gigapixel histopathology images, Tellez et
al. [28] applied neural image compression to map the whole-slide to low-dimensional em-
bedding vectors for image-level classification. For patch-level prediction, Xu et al. [30]
proposed CAMEL based on multiple-instance learning (MIL), which selected the most cred-
ible samples as clean data to retrain the model. Chikontwe et al. [4] proposed an end-to-
end framework to combine instance-based MIL and embedding-based MIL. Diao et al. [8]
added some artificial samples as negative ones for improving the model’s generalization. In
essence, MIL and artificial images merely reduce the weight of mislabeled patches, which
cannot fundamentally solve the noise problem. So, the performance is still limited.

Learning with Noisy Labels. Referring to [1], researches on noisy label learning can be
divided into model-based and model-free methods. For model-based methods, noise chan-
nel is one of the most wildly used techniques, which models an estimator to predict hidden
true labels with the noisy labels. Most methods of this kind adopted confusing matrix as
the noise channel [6, 20]. Take the work of Tanno et al. [27] as an example, the frame-
work consisted of two connected models. The former predicted the hidden truth predictions,
and the latter predicted the noisy labels by ground truth. Another kind of methods aims to
model-freed denoising such as robust losses [22] and regularizers [17, 18]. These methods
were designed to prevent overfitting without modeling the noise. For example, Wang et al.
[29] researched the learning procedure and proposed Symmetric Cross Entropy (SCE). They
mathematically proved the noise tolerance of the loss and achieved great results in the dataset
with artificial noisy labels. These methods dealt with noise only by single images, and most
of them evaluated on datasets with artificial noisy labels. Unlike that, there is a specific
relationship between each mislabeled patch and the surrounding information in HCC sam-
ples. For instance, the blood vessel patch surrounded by cancer samples is preferred to be
labeled as cancer, because such small regions in the tumor can be easily missed. Without
large-scaled sight, these existing methods will lack crucial information for HCC pathology
image grading.
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3 Tendentious Noise-rectifying Framework
Aiming at the inevitable noises in pathology images, we propose the Tendentious Noise-
rectifying Framework (TNF) for pathological grading of HCC. In TNF, noise-rectifying
means the optimizing on NR loss makes the model rectify prediction on the reversed la-
bel when the predicted confidence on the original label is low, which is proved in Section
3.3. And different samples in this process has different tendencies, reflecting the confidence
of the annotated labels derived from the structural information. The architecture is shown in
Fig. 2. The TNF takes two components as input: HCC patches and corresponding feature
polymers, representing the cellular detail feature and surrounding structural feature. In addi-
tion to assisting classification, the feature polymer also decides the tendency of the proposed
Noise-Rectifying loss (NR), which is designed to rectify noises in pathology images. From
the right figure it can be seen that NR loss will be minimized when either p or p̂ is equal
to 1, but the optimization tendency depends on α . In summary, TNF makes comprehensive
utilization of both cellular and structural features, which effectively extracts information for
noise rectification with the NR loss, and eventually improves the classification performance.

Figure 2: The flow diagram of Tendentious Noise-rectifying Framework (TNF), which is
composed of two branches. The main branch (the bottom one) extracts cellular features Fc
from central patches by encoder Ec. The top branch takes the surrounding areas from corre-
sponding patches as input, and the features output by pre-trained encoder Es are aggregated
as feature polymer. After that, the feature polymer is embedded to the representations Fs,
which is combined with Fc for final classification. What’s more, the noise coefficient α is
also predicted by feature polymer. The Noise-Rectifying (NR) loss is calculated according
to the output results and α . The curves of NR loss reflects the effects of different α . In
this figure it assumes that p+ p̂ = 1 to simplify the condition, where p and p̂ denotes the
predicted probability on the annotated label and reversed label, respectively.

3.1 Noise-Rectifying Loss
In deep learning, noisy labels has fatal impacts on the performance and robustness of models,
which has been verified by [2, 17]. In regular classification tasks, the Cross-Entropy (CE)
loss function is defined as follows:

LCE =−
K

∑
k=0

Yklog(Pk), (1)

where K denotes the number of the classes, Yk and Pk denote the GT and predicted probability
of k-th class, respectively. During the optimization with CE, the predicted probability on
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noisy labels will be forced to improve, resulting in the overfitting problem. It might aggravate
in some hard tasks and lead to poor generalization performance.

A fundamental way to reduce the negative impact of those noisy labels is finding and
rectifying the noise. So, we devise the Noise-Rectifying (NR) loss, which can dynamically
rectify the high confidence samples in the training stage. In the collected HCC dataset, all
patches from the same slide can be categorized as cancer of the same grade or benign one.
However, the healthy and cancerous area of one slide both contains opposite patches. For a
clear description, the reversed label is denoted as Ŷ (original noisy label is Y ). For example,
for a patch in the cancerous area of grade 2 slides, the original label Y2 = 1 (grade 2) and the
reversed label Ŷ0 = 1 (healthy). Due to the condition that only one cancer category occurs in
a pathology image, there is no reverse between different cancer categories. An example is
shown in Fig. 1.

Inspired by the fuzzy loss of [10], we devise a tendency hyper-parameter for rectifying
noise labels in NR loss LNR, which is defined as follows:

LNR =−log(1− (1− p)1−α(1− p̂)α), (2)

where α denotes the noise coefficient, p denotes the predicted probability on the anno-
tated label and p̂ denotes the predicted probability on the reversed label, which means
p = ∑

K
k=1 YkPk and p̂ = ∑

K
k=1 ŶkPk. Low value of α represents low probability of mislabeling.

Fig. 2 shows the curves of LNR with the variable α . In the case that α = 0.1, the mini-
mization of NR leads to the growth of prediction on annotated label if p > 0.1. Otherwise,
if p < 0.1, the prediction on annotated label will reduce and the prediction on the reversed
label increases. The noise coefficient α in NR represents the tolerant threshold value. As
will be proved in Section 3.3, a small constant of α is beneficial for rectifying target to the
reversed label on samples with high confidence. What’s more, for an adaptive tendency of
different cases, the α is dynamically determined by the feature polymer, as described below.

Additional, extra regular term is introduced in TNF to restrain training process. Since
the rectification ability of NR loss is highly dependent on the quality of α , 1− p is utilized as
the supervised target of α in the early stage. In summary, the combined loss for each sample
is derived as :

Ltotal =−log(1− (1− p)1−α(1− p̂)α)+β |1− p−α|, (3)

where β denotes the weight of constraint of α . During training, the value of β decreases
progressively, so that the model gradually learns the tendency from the feature polymer. In
this paper, β = 1− ec/em, where ec and em denote the current epoch and maximum epoch.

3.2 Feature Polymer
In HCC grading task with pathology slides, the cause of the noise is related to the rough
annotation on ultra-large images. It indicates that the misclassified patches must locate in
regions with specific characteristics, which inspires us that the surroundings may contain
information for rectifying the noise label.

Our model takes feature polymer as input to represent the surrounding information. For
dataset D = {X (n),Y (n)}N

n=1, X (n) ∈ RW×H×3 denotes the patches cropped from HCC slides
and Y (n) ∈ RK denotes the annotated labels. Among that N denotes the patch number, W,H
denote the width and height of patches, and K denotes the category numbers. For each patch
X (n), a group of surrounding patches are collected as S(X (n)) ∈ Rm×W×m×H×3 (the patches
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beyond the slide are replaced with 0), which will be input into the autoencoder for generating
the feature polymer P(S(X (n))) ∈ Rd×M×M . The m denotes the patch number of surround-
ings, M denotes the size of polymerized feature map and d denotes the dimensionality. The
autoencoder is pretrained on the training data, and the fully connected layer is removed to
retain more location information.

In addition to combining original patches to get a joint feature vector, the polymers also
dynamically adjust the noise coefficient α by the other branch of the framework. This coef-
ficient represents the degree of the noise and will affect the training tendency of the NR loss.
Generally, the feature polymer plays an auxiliary role in pathology image grading, mainly
on providing peripheral structural information and determining the denoise tendency.

3.3 Theoretical Analysis

In NR, the loss minimizes when either p or p̂ reaches 1, so the model prediction is relatively
optional according to the extracted representation. A trainable exponent α that ranges from
0 to 1 is introduced to controls the tendency of the optimization. The effect will be clarified
by the gradient of p and p̂, which can be derived as:

∂LNR

∂ p
=

−(1−α)( 1−p̂
1−p )

α

1− (1− p)1−α(1− p̂)α
,

∂LNR

∂ p̂
=

−α( 1−p
1−p̂ )

1−α

1− (1− p)1−α(1− p̂)α
. (4)

It shows that both the gradients are negative, indicating the minimization of loss function
increases p and p̂ in varying degrees. To explore the relationship of two probabilities, we
further calculate the gradients of the logits before the Softmax layer. For the Softmax func-
tion pi =

ezi

∑k ezk , the gradients varies under different conditions:

∂ pi

∂ z j
=

{
pi(1− pi) i = j,
−pi p j i 6= j,

(5)

where pi and zi denote the probability and logit of the i-th category. According to the Eq. 4
and Eq. 5, the gradient of the logits can be derived as:

∂LNR

∂ z
=

p( 1−p
1−p̂ )

1−α(p̂− (1−α))

1− (1− p)1−α(1− p̂)α
,

∂LNR

∂ ẑ
=

p̂( 1−p̂
1−p )

α(p−α)

1− (1− p)1−α(1− p̂)α
, (6)

where z and ẑ denote the corresponding logits of p and p̂. Excluding the terms that always
positive, the gradient direction of z (or ẑ) depends on the difference between the exponent
and the other probability (p against α or p̂ against 1−α). For example, if the exponent of
p is 0.9 (which means 1−α = 0.9), the logit z increases in most cases unless p̂ is higher
than 0.9, which implies the confidence is high enough to determine the reversed label as the
target. In general, the exponents (α and 1−α) can be interpreted as the thresholds to tolerant
noise. A low value of α makes the model have a preference for the annotated label in most
conditions, but the model can also switch to the reversed labels on some samples that are
convincing to be mislabeled. Specifically, the Cross-Entropy loss is a special condition with
α = 0, which has no tolerance for noise.

Simply setting the noise coefficient as constant such as 0.1, also empowers the model to
denoise, but it will restrain the training of underfitting samples. So we make α adjustable
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according to the surrounding information of each patch, which will be capable of distin-
guishing noisy samples and hard samples in pathology images. The gradient of α is derived
as follows:

∂LNR

∂α
=

(1− p)1−α(1− p̂)α

1− (1− p)1−α(1− p̂)α
ln(

1− p̂
1− p

). (7)

This gradient can be divided into two parts. The first item determined the gradient magnitude,
which will be 0 when p or p̂ reaches 1. The other item determined the direction of the
gradient. It will be positive if p is larger than p̂ and negative if it’s the other way around.
It conforms to the concept that the updating direction of α depends on the relative size of
current p and p̂. In the initial training phase, the α will be maximized for mislabeled samples
that p̂ is larger.

4 Experiment

4.1 Dataset

The collected HCC pathology dataset contains more than 20,000 patches cropped from 415
WSIs. The patch amplification and size are set to 50x and 448×448, respectively. For HCC
diagnosis, the Edmondson-Steiner grading criterion is widely used to evaluate the disease
degree on account of the robust prognostic implication in diagnosing HCC [15]. This grading
system contains four patterns corresponding to various extents of cancerization. Higher
grade represents a higher level of malignancy [24, 25]. With benign samples as grade 0, the
slides have been labeled to five grades by pathologists, and the slides number of each grade
are balanced. On each slide, the pathologists make rough annotations for the tumor region,
so that normal and cancer patches are randomly cropped based on the annotation. Besides,
in consideration of the similar feature among patches of the same slide, the partition of the
training, validation, and test set is on slide level. All patches from the same slide only exist
in one set to evaluate the generalization performance. For evaluating the model, the testing
dataset is accurately annotated by pathologists. The pathologists spend more than an hour
on each slide to ensure the testing labels are clean.

4.2 Experimental Settings

Network architecture. In the experiments, the ResNet18 [13] is adopted as the encoder of
the main branch in TNF. It is pretrained on ImageNet [5]. In the branch of feature polymer,
both the AE encoder and decoder consist 6 convolutional layers. As described in Section
3.2, the size of feature polymer is d×M×M. Here we set d = 64,M = 63, where M is
the total feature dimension of 9 of surrounding patches (the size of each patch’s feature is
64× 7× 7). The polymer encoder contains 5 convolutional layers and an average pooling
layer, and outputs the feature Fs with the same dimension as Fc (512×1). The network for
outputting α contains 5 convolutional layers, followed by 2 fully connected layers.
Parameters. For a fair comparison, the SGD with the momentum of 0.9 and weight decay
of 0.0001 is adopted in all the experiments. The batch size is set to 32 and the initial learning
rate is set to 0.01. The learning rate is multiplied by 0.9 every two epochs. In TNF, the
NR loss is divided into CNR (NR with a constant α) and ANR (NR with a adaptable α) for
further exploration. The parameter α in CNR is set to 0.1 and that in ANR is determined by
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feature polymer. The value of α for both methods are set to 0 in the first epoch, in order to
make the model have the preliminary classification ability.

4.3 Quantitative Comparison

In our experiment, ResNet18 with Cross-Entropy (CE) loss is used as the baseline. The
proposed method is evaluated on the collected HCC dataset against recent typical works,
including model-based method (CM [20, 27]), model-free methods on robust losses (GCE
[22], SCE [29]) and reguilarizers (LSR [18, 26], ELR and ELR+ [17]). The parameters of
these methods are set according to the default setting in their experiments. For the proposed
TNF, adaptable α is utilized.

Table 1: The classification results of different methods. The metrics contain accuracy (Acc.),
sensitivity (Sen.), specificity (Spe.). Here TNF uses adaptable α determined by feature poly-
mer. All these results averaged over ten experiments and the best results are marked in bold
(All scores are in %).

CE CM [27] GCE [22] SCE [29] LSR [18] ELR [17] ELR+ [17] TNF

Acc.
64.97
±0.021

66.51
±0.027

66.34
±0.018

67.27
±0.020

65.78
±0.022

63.26
±0.031

65.95
±0.021

68.98
±0.015

Sen.
61.25
±0.026

62.58
±0.033

62.59
±0.020

63.93
±0.020

62.03
±0.026

59.83
±0.036

62.76
±0.023

65.77
±0.022

Spe.
78.16
±0.032

83.99
±0.058

80.02
±0.028

79.70
±0.042

80.73
±0.051

76.69
±0.048

78.04
±0.033

81.37
±0.057

Table 1 shows the classification results of different methods on HCC pathology dataset.
We can see that TNF with self-adapting tendency achieves the best accuracy and sensitivity.
Although CM [27] achieves the highest specificity, it is at the cost of low sensitivity. During
confusion matrix training, it will optimize faster by transferring positive samples of multiple
classes to negative ones. However, in tumor diagnosis, the low false negative is much more
significant. Since the neglect of potential cancer regions will result in patients not being
treated in time, sensitivity is important as well as grading accuracy. The HCC grading with
noisy labels is a challenging task that even the latest methods are not effective. Neverthe-
less, TNF gets further improvement and outperforms the best existing methods with 1.71%
accuracy increase.

For a fair comparison, we further incorporate feature polymer (FP) into these methods
to provide sufficient information. The results are shown in Table 2. It’s obvious to see that
most of existing methods get limited improvement, and the performance of ELR+ is even
worse. The possible reason is that simply combining two kinds of features can’t fully utilize
the structural information. Conversely the high dimension of feature will lead to overfitting.
However, feature polymer is applied in TNF for better rectifying noise through structural
information, which makes TNF outperform all these existing methods for HCC grading.

In order to evaluate the significance in clinical diagnosis, the cancerous patches in non-
tumor areas predicted by baseline and TNF are confirmed again by pathologists. Among 500
test patches which are annotated as healthy (grade 0), the baseline model with CE detects
21 cancerous patches with 42.86% accuracy and TNF detects 60 cancerous patches with
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Table 2: The classification results of different methods with the feature polymer (denoted by
FP). Here TNF uses adaptable α determined by the FP. All these results averaged over ten
experiments. The best results are marked in bold (All scores are in %).

Method(+FP) CE CM [27] GCE [22] SCE [29] LSR [18] ELR [17] ELR+ [17] TNF

Acc.
65.49
±0.018

66.97
±0.031

66.81
±0.020

67.69
±0.022

66.01
±0.025

63.47
±0.035

65.86
±0.030

68.98
±0.015

80.00% accuracy. It indicates that TNF has a powerful ability to find out the carcinoma cells
in healthy areas, which has significant meaning for the diagnosis of cancer spreading.

4.4 Ablation Study

First of all, to evaluate the impact of different patch scales and select the most appropriate
magnification, an ablation study is conducted on patches with magnifications of 10x, 30x,
50x, 70x by CE and TNF. The results are shown in Table 3. It can be seen that patches
with 50x magnification are the most suitable for this dataset. From the samples in Fig. 1 we
can also see that patches of 50x magnification have appropriate views for HCC grading. A
smaller magnification results in the loss of cellular characteristics. And a larger magnifica-
tion makes more patches that do not contain cancerous cells, which increases the noise ratio
and leads to poor performance.

Table 3: Ablation results with different magnifications and surrounding patch numbers
trained by CE and TNF. All scores are the average of ten experiments and the best result
is marked in bold (All scores are in %).

Magnification 10x 30x 50x 70x
Surrounding
patch number m=5 m=7 m=9 m=11

CE
61.58
±0.017

64.01
±0.019

64.97
±0.021

61.42
±0.022 CE+FP

63.75
±0.016

65.08
±0.020

65.49
±0.018

65.52
±0.016

TNF
64.71
±0.019

67.74
±0.015

68.98
±0.015

67.36
±0.016 TNF

66.38
±0.015

67.96
±0.014

68.98
±0.015

68.79
±0.015

On the other hand, the patch number of the surrounding region (denoted as m) is also
decided by the ablation study based on 50x magnification. In Table 3, there is little difference
when m is set to 9 and 11. Considering the additional resource demand of large surrounding
regions, m = 9 is more suitable for better extracting structural features.

Table 4: HCC grading results of NR with different α . Here CNR indicates NR with a
constant α . Note that the NR with constant α = 0 equals to CE. All scores are the average
of ten experiments. The best results are marked in bold (All scores are in %).

CNR CNR+FP

α = 0 α = 0.01 α = 0.05 α = 0.1 α = 0.2 α = 0 α = 0.01 α = 0.05 α = 0.1 α = 0.2

Acc.
64.97
±0.021

66.61
±0.014

67.43
±0.022

67.46
±0.015

49.88
±0.045

65.49
±0.018

67.67
±0.027

67.92
±0.025

68.26
±0.026

53.03
±0.032

After deciding on the scale and surrounding patch number, additional experiments are
conducted to verify the effectiveness of each component. Table 4 shows the performance of
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methods with different constant value of α . We can find that method with α = 0.1 achieves
the highest score, which is consistent with our theory that a small α can help rectify the
target to the reversed label. Here NR equals to the standard Cross-Entropy loss when α = 0.
It can be seen from experiments that a large value of α enhances the ability of NR to rectify
the noise. But when the α is too large, the performance will decrease since the model tends
to predict grade 0 for all the samples. So it’s crucial to choose a suitable value. Actually,
the NR with only a small value of α like 0.01 can exceed the CE. And an appropriate value
helps to train the model to achieve better performance.

Table 5: Ablation results with different components of TNF. Here CNR indicates the NR
with a constant α , and ANR indicates NR with an adaptable α . ANR+FP is TNF with
all components. The value of α is set to 0.1 in CNR. All scores are the average of ten
experiments and the best result is marked in bold (All scores are in %).

CE CNR CNR+FP ANR+FP

Acc. 64.97±0.021 67.46±0.015 68.26±0.026 68.98±0.015

In order to improve the adaptability of CNR (NR with constant α), the feature polymer
is utilized to determine the value of α in ANR (NR with adaptable α). The FP and ANR
are in one system and can’t be compared separately. So we conduct the ablation study on
CNR, CNR+FP, and ANR+FP. From Table 5, it can be seen that CNR+FP exceeds CNR,
which demonstrates the significance of the combining cellular and structural features for
pathology image classification. Morever, ANF+FP (full components of TNF) further im-
proves the performance on this basis. It shows the superiority of dynamic α determined by
FP, which provides macro-view information. Since the tendency to annotated label of each
sample is different, the dynamic α can better reflect the tendency than the constant value.
As mentioned before, we believe that the surroundings of mislabeled patches have common
characteristics and can be recognized by FP. The result verifies this assumption.

In addition, the complexity of the proposed TNF is analyzed in terms of parameters and
training times. The ResNet18 for CE, LSR, etc. contains 11.24 million parameters, and TNF
contains 15.81 million parameters. The average seconds of each batch in TNF and ResNet18
are 0.5982s and 0.5562s. On account of the additional branch for structural features, the
model of TNF is more complex, but the difference in the training time is not significant.

5 Conclusion

In this paper, we present a noise-rectifying method TNF aiming at HCC grading on gi-
gapixel pathology images. Considering the particular characteristics of HCC, we are the first
to rectify the noise with surrounding structural information. Theoretical analysis proves that
Noise-Rectifying loss with a small α indeed can rectify the noise samples with high confi-
dence. And exhaustive experiments also verify the effectiveness of the proposed TNF with
the adaptable α , which achieves SOTA performance. In the future, we will focus on the
migration of our loss function to segmentation, and apply the noise-rectifying mechanism
on other medical images. Since the lack of accurate annotations is a common problem in
medical datasets, our method will make a breakthrough in computer-aided diagnosis.
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