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Abstract

Deep learning models have been shown to learn spurious correlations from data that
sometimes lead to systematic failures for certain subpopulations. Prior work has typically
diagnosed this by crowdsourcing annotations for various protected attributes and measur-
ing performance, which is both expensive to acquire and difficult to scale. In this work,
we propose UDIS, an unsupervised algorithm for surfacing and analyzing such failure
modes. UDIS identifies subpopulations via hierarchical clustering of dataset embeddings
and surfaces systematic failure modes by visualizing low performing clusters along with
their gradient-weighted class-activation maps. We show the effectiveness of UDIS in
identifying failure modes in models trained for image classification on the CelebA and
MSCOCO datasets. UDIS is available at https://github.com/akrishna77/
bias-discovery.

1 Introduction
Computer vision technology has become increasingly dependent on deep learning models to
help make intelligent decisions in high-stakes applications. Such models are often trained
on large datasets of images like ImageNet [37] and MSCOCO [29], which have been shown
to contain implicit biases [42, 43] that are imbibed and sometimes amplified [6, 39] by these
models. Further, these pretrained models are frequently used as an initialization for other
downstream tasks through transfer learning [41]. It is thus crucial that in addition to being
accurate, models be fair and perform equitably across different dataset subpopulations.

However, recent studies have shown several examples where state-of-the-art deep com-
puter vision models learn spurious correlations from their training data which leads to signif-
icant performance variance across subpopulations, sometimes across sensitive attributes like
race and gender [2, 8, 20, 47, 49], or even contextual and reporting biases [4, 13, 15, 35].
Learning such spurious correlations typically leads to poor performance on underrepresented
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dataset subpopulations and out-of-distribution test data. These models are typically evalu-
ated based on standard performance metrics like test set accuracy, but it is equally important
to ensure that the model will perform fairly across different subpopulations when provided
with previously unseen data.

Determining whether a trained model is biased is a challenging problem. Prior work has
relied on enumerating sensitive attributes (such as race and gender), collecting annotations
from domain experts, and measuring performance across these [5, 7, 9, 24, 27, 28]. This
process requires considerable manual effort and cost, and is challenging to scale to large
datasets.

In this work we present UDIS, a tool to audit deep learning models for biases before
deploying them in the wild. UDIS discovers subpopulations of the dataset for which the
model systematically underperforms, without requiring any protected attribute annotations
whatsoever and using only the dataset test split. UDIS performs hierarchical clustering of
dataset embeddings and identifies systematic failure modes by visualizing low performing
clusters along with their gradient-weighted class-activation (GradCAM [38]) maps. We show
the effectiveness of UDIS in identifying failure modes in visual recognition models trained
on the CelebA and MSCOCO datasets. We make the following contributions:

• We present UDIS, the first unsupervised method for discovering model bias which
identifies dataset subpopulations on which the model systematically underperforms,
without the need for protected attribute annotations.

• We demonstrate the effectiveness of UDIS at identifying failure modes on the CelebA
and MSCOCO datasets.

2 Related Work

While there has been considerable prior work in measuring bias in deep learning models, to
the best of our knowledge all of them require apriori knowledge as well as annotations for
protected classes across which we desire the model to be unbiased. We summarize these
lines of prior work below:
Observational methods. Torralba and Efros [34, 42] were among the first to stir up the
conversation of dataset bias in computer vision, introducing simple measures like cross-
dataset generalization and negative set bias to understand how datasets may bias trained
models. Recently, Singh et al. [40] proposed the use of statistical information to identify
biased categories. They define a category b as biased by category c if (1) the prediction
probability of b drops significantly in the absence of c and (2) b co-occurs frequently with
c. This requires knowledge of the dataset attributes to determine categories that are biased,
along with their co-occurring context category. Other related works tackle the problem of
dataset bias by defining algorithms [14, 25, 45] and metrics [17, 26, 33, 48] to establish
fairness. In contrast, our method leverages dataset embeddings that can be computed using
a forward pass with the model, and is able to identify model biases on the dataset without
explicit knowledge of protected attributes and their annotations.
Bias detection toolkits. Most recently, Wang et al. [43] released an open-source tool that
assists in investigating biases within visual datasets, surfacing potential biases along three
specific dimensions: object-based, gender-based, and geography-based. Their method how-
ever requires datasets to have object, gender, and geography annotations to discover these
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biases. Two limitations of their method are that i) these annotations may not be easily avail-
able, ii) the method would miss failure modes along other dimensions. Further, as they
acknowledge, some of their insights are derived from pretrained models and external tools
that may themselves contain implicit biases. IBM’s AI Fairness 360 [5] uses a comprehen-
sive set of metrics, algorithms and mitigation strategies to measure, report and reduce biases
in datasets and machine learning models. Similarly, FairML [1] is a toolbox that helps audit
predictive models by computing the relative significance of the model’s inputs. Models are
then queried with sample data that emulates real world inputs, and perturbing this data helps
determine model fairness. Cabrera et al. present Fairvis [9], a visual analytics tool that helps
audit fairness in machine learning models by allowing domain experts to investigate sub-
groups of data, reporting a high-level overview of their performance and suggesting similar
subgroups to explore for detecting bias. These methods require full knowledge of the dataset
and report bias through well-defined fairness metrics. Our tool works explicitly with visual
recognition models and reports bias through underperforming data subpopulations, utilizing
visual explanations to understand failure modes. A few methods rely on small image pertur-
bations to determine salient regions of the input image for tasks to establish the presence of
bias [10, 11, 16, 18].
Counterfactual Approaches. Denton et al. [23] and Balakrishnan et al. [3] present a coun-
terfactual method to identify biases in a smiling attribute classifier. They accomplish this by
building a generative model of face images that manipulates specific image characteristics
along meaningful factors of variation. They then test how the prediction of the trained clas-
sifier changes if a characteristic (deemed irrelevant to the classification task by humans) is
altered in a specific targeted manner. They use this technique to identify a causal relationship
between features in an image and the classifier output and establish a source of bias. The
effectiveness of such methods highly depend on how well the model is able to sufficiently
disentangle different image attributes, and ensuring that the newly generated images contain
no other significant changes that may affect the outcome of the task. Dash et al. [12] and Joo
and Kärkkäinen [24] also propose counterfactual methods to identify bias in visual models.
However, they explore bias with respect to specific protected attributes like race and gender.
Our method does not require specific sensitive attributes and tries to identify sources of bias
of any form that lead to systematic failure modes.

3 Approach
We introduce UDIS for the unsupervised discovery of model biases. We combine a hierar-
chical clustering technique to discover data subsets deemed similar by the model and use a
performance ranking criteria to sort hundreds of clusters and propose to the developer only
the few sets most likely to be caused by model bias (see Figure 1), eliminating the cost of
annotating large-scale data.

Given attribute annotations, prior work [23] has shown it is possible to learn latent vec-
tors corresponding to semantic concepts, and using these to detect bias via evaluating coun-
terfactual queries. More recent work [32] has shown that it may be possible to learn such
disentangled latent vectors in an unsupervised fashion. But image generation is hard and
learning to manipulate one specific attribute at a time is even harder, even in a supervised
manner. Further, it is not guaranteed that the learned attributes will be semantic or corre-
spond to features we care about. It is also not clear if this approach will generalize to more
complex / smaller datasets. One possible approach is to use off-the-shelf attribute predictors
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Sec 3.3.1. Feature Extraction and Cluster Tree Generation
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Sec 3.3.2. Cluster Selection and Thresholding
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Figure 1: We propose UDIS for unsupervised discovery of biases in a model. Left: The
input model is used as a feature extractor for the test dataset. Bottom-up agglomerative
clustering is performed on these feature vectors to obtain a binary cluster tree. Right: We
use silhouette score as a measure to determine the best clustering from this tree, and filter
and sort the clusters based on their accuracies before presenting them to the developer.

as an alternative to not having attribute annotations, but such models may contain implicit
biases themselves.

Our method utilizes model interpretability, in an effort to find similar sets of images
where the model behaves similarly. Since we would like to use this tool mainly for error
analysis, we focus on the groups of images for which the model performs poorly.

3.1 Notation
Let x and y represent the input images and predicted class respectively. Then for a trained
convolutional neural network, M : x→ y, our goal is to identify clusters of similar images that
could potentially suggest model biases. For a given input image x, the model M generates a
K-dimensional output (for K classes) for the classification task,

y = argmaxM(x) = argmaxF(h(x)) (1)

where h(x) is the penultimate layer embeddings and F(.) is the final classifier layer.
We define the overall accuracy of the model on the test dataset T as ACC(T ) and accuracy

of the model on a cluster of images, C as ACC(C). In the multi-label classification setting,
when discovering biases with respect to a category b, ACC(T ) represents the model accuracy
with respect to category b over the full test dataset T .

3.2 Visual Explanations
On retrieving clusters of images, we wish to discover the features of the input image that is
responsible for the classification decision. In this regard, we use heatmaps based on Grad-
CAM [38] to visualize a mask over the region of the image that the model is focusing on for
its classification decision. We compute this mask by computing the gradient of the score for
the predicted class y, with respect to the feature map activations of the final convolutional
layer and global-average-pooling them to obtain importance values for the feature maps. We
then apply a ReLU over the weighted linear combination of feature maps and their impor-
tances, to obtain a localization heatmap on the region of interest for the class y.
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3.3 UDIS: Unsupervised Discovery of Bias in Deep Visual Recognition
Models

3.3.1 Feature Extraction and Cluster Tree Generation

In both the binary and multi-label classification settings, we compute hidden representations
h(x) using the penultimate layer of the network (i.e. the layer before the logits layer). For
the binary classification setting, we do so for each image in the test dataset, whereas, for
multi-label classification, to observe bias with respect to a category b we compute h(x) for
all the images in the test dataset where the model’s predictions contain the category b.

We then perform hierarchical bottom-up clustering [46] on these hidden representations
h(x). We begin with each hidden vector as a singleton cluster, and recursively merge the
pair of clusters that leads to the least increase in total within-cluster variance after merging.
We use euclidean distance as the metric to compute linkage. This results in a binary tree
of image clusters, where leaf nodes represent each image in T as an individual cluster and
the root node represents T . Parsing the tree from the root, we notice that clustering in this
feature space recursively splits clusters into a relatively high accuracy cluster and a relatively
low accuracy cluster at every iteration (see Figure 1, left).

3.3.2 Cluster Selection and Thresholding

We now present our approach for selecting a set of disjoint and important clusters from our
binary cluster tree to present to the developer (see Figure 1, right). We begin by exploring
the binary tree bottom-up and evaluating the silhouette score [36] for each cluster at different
clustering iterations. Since our method focuses on determining failure modes indicative of
model bias, we treat the highest ancestor with 100% cluster accuracy along any tree branch
as a single cluster, while evaluating the silhouette score.

The silhouette score is a measure of how similar an image is to other images within the
same cluster and different from images in other clusters. Our goal is to find a disjoint set
of image clusters with the highest silhouette score. Here, the silhouette score for a given
clustering refers to the mean silhouette coefficient across all samples. The silhouette coeffi-
cient for a single sample is defined using its mean intra-cluster distance (µintra) and its mean
nearest-cluster distance (µnear) as:

s =
µnear−µintra

max(µintra,µnear)
(2)

The silhouette scores at different clustering iterations form a bitonic sequence, which
is strictly increasing, and after the bitonic point, strictly decreasing. This is indicative of
poor clustering at the top of the tree where all the images form a single cluster and poor
clustering at the bottom of the tree where each image is its own cluster. Thus, the best
clustering of images corresponds to the clustering with the bitonic point as its silhouette
score. To determine this right set of image clusters optimally, we use a modified binary
search. Consider an array of silhouette scores corresponding to every clustering iteration, we
check the right subarray if the silhouette score of the array midpoint is part of an increasing
subsequence, and the left subarray otherwise. We also impose an additional size constraint
on the cluster, to ensure that the smallest cluster contains at least 5 images, and the largest
cluster contains no more than 100 images, for the sake of visualization.

For a given clustering C = {C1,C2, ...Cn}, we sort the retrieved clusters in increasing
order of their cluster accuracies. Our interest lies in finding failure modes that lead to a large
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drop in performance. Clusters with small drops in performance compared to ACC(T ) tend
to be misclassifications or errors and not biases. To surface clusters indicative of bias, we
filter the retrieved clusters to obtain C′ by dropping the clusters where the cluster accuracy is
more than two-thirds of the overall model accuracy on the test set, i.e.

C′ =
{

Ci | ACC(Ci) <
2
3
∗ACC(T )

}
(3)

We experiment with different thresholds to filter the clusters that are potentially indicative
of bias. We notice across our different settings that clusters with accuracies below 50% (for
binary problems) are reflective of systematic errors and potentially model bias. To allow
for the examination of additional, less obvious or cohesive error types, we return a superset
which includes all clusters with accuracy less than 66% of the overall test accuracy.

For each cluster, Ci, we also compute the average feature vector hCi
avg as,

hCi
avg =

1
|Ci| ∑

x∈Ci

h(x) (4)

which is used to provide the user with the nearest neighbor cluster with a high accuracy,
based on the euclidean distance metric in the feature space. This provides the user with
insight on deviant features amongst similar images that may be responsible for failures. If
ground truth attribute information is present, the tool also presents the developer with the
nearest neighbor cluster with a high accuracy, based on euclidean distance in ground truth
attribute distribution space (details in supplementary material).

4 Experiments

4.1 Overview
We show the results of our method for three settings – two single attribute prediction tasks
on the CelebA [30] dataset and multilabel classification on the MS COCO [29] dataset.

1. Smiling prediction on CelebA. We train a Resnet50 [19] backbone (initialized with
ImageNet weights) on the CelebA dataset to predict if a person is Smiling/Not Smiling.
The trained model has an accuracy of 92% on test data.

2. Smiling prediction on biased CelebA. In this setting, we intentionally induce bias in
the dataset towards the “Black Hair” attribute. We do this by manually subsampling
the training dataset to increase the proportion of images containing the “Black Hair”
attribute that are labeled as “Smiling”. Conversely, we increase the proportion of
images not having the “Black Hair” attribute that are labeled as “Not Smiling”. We
ensure that the despite the induced bias, we have a model that performs well on test
data (93% accuracy).

3. Multilabel classification on MS COCO. As UDIS is model agnostic, we also include
a multi-label 80-way classification task. We use an open-source DenseNet [21, 22]
classifier trained on the MSCOCO dataset from Wang et al. [44], that uses a binary
cross-entropy loss to predict multiple labels for an input image.

4.2 Implementation details
The ResNet50 models are trained with PyTorch [31] on 8 NVIDIA RTX 2080 GPUs with the
SGD optimizer, batch size 64, weight decay 1× 10−4, learning rate 5× 10−4, momentum
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0.99 and a dropout of 0.3. The model accuracy in both the settings is comparable to that
presented in Denton et al. [23].

For UDIS, we cluster the 2048-dimensional average pooled outputs of the ‘layer4’ mod-
ule of the ResNet50 model. For the DenseNet model, we use the 1920-dimensional output
of the final BatchNorm layer (‘norm5’) at the end of the dense blocks.

(a) (b)

Figure 2: Bias Discovery on CelebA: Example visualizations of discovered biases (top row)
and their GradCAM heatmaps (second row) using the model trained to predict smiling on the
original CelebA dataset. The bottom two rows represent the nearest neighbor cluster with
similar attributes but high accuracy, to similar samples where the model performs well. A
red frame indicates an incorrect classification.

4.3 Biases Discovered by UDIS
In Figures 2- 4, we present some of the biases discovered by UDIS across settings. In Figures
2 and 3, the top half shows images from the discovered cluster and their visual explanations
for the classification decision using GradCAM[38]. The bottom half presents the nearest
neighbor cluster with high accuracy and their corresponding visual explanations.
Smiling prediction on CelebA. In Figure 2, we present the discovered clusters using the
model trained on the original CelebA dataset. We notice from the top half of Figure 2a that
the model is basing its decision for predicting if the person in the image is Smiling, on the
artifact above the persons head (the complete cluster containing these images is included in
the supplement). Clearly, the unsupervised nature of our method allows for the discovery
of spurious correlations or artifacts in the image that may not correspond to an human-
identifiable visual attribute (see Figure 2a).

This pattern is observed in a considerable number of images, and is frequently responsi-
ble for incorrect classifications. For instance, the bottom half of Figure 2a displays a cluster
containing a similar artifact, but the model is able to focus on the right region of the image,
i.e. the mouth. Domain experts may be better equipped to infer subtle differences between
the images that lead to erroneous classifications. In Figure 2b, we present sample images
from another cluster where the model focuses on the region surrounding the collarbone to
make its classification decision. Neither of these regions are relevant to the task of smiling
prediction itself, and thus can be considered to be indicative of model bias.
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(a) (b)

Figure 3: Bias Discovery on Black Hair Biased CelebA: Example visualizations of discov-
ered biases and their GradCAM heatmaps using the model trained on the the biased CelebA
dataset for smiling prediction. The bottom two rows represent the nearest neighbor cluster
with similar attributes but high accuracy, to showcase the bias in model output. A red frame
indicates an incorrect classification.

(a)

(b)

Figure 4: Subpopulations discovered: GradCAM heatmaps for the top 2 clusters discov-
ered using UDIS on the model trained on the biased CelebA dataset for smiling prediction
(more clusters in supplementary material).

Smiling prediction on Biased CelebA. Since UDIS is able to discover spurious correlations
that the model has learned, with our next experiment we hope to uncover a specific bias that
we intentionally induce into the dataset. Under the model trained on the CelebA dataset with
a bias toward the “Black Hair” attribute, the top clusters discovered correspond to visual
explanations in the region of the image surrounding the hair (see Figure 3).

Sample images from the top cluster (full cluster in supplementary material) are shown in
Figure 3a, along with similar images from a higher accuracy cluster and their correspond-
ing visual explanations. The tool also finds clusters (see supplementary material) where it
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discovers a bias learned against people wearing hats, as shown in Figure 3b. This is still
consistent with our experimental setting, as “Wearing Hat”, is likely accompanied by the
“Black Hair” attribute being False. Examples of the subpopulations discovered by UDIS in
this experimental setting can be seen in Figure 4.

(a) Cluster discovered under the pre-
dicted category cup, along with Grad-
CAM heatmap for the category cup

(b) Cluster discovered under the pre-
dicted category bed, along with Grad-
CAM heatmap for the category bed

Figure 5: Bias Discovery on COCO: Example visualizations of discovered biases (top row)
and their GradCAM heatmaps (second row) using the model trained on the COCO dataset
for the multilabel classification task. A red frame indicates an incorrect classification as the
predicted category.

Multilabel classification on MS COCO. We present the results of biases discovered against
2 predicted categories: cup and bed (see Figure 5). When exploring the validation dataset of
MSCOCO for biases against the category cup, sample images from the top cluster returned
by our method can be seen in Figure 5a. The model predicts all the images shown as con-
taining the cup class. We notice that all the images in the cluster (see supplementary for full
cluster) contain a screen and it is likely that the model associates the frequent occurrence of
a cup next to a screen in the training dataset, to overpredict “cup” whenever it sees a screen.
In Figure 5b, we show example images of biases discovered for the category bed. The model
seems to have learnt a spurious correlation between bed and teddy bear from the training
data, labelling a number of instances where the teddy bear occurs without the bed, as a bed.

5 Conclusion
In conclusion, we present UDIS, an unsupervised method which is able to automatically dis-
cover subpopulations of visual datasets where the model systematically underperforms. We
demonstrate using visual explanations that these subpopulations contain potential biases, and
leave it to model developers to investigate the cause of such biases, evaluate their importance
and take further action.

We note some important limitations of our method. UDIS exclusively focuses on discov-
ering bias in the form of failure modes, where bias is defined as any spurious (i.e. irrelevant
to the task at hand) correlation learnt by the model that leads to a drop in test accuracy. We
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acknowledge that this is only a subset of all possible encoded bias, as in some cases spurious
correlations may potentially also improve model performance. Further, the model may also
have failure modes due to optimization or generalization error that do not represent model
bias. Finally, it remains an open question to determine how frequently the bias discovered
by UDIS correlates with known cultural biases.

In summary, we emphasize that our method does not detect all possible source of model
bias, that each failure mode discovered may not always correspond to a model bias, and
further even the ones that do, may not represent an “interpretable” bias against a protected
attribute such as race or gender. Extending our method to discover other kinds of bias, in-
cluding those that lead to improvements in performance is a promising line of future work.
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