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Abstract

Movie-Map, an interactive first-person-view map that engages the user in a simu-
lated walking experience, comprises short 360◦ video segments separated by traffic in-
tersections that are seamlessly connected according to the viewer’s direction of travel.
However, in wide urban-scale areas with numerous intersecting roads, manual intersec-
tion segmentation requires significant human effort. Therefore, automatic identification
of intersections from 360◦ videos is an important problem for scaling up Movie-Map.
In this paper, we propose a novel method that identifies an intersection from individual
frames in 360◦ videos. Instead of formulating the intersection identification as a stan-
dard binary classification task with a 360◦ image as input, we identify an intersection
based on the number of the possible directions of travel (PDoT) in perspective images
projected in eight directions from a single 360◦image detected by the neural network for
handling various types of intersections. We constructed a large-scale 360◦ Image Inter-
section Identification (iii360) dataset for training and evaluation where 360◦ videos were
collected from various areas such as school campus, downtown, suburb, and china town
and demonstrate that our PDoT-based method achieves 88% accuracy, which is signif-
icantly better than that achieved by the direct binary classification based method. The
source codes and a partial dataset will be shared in the community after the paper is
published.

1 Introduction
Movie-Map [9, 14] is a digital map application that presents first-person images of a specific
location on a map, giving the viewer the immersive experience of actually being there [1,
5, 16]. Internally, Movie-Map comprises short 360◦ video segments separated by traffic
intersections. When passing through an intersection, the video segments are seamlessly con-
nected according to the direction of travel, and the user remains unaware of the connection.
However, in reality, shooting a large amount of short videos between intersections is ineffi-
cient; therefore street-level videos are typically captured and then split by intersections. In
the existing works, this intersection segmentation has been performed manually [9] or by de-
ciding the intersections after SLAM of each street video [14]. However, as shown in Fig. 1,
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(a) Campus

(b) Downtown

(c) Suburb (d) Chinatown

Figure 1: Routes and intersections in the collected 360◦walk-around videos. The arrows and
triangles on each map indicate the video paths and intersections, respectively.

because of the presence of several intersections in the areas targeted by Movie-Map, manual
intersection segmentation requires significant effort. Furthermore, dynamic objects such as
pedestrians or cars and less-textured landscapes frequently hamper the accuracy of image-
based SLAM [10]. In addition, a comparison between camera poses and visual information
from intersecting video sequences of complex streets is not always accurate. Although GPS
can be used to obtain the coordinates of the camera locations, the error is sufficiently large
to prevent correct localization. Moreover, GPS is not applicable to indoor situations, either.

In this paper, we propose a learning-based algorithm to identify the intersection automat-
ically using a single 360◦ video frame. The intersection frame was used to split walk-around
videos into short video segments. The most challenging condition in this task is the use of a
single image; if accomplished, it can be used most generally; that is, we can determine the
intersections without using information from other video sequence frames. We formulated
this problem as the detection of possible directions of travel (PDoT) for handling various
types of intersections. Provided a 360◦ frame sampled from a video, perspective projections
for different views were applied to generate multiple perspective images (i.e., 8 views in
our experiments). Then, we classified the possibility of an observer to walk in the forward
direction of the field-of-view (FoV) without being blocked by obstacles such as buildings.
If PDoTs were observed in three or more views, the frame was identified as a traffic inter-
section. As a baseline for comparison, we also prepared a direct binary classification of the
provided image without using PDoTs. The experimental results showed that our PDoT-based
method can achieve 88% accuracy in identifying a single image intersection and generally
outperformed the direct classification-based approach for various real scenes.

We trained our PDoT detection network and evaluated the intersection identification
method on our new dataset, 360◦Image Intersection Identification (iii360), which was gen-
erated from 360◦ walk-around videos in four areas and 360◦ images from the Google Street
View (GSV) panoramas [6]. The change in accuracy of intersection identification was inves-
tigated with different combinations of training and testing datasets. The results demonstrated
that the proposed method achieved 88% accuracy even for an area not included in any of the
three datasets used for training, whereas the näive binary classification network achieved
65% detection accuracy.
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2 Related Work

2.1 Movie-Map
Movie-Map [9] was proposed in 1980 as the first interactive map to engage a user in a
simulated driving experience. The original Movie-Map system was built using an optical
videodisc and four stop-frame film cameras – the cameras, mounted on the top of a car, were
triggered approximately every 10 ft. Movie-Map simulates travel by displaying controlled
rate sequences of individual frames captured at periodic intervals along a particular street
in a town. Despite being an innovative concept, the system was impractical because of the
large human efforts involved. For instance, to allow the route to deviate from straight paths
down each street, separate sequences were captured to display all the possible turns at ev-
ery intersection. In addition, the captured videos had to be split manually by intersection
to connect the different driving videos through those turn sequences. Owing to the lack of
scalability caused by the large human effort as well as that of computational resources and
data capacity at that time, Movie-Map was relegated to less importance until recently, and a
system based on static 360◦ images (such as GSV [6]) became the mainstream approach to
digital map navigation.

Recently, Sugimoto et al. redesigned Movie-Map with modern imaging and information
processing technologies and demonstrated its superiority to GSV in exploring unfamiliar
scenes [13, 15]. In addition to replacing large-camera and expensive disk systems in [9] with
consumer 360◦ cameras and personal computers, they proposed a method to automate the
time-consuming intersection segmentation. Specifically, they applied Visual SLAM [10] to
recover and track the 3-D camera trajectories of the walk-around videos, aligned the trajec-
tories onto the map, identified the intersections using the aligned trajectories, and refined
them using visual features. However, their method relied heavily on the results of Visual
SLAM, which is not robust to dynamic objects such as cars or people and texture-less land-
scapes. On the other hand, as our method does not rely on either 3-D reconstruction or
multiple frames from the entire frame sequence, it is less sensitive to dynamic objects and
low-textured scenes.

2.2 Traffic intersection detection
In addition to Movie-Map, intersection identification using a pedestrian viewpoint or vehicle-
mounted cameras has recently been actively studied in automated driving and robot navi-
gation fields. Owing to the highly unpredictable behavior of traffic intersections, correct
recognition and safe behavior in their proximity is essential for an autonomous agent.

Depending on the input information, intersection identification methods are broadly cat-
egorized into two types: those that use non-visual information such as LIDAR or GPS data
and those that use images or videos. Without using visual information, Fathi and Krumm [4]
identified intersections in an urban-scale traffic network using GPS data from several vehi-
cles. On the other hand, Zhue et al. [19] proposed a method for intersection detection using
sparse 3-D point clouds obtained from in-vehicle 3-D LIDAR data. Unfortunately, GPS data
are frequently inaccurate in urban areas with tall buildings, and 3-D LIDAR is expensive
and basically less portable than consumer cameras, which are inappropriate for capturing
walk-around videos for some applications such as Movie-Map.

With the development of deep learning technologies, image-based methods for intersec-
tion identification are becoming more attractive owing to their cheap installation cost and
compatibility with in-vehicle or robot-mounted cameras. Bhatt et al. [3] formulated this task
as a binary classification problem to identify intersections in short-time on-board videos and
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Figure 2: Example of an ambiguous intersection image. In this school campus scene, the
road is omnidirectional, and the number of PDoTs is difficult to accurately identify.

developed a variant of long-term recurrent convolutional network as the classifier. Although
the classifier has been shown to be effective for in-vehicle videos, its reliability in other do-
mains such as walk-around pedestrian-view videos, is still unclear. In addition, as this model
accepts multiple video frames as input, its robustness in dynamic scenes with several walk-
ing people, such as in urban shopping malls, is questionable. On the other hand, Astrid et
al. [2] recently proposed a single-image intersection classification system using ResNet-
based architecture trained on a pedestrian-view-level image dataset containing 345 and 498
intersection and non-intersection images, respectively. Although the system achieved a test
accuracy of 80%, the training and test data comprised pedestrian-view images of sidewalks
with little or no pedestrian traffic, and the generalization of this method to disparate test
scenes from the training dataset is still not confirmed.

Unlike all these studies, the input of our method is a single frame from 360◦ walk-around
videos recorded for Movie-Map. To the best of our knowledge, this is the first attempt to
identify an intersection from a single 360◦ image. In addition, our targets include not only
in-vehicle images or places with no pedestrians but also various cities, towns and villages
with active people and car traffic, including places with different building designs. In such
cases, conventional approaches such as direct binary classification of images are difficult to
implement. Therefore, we propose a new intersection identification method based on the
detection of PDoTs.

3 Proposed Method
The purpose of this study was the automatic identification of intersection frames in walk-
around videos shot for Movie-Map and the division of the video into intersection-wise seg-
ments. To achieve this goal, we propose a novel single 360◦ image intersection detection
algorithm that is applicable to challenging pedestrian views in various types of scenes.

The task is to classify whether a selected the image was captured at an intersection. The
most straightforward method would be a data-driven approach wherein a large number of
intersection and non-intersection labeled images are prepared to train deep neural networks,
as performed in [2].

Unfortunately, the definition of an intersection in reality is quite vague, except for a
clearly sectioned roadway. For instance, a place with people moving in various directions,
such as a university campus shown in Fig. 2, should be recognized as an intersection in
practical applications such as Movie-Map because of the intersecting people and vehicles.
However, even a human would hesitate to label this location as an intersection because of the
absence of clearly sectioned road. Conventional intersection detection studies [2, 3, 4, 19]
did not encounter this ambiguity as they only focused on on-board cameras or pedestrian
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Figure 3: Illustration of the proposed method. Multiple non-overlapping perspective images
of the 45◦×45◦ FoV are cropped in eight view directions and our PDoT classifier is applied
to individual images. If three or more PDoTs are detected, the 360◦ image is classified as an
intersection frame.

view on clearly segmented sidewalks.
To address this problem, we redefined the intersection itself more rigorously and de-

fined the problem accordingly. Specifically, an intersection in a 360◦ image was defined as
a location where there are multiple PDoTs. Specifically, if a traveler can proceed in three
and more directions, including the direction they have already been traveling, the location
should be considered an intersection. The overview of our method is shown in Fig. 3 If the
direction of travel contains an obstacle such as a building, it is defined as not be travelable.
Under this definition, both conventional (e.g., T,Y,X-intersections) as well as omnidirectional
traffic intersections (e.g., those in a university campus square) are labeled as intersections.
Notable, identification of omnidirectional intersections is crucial in several practical appli-
cations. Movie-Map needs to merge walk-around videos in two directions in a park square.
Advance detection of large spaces that are expected to contain heavy traffic is also important
for robot navigation.

We propose a single 360◦ image intersection classification network based on the rede-
fined intersection. Deep neural networks for various tasks using 360◦ images have been
studied extensively in recent years and can be mainly divided into three approaches: apply
neural networks directly to equirectangular projection (ERP) images [20], define kernels for
convolution on a sphere [18], or divide a 360◦ image into multiple perspective projection
images and apply neural networks to them individually [17]. While the ERP-based method
is attractive owing to its simplicity, our experiment validated that this direct approach is not
always effective for a wide variety of real-world intersections (including omnidirectional
intersections) because of large distortions in a 360◦ image caused by sphere-to-plane projec-
tion. Therefore, we formulate this problem as the detection of multiple PDoTs in sampled
perspective views, rather than directly identifying the intersections in 360◦ images.

Specifically, we converted a single 360◦ image provided in the ERP format (e.g., a single
frame of a 360◦ walk-around video) into multiple non-overlapping normal perspective im-
ages. The FoV of each perspective image should not be quite small or quite large because it
is insufficient or contains multiple PDoTs, respectively. To balance the trade-off between re-
dundant and insufficient information, we cropped eight perspective images of the 45◦×45◦
FoV from a target 360◦ image. For each perspective image, we classified whether the center
of the FoV contained a PDoT by applying a variant of the ResNet-50 [7] network that will
be explained in the implementation details. The input 360◦ image was identified as an inter-
section if a minimum of three PDoTs were observed in the 360◦ field-of-view. By dividing
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(a) Campus (b) Downtown (c) Suburb (d) Chinatown
Figure 4: Image samples from each area. Campus has large wide roads and squares and am-
biguous intersections. In Downtown, most of intersections have traffic lights and pedestrian
crossings. Suburb has many intersections without such elements, but the roads are clearly
separated by walls or buildings. Chinatown consist of all those features where many people
come and go. We used the first three areas as training data and used Chinatown data only as
test data.

the complex problem of direct intersection identification from the entire 360◦ view into a
set of problems that determine the presence of PDoT in the narrow FoV, the system displays
greater robustness to scene divergence, which was validated by the experimental results. Fur-
thermore, by converting a 360◦ image in the ERP format to perspective images, our method
is theoretically less sensitive to sphere-to-plane projective distortions. Notable, although our
method requires multiple model inference to determine whether a single 360◦ image is an
intersection, they are independent and can be executed in parallel. Moreover, as perspective
local images are much smaller than the original 360◦ image, the computational cost is quite
manageable.

4 iii360 Dataset
The identification of an intersection in a single 360◦ image is a new problem, with conse-
quent nonavailability of training and test datasets. Therefore, we constructed a large-scale
360◦ Image Intersection Identification (iii360) dataset for training our PDoT detection net-
work and evaluating our method.

4.1 Training data generation
Training data for PDoT detection: First, we extracted 360◦ images from the 360◦ videos in
Campus and Downtown areas, obtained for Movie-Map. For each area, we chose 50 videos
and selected 10 frames at equal time intervals from each video; 500 frames were obtained
per area. The two areas have different characteristics as observed in Fig. 4. For example,
on Campus, an intersection on Campus is defined ambiguously, as mentioned previously.
In Downtown, streets are demarcated precisely by buildings, with maintained crosswalks or
traffic lights, along with dynamic changes such as moving cars in a scene.

The maximum number of Movie-Map videos have been shot by a photographer walking
on the sidewalk in a wide street. Therefore, the intersection detector should be trained in
the same domain, rather than on videos shot by car-mounted cameras such as in GSV [6].
However, as the diversity of the intersections in the two areas mentioned previously was
insufficient for generalizing the intersection identification, we supplemented it by adding
another training dataset, Suburb-GSV images. The added area contains well-maintained
streets but scarce traffic lights and signs; moreover, the dataset contains a few scenes without
any walls or buildings and low textures. We collected 500 suburb intersection 360◦ image
from GSV and used them for training in addition to the images from Campus and Downtown.

Next, for each key interaction frame included in this frame set, PDoTs were manually
annotated on a user interface. Specifically, a worker was asked to indicate the PDoT in a
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Figure 5: Illustrated strategy for generating positive and negative examples from a 360◦ im-
age for training the PDoT classifier. Positive examples are sampled as normal-field-of-view
(NFoV) perspective images roughly centered at every annotated PDoT. Negative examples
are sampled as NFoV perspective images centered at two adjacent PDoTs so that it contains
no PDoT in its FoV.

frame with icons specifying a single or ”omnidirectional” PDoT, where all the directions are
assumed to be PDoT, for example, in a plaza on the university campus. After completing all
the annotations, we cropped the NFoV (45°in horizontal and vertical views) images approx-
imately centered at PDoT from the 360◦ image as positive examples. It should be noted that,
to inject noises in the training examples, we did not crop the NFoV image strictly centered at
the PDoT and randomly shifted it up to 5 degrees. After the extraction of the positive exam-
ples from a single frame, the negative examples were similarly extracted from the same frame
as NFoV images centered between two adjacent PDoTs. Notably, this sampling procedure
can be applied to both key intersection and non-intersection frames (i.e., non-intersection
frames have their PDoTs in the forward and backward directions). As shown in Fig. 5, this
procedure basically generates slightly more positive than negative examples because a few
negative candidates are discarded when the inner angle between two adjacent PDoTs is less
than 45°(e.g., Y-junction; otherwise, the negative example must contain PDoT). To equalize
the number of positive and negative examples, we added additional negative examples from
other random regions. Consequently, we obtained 3414 positive examples (i.e., 907 in Cam-
pus, 971 in Downtown, and 1536 in Suburb) and 3274 negative examples (859 in Campus,
882 in Downtown, and 1510 in Suburb). These samples were precisely labeled and diverse
in terms of landscape.
Training data for direct intersection classification: While our proposed method identifies
an intersection based on the number of PDoTs in a single 360◦ frame, the näive network
architecture accepts 360◦ image as input and directly predicts whether the frame is an inter-
section. We also created training data to train the näive method. Because we required a larger
number of samples of images for training in the direct method, more frames were sampled
from the video set. Rather than using Suburb-GSV for the PDoT method, we used videos
shot in almost the same area. Thus, except Suburb and Suburb-GSV, the same sources (Cam-
pus and Downtown) were used for training the PDoT and direct methods. Both the methods
used the same testing data.

Specifically, equipped with the annotation of key intersections, we re-assigned the soft
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intersection label to every 10 frames in the videos based on the frame positions from the
key intersection frame. We shot walk-around videos in Suburb similar to that in Campus
and Downtown areas. Frames within 0.5 s walking distance (e.g., 15 frames in the 30-
fps video) from the key intersection frame were labeled as one (positive) and frames with
more than two second walking distance as zero (negative); the frames decreased linearly
from one to zero between 0.5 s and two second walking distances. Because a majority of
the frames were negative examples (i.e., far more than two second walking distance from the
key intersection frame therefore labeled as “False”), we balanced the portions of positive and
negative examples by only extracting p percentage of negative ones. We empirically found
that p = 20% is the optimal percentage, which means that 80 percentage of negative samples
were discarded. Finally, we obtained 544 positive examples, 1225 soft-labeled examples
(i.e., labeled between zero and one), and 8159 negative examples. The total distribution
of (positive/soft-labeled/negative) examples for each area was (198/420/2188) for Campus,
(185/457/3656) for Downtown, and (161/348/2315) for Suburb. Notable, The labels were
treated as a continuous probability distribution.

4.2 Test data generation
The same test task was employed for both the PDoT-based and näive direct approaches:
intersection identification from a single 360°image. We prepared 50 intersection and non-
intersection frames, respectively, for each of the three areas and added a completely new
scene called Chinatown to validate the ability of the network to generalize to unknown
scenes. The test data resulted in a total of 400 frames. Notably, all the test images were
not included in our training data.

5 Experimental Results
We evaluated our PDoT-based 360◦image intersection identification method (our method)
on our iii360 test dataset. We compared its performance against that of the näive direct
method (Baseline), which we implemented as a binary classification. It should be noted that
the qualitative result examples of intersection identification have been demonstrated in the
supplemental paper.

5.1 Implementation details
Our method and Baseline were implemented using the PyTorch framework [11]. The back-
bone architecture for both the methods was Resnet-50 [7], pre-trained on ImageNet [12]
except for the final classification layers and fine-tuned on the iii360 dataset. This implies
that the only difference between these two networks was the input and output information.
The input for our method was an NFoV image cropped from a target 360◦ image, whereas
that for the Baseline was the 360◦ target image itself. The output was the binary labels w.r.t
PDoT or intersection. Both networks accepted images resized to 224× 224 as input and
were trained and tested on a machine with single NVIDIA TITAN Xp with 12GB of GPU
memory. For optimization, we used Adam [8] with a learning rate of 0.001 and batch size of
8. The number of epochs was set to 300 for all network and training set combinations. For
data augmentation, horizontal flipping, color jitter, and random erasing were applied.

To identify the intersection, our method merges the multiple PDoT predictions as follows.
First, in a provided target 360◦ image, horizontally non-overlapping eight perspective images
of 45◦ × 45◦ FoV are cropped (in a random start direction). Then, each NFoV image is
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Method Dataset Test set domain
Campus Downtown Suburb Chinatown

PDoT

Campus 0.78 0.82 0.70 0.65
Downtown 0.67 0.88 0.75 0.87

Suburb-GSV 0.68 0.78 0.81 0.57
Three datasets 0.74 0.86 0.81 0.88

Direct

Campus 0.65 0.54 0.51 0.57
Downtown 0.52 0.81 0.68 0.67

Suburb 0.49 0.72 0.78 0.66
Three datasets 0.57 0.68 0.69 0.65

Table 1: Intersection prediction results.

Views Accuracy
8 0.65

16 0.58
32 0.55

Table 2: Result of proposed method with
different views of cropped images. Training
data was the Campus area data and Test data
was the Chinatown area data in iii360.

Resolution Accuracy
224×224 0.57
448×448 0.55
896×896 0.58

Table 3: Result of Direct method with differ-
ent resolutions. Training data was the Cam-
pus area data and Test data was the China-
town area data in iii360.

individually fed to the PDoT prediction network, and the target 360◦ image is identified as
an intersection if when more than three PDoT predictions are positive.

5.2 The effect of hyperparameters
We investigated the effect of the number of perspective images cropped from 360° images.
We varied it within 8, 16 and 32 (i.e., 45° , 22.5° and 11.25° FoV, respectively) and compared
the prediction performance by training the network on Campus and testing on Chinatown
datasets. The result is shown in Table 2, and we found the result of 8 views is the best.

In addition, in order to evaluate the effect of the resolution of input images in the direct
method, we compared the prediction accuracy by training the network on Campus and testing
on Chinatown datasets by varying the image size among 224× 224, 448× 448 and 896×
896. Table 3 demonstrated that the difference of input image size is not influential to the
performance.

5.3 Quantitative results
We compared our method with Baseline having different combinations of training/test data.
In addition to training the networks on examples from individual areas, we attempted training
on all the examples from all areas. Notably, we did not evaluate PDoT prediction accuracy
because this was not our main task; instead, we assigned more importance to the intersection
identification performance.

The comparative intersection identification accuracy results are shown in Table 5.3. It
is evident that the prediction accuracy of our method is better than that of Baseline for all
the combinations of training and test areas, indicating that our PDoT-based algorithm con-
sistently outperforms the näive direct approach of the Baseline algorithm.

As expected, the performance was better when the training and test examples were drawn
from the same area, compared to when drawn from different areas. Interestingly, the network
trained on Suburb-GSV still performed satisfactorily on the test Suburb dataset despite the
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completely different device setups for obtaining both types of data, indicating that a differ-
ence in the image acquisition setup exerts a lesser effect than that in the area where the image
was captured. The 0.87 prediction accuracy demonstrated by the network trained on Down-
town and tested on Chinatown also supports this observation as both these areas have several
common characteristics, such as movement of people through narrow and intricate shopping
streets. Conversely, the network trained on Campus did not perform well on Chinatown
where both areas have less shared characteristics. Although the excellent performance of the
network on Downtown even after training on Campus appears counter-intuitive, the average
prediction accuracy on Downtown is consistently high and simply indicates that intersection
identification in this area is relatively easier than in other areas with more diversity in the
appearance of intersections. It is not surprising that the network trained on all the training
examples performed slightly worse than when the training and test examples were drawn
from the same area. Instead, this result indicates that the network is capable of covering a
variety of areas by drawing training images of intersections from them.

6 Conclusion
In this paper, we presented a new algorithm to identify an intersection from a single 360◦ im-
age. We propose a PDoT-based method that identifies intersections by the number of possible
directions of travel, rather than directly identifying the 360◦ image with a binary classifier.
For training our PDoT detection network and evaluating the method, we constructed a new
large-scale 360◦ Image Intersection Identification (iii360) dataset. Although the original mo-
tivation of our work was the automatic intersection segmentation of Movie-Map videos, we
believe our method is also applicable in other fields, such as autonomous driving and robot
navigation.

As our network architecture was quite basic (ResNet-50) and the training examples were
not that large in number, improving the network architecture and increasing the training
dataset size is an important future direction. Another important future work is to demonstrate
the effectiveness of our method in actual Movie-Map application.
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