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Abstract

Attentive video modelling is essential for action recognition in unconstrained videos
due to their rich yet redundant information over space and time. However, introducing
attention in a deep neural network for action recognition is challenging for two reasons.
First, an effective attention module needs to learn what (objects and their local motion
patterns), where (spatially), and when (temporally) to focus on. Second, a video attention
module must be efficient because existing action recognition models already suffer from
high computational cost. To address both challenges, a novel What-Where-When (W3)
video attention module is proposed. Departing from existing alternatives, our W3 mod-
ule models all three facets of video attention jointly. Crucially, it is extremely efficient
by factorising the high-dimensional video feature data into low-dimensional meaningful
spaces (1D channel vector for ‘what’ and 2D spatial tensors for ‘where’), followed by a
lightweight temporal attention reasoning. Extensive experiments show that our attention
model brings significant improvements to existing action recognition models, achieving
a new state-of-the-art performance on a number of benchmarks.

1 Introduction
Human action recognition in unconstrained videos remains an unsolved problem, particu-
larly as the recent research interest has shifted to fine-grained action categories involving
interactions between humans and objects [5, 16, 32, 63]. Subtle actions such as “placing
something next to something” are extremely hard for computer vision systems. One rea-
son for this, is the fact that videos typically contain highly redundant information in space
and time which distracts a vision model from computing discriminative representations for
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recognition. For instance, with a cluttered background, there could be many other objects in
the scene which can also interact with humans. Removing such distracting information from
video modelling poses a great challenge. Human vision systems, on the other hand, have
highly effective attention mechanisms to focus on the most relevant objects and motion pat-
terns (what) at the right place (where) and time (when) [39]. Introducing attention modelling
in a video action recognition model is therefore not only useful but also essential.

Although attention modelling has been universally adopted in recent natural language
processing (NLP) studies [2, 6, 13, 31, 50], and many static image based computer vision
problems [11, 17, 20, 36, 58] in the deep learning era, it is much understudied in action
recognition. This is due to a fundamental difference: there are two facets in attention mod-
elling for NLP (what and when), as well as static image (what and where), but three for
video (what, where and when). This additional facet for video attention modelling brings
significant challenges in model architecture design, training and inference efficiency. As a
result, existing attentive action recognition models [8, 28, 34, 55, 56] only focus on a subset
of the three facets. Among them, only the self-attention based non-local module [55] shows
convincing benefits and is adopted by recent 3D CNN-based models. However, it adds a
significant computational cost (see Table 1.b) and is known to be hard to train [45].

In this paper, we try to address the aforementioned issues in attentive modelling of video
data. In particular, the main contributions of this work are as follows. (1) We introduce
a novel What-Where-When (W3) video attention module for action recognition in uncon-
strained videos. It differs from existing video attention modules in that all three facets of
attention are modelled jointly. (2) The computational overhead of the proposed attention
module is controlled to be marginal (e.g., merely 1.5% ∼ 3.2% extra cost on TSM) thanks
to a new factorised network architectural design for video attention modelling. (3) The
problem of effective training of a deep video attention module is addressed with a novel
combination of an attention guided feature refinement module and a mature feature-guided
(MFR) regularisation. Extensive experiments are conducted on five large datasets. Four of
them are fine-grained video action benchmarks, including Something-Something V1 [16]
and V2 [32], EgoGesture [63], and EPIC-Kitchens [5]. We also evaluate on Kinetics [3], a
coarser classification dataset. The results show that our module brings significant improve-
ments to existing action recognition models, achieving a new state-of-the-art performance
on a number of benchmarks.

2 Related Work

Video action recognition Video action recognition has made significant advances in re-
cent years, due to the availability of more powerful computing facilities (e.g., GPUs and
TPUs), the introduction of large video datasets [3, 5, 16, 22], and the active development of
deep neural network based action models [10, 29, 33, 48, 53, 54, 55, 65]. Early efforts on
deep action recognition were focused on combining a 2D CNN for image feature computing
with a RNN for temporal reasoning [1, 7, 61, 65] or a 2D CNN on optical flow [43]. Recently,
these have been gradually replaced by 3D convolutions (C3D) networks [21, 47]. The 3D
kernels can be also formed via inflating 2D kernels [3] which facilitates model pre-training
using large scale image datasets, e.g., ImageNet.

Two recent trends in action recognition are worth mentioning. First, the interest has
shifted from coarse-grained categories such as those in UCF101 [44] or Kinetics [3] where
background (e.g., a swimming pool for diving) plays an important role, to fine-grained cate-
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gories such as those in Something-Something [16] and EPIC-Kitchens [5] where modelling
human-object interaction is key. Second, since 3D CNNs are typically much larger and re-
quire much more operations during inference, many recent works focus on efficient network
designs based on 2D spatial + 1D temporal factorisation (R2+1D) [9, 38, 48] or 2D+temporal
shift module (TSM) [49]. In particular, TSM is attractive because it has the same model com-
plexity as a 2D CNN and yet can still capture temporal information in videos effectively. In
this work, we focus on fine-grained action recognition for which attention modelling is cru-
cial and employ TSM as the main backbone even though our W3 attention module can be
applied to any other video CNN model.

Attention in action recognition. Most existing video attention modules are designed for
RNN based action recognition models. They employ either an encoder-decoder attention
[8, 28, 34, 46, 51, 56], a spatial attention only [14, 41, 56], a temporal attention [46, 51],
or a spatio-temporal attention [8, 28, 34, 56]. Compared to our W3, they are much weaker
on the ‘what’ facet as our module attends to each CNN channel representing a combina-
tion of object and its local motion pattern only when it evolves over time in a certain way.
Furthermore, as they are formulated in the context of recurrent models, they cannot be in-
tegrated to the latest video CNN-based state-of-the-art action models. Modern CNN-based
video attention methods [30, 52] exploit interesting spatio-temporal designs but do not offer
a factorised and cheap module that allows for larger accuracy improvements as we do in this
work. In contrast, our module is suited for action understanding in unconstrained videos
with no extra data, assumptions nor supervision (as opposite to e.g., [27, 42, 60]). Note that
the aforementioned video attention modules as well as our W3 are non-exhaustive, focusing
on a limited subset of the input space to compute attention. Recently, inspired by the success
of transformer self-attention in NLP [50], non-local networks have been proposed [55] and
adopted widely [15, 49]. By computing exhaustively the pairwise relationships between a
given position and all others in space and time, non-local self-attention can be considered as
a more generic attention mechanism than ours. However, a number of factors make it less
attractive than W3. (1) Self-attention in NLP models use positional encoding to keep the
temporal information. When applied to video, the non-local operator does not process any
temporal ordering information (i.e., missing structure in the ‘when’ facet), while temporal
reasoning is performed explicitly in our attention module. (2) The non-local operator induces
larger computational overhead (see Table 1.b) due to exhaustive pairwise relationship mod-
elling and is known to have convergence problems during training [45]. In contrast, our W3
adds negligible overhead, and is easy to train thanks to our architecture and training strategy
specifically designed to assist in gradient flow during training. Importantly, our model is
clearly superior to non-local for the same backbone (see the Experiments section). A few
spatio-temporal attention methods [35] concurrent to this work have been recently proposed,
suggesting

Distillation. Our proposed regularisation, added to facilitate the optimisation of W3 is sim-
ilar to the notion of knowledge distillation (KD) [12, 18] but has key differences: (1) Unlike
the conventional KD methods aiming for model compression [18, 40], we use the same ar-
chitecture for both teacher and student networks. (2) Compared to [40], which also distills
feature map knowledge, we only limit to the last attended feature maps rather than multiple
ones, and without the need of extra parameters for aligning the feature shape between stu-
dent and target. (3) Although [24, 64] also use the same network architecture for teacher
and student, they differently adopt an online distillation strategy which has a higher memory
usage than our offline counterpart. The representation for distillation used is class prediction
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distribution (as in [12]) which also differs from the feature maps utilised in our model.

3 What-Where-When Video Attention
Overview. Given an action recognition network based on a 3D CNN or its various lightweight
variants, our W3 is illustrated in Fig. 1.a. We take a 4D feature map F ∈ RT×C×H×W from
any intermediate layer as the input of W3, where T,C,H,W denote the frame number of the
input video clip, the channel number, the height and width of the frame-level feature map
respectively. Note that the feature map of each channel is obtained using a 3D convolution
filter or a time-aware 2D convolution in the case of TSM networks [65]; it thus captures
the combined information about both object category and its local movement patterns, i.e.,
‘what’. The objective of W3 is to compute a same-shape attention mask M ∈ RT×C×H×W

that can be used to refine the feature map in a way such that action class-discriminative
cues can be sufficiently focused on, whilst the irrelevant ones are suppressed. Formally, this
attention learning process is expressed as:

F′ = F⊗M, M = f (F) (1)

where⊗ specifies the element-wise multiplication operation, and f () is the W3 attention rea-
soning function. To facilitate effective and efficient attention learning, we consider an atten-
tion factorisation scheme by splitting the 4D attention tensor M into a channel-temporal at-
tention sub-module Mc ∈RT×C and a spatio-temporal attention sub-module Ms ∈RT×H×W .
This reduces the attention mask size from TCHW to T (C+HW ) and therefore the learning
difficulty. As such, the above feature attending is reformulated into a two-step sequential
process as:

Fc = Mc⊗F(T,C), Mc = f c(F);
Fs = Ms⊗Fc(T,H,W ), Ms = f s(Fc)

(2)

where f c() and f s() denote the channel-temporal and spatio-temporal attention functions,
respectively. The arguments of F specify the dimensions of the element-wise multiplications.
Next we provide the details of the two attention sub-modules.

3.1 Channel-temporal Attention
The channel-temporal attention focuses on the ‘what-when’ facets of video attention. Specif-
ically it measures the importance of a particular object-motion pattern evolving temporally
across a video sequence in a specific way. For computational efficiency, we squeeze the
spatial dimensions (H ×W ) of each frame-level 3D feature map to yield a compact chan-
nel descriptor dchnl ∈ RT×C as in [19, 62]. While average-pooling is a common choice for
global spatial information aggregation, we additionally include max-pooling which would
be less likely to miss small and/or occluded objects. Using both pooling operations is also
found to be more effective in static image attention modelling [58]. We denote the two chan-
nel descriptors as davg-c and dmax-c ∈ RC×1×1 (indicated by the purple boxes in the top of
Fig. 1.a). To mine the inter-channel relationships for a given frame, we then forward davg-c
and dmax-c into a shared MLP network θc-frm with one hidden layer to produce two channel
frame attention descriptors, respectively. We use a bottleneck design with a reduction ratio
r which shrinks the hidden activation to the size of C

r × 1× 1, and combine the two frame-
level channel attention descriptors by element-wise summation into a single one Mc-frm. We
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Figure 1: Top: An overview of the proposed W3 attention module. Detail of the W3 module. The
channel-temporal attention sub-module (orange box) is formed by a multi-layer perceptron transform-
ing the input into a per-frame attention vector. The concatenation of these vectors across the temporal
dimension is further processed by a temporal CNN (1D convolutions) and a sigmoid non-linearity.
The spatio-temporal attention sub-module (green box) follows sequentially by a 2D convolution on the
concatenation of cross-channel max and mean pooled features. A 3D CNN is applied on the stacked
single-channel per-frame intermediate spatial attention maps. Attention maps are point-wise multiplied
with the input features. For both blocks, the dark and light purple boxes are max and mean pooling
operations, respectively. Bottom: W3 attention-enhanced ResNet-50 architecture with the proposed
attention-guided feature refinement. W3-attention maps are gathered from all the ResNet stages, con-
catenated across the channel dimension, and fed to a 1×1 convolution with ReLU non-linearity. The
output is then added to the final feature maps.

summarize the above frame-level channel-temporal attention process as

Mc-frm = σ

(
fθc-frm(davg-c)⊕ fθc-frm(dmax-c)

)
∈ RC×1×1, (3)

where fθc-frm() outputs channel frame attention and σ() is the sigmoid function.
In fine-grained action recognition, temporal dynamics of semantic objects are often the

distinguishing factor between classes that involve human interaction with the same object
(e.g., opening/closing a book). To model the dynamics, a small channel temporal attention
network θc-vid is introduced, composed of a CNN network with two layers of 1D convo-
lutions, to reason about the temporally evolving characteristics of each channel dimension
(Fig. 1.a top-right). This results in our channel-temporal attention mask Mc, computed as:

Mc = σ

(
fθc-vid({M

c-frm
i }T

i=1)
)
. (4)

Concretely, this models the per-channel temporal relationships of successive frames in a local
window specified by the kernel size Kc-vid, and composed by two layers (we set Kc-vid = 3
in our experiments, producing a composed temporal attention span of 5 frames with two 1D
CNN layers). In summary, the parameters of our channel attention model are {θc-frm,θc-vid}.

3.2 Spatio-temporal Attention
In contrast to the channel-temporal attention that attends to discriminative object local move-
ment patterns evolving temporally in certain ways, this sub-module attempts to localize them
over time. Similarly, we apply average-pooling and max-pooling along the channel axis to
obtain two compact 2D spatial feature maps for each video frame, denoted as davg-s and
dmax-s ∈R1×H×W . We then concatenate the two maps and deploy a spatial attention network
θs-frm with one 2D convolutional layer for each individual frame to output the frame-level
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spatial attention Ms-frm. The kernel size is set to 7× 7 (see Fig. 1.a bottom-left). To incor-
porate the temporal dynamics to model how spatial attention evolves over time, we further
perform temporal reasoning on {Ms-frm

i }T
i=1 ∈ RT×H×W using a lightweight sub-network

θs-vid composed of two 3D convolutional layers. We adopt the common kernel size of
3× 3× 3 (Fig. 1.a bottom-right). We summarise the frame-level and video-level spatial
attention learning as:

Ms-frm = σ

(
fθs-frm([davg-s,dmax-s])

)
∈ R1×H×W , (5)

Ms = σ

(
fθs-vid({M

s-frm
i }T

i=1)
)
∈ RT×H×W (6)

The parameters of spatio-temporal attention hence include {θs-frm,θs-vid}.

3.3 Model Architecture
Our W3 video attention module can easily be integrated into any existing CNN architec-
ture. Specifically, it takes as input a 4D feature tensor and outputs an improved same-shape
feature tensor with channel-spatio-temporal video attention. In this paper, we focus on the
ResNet-50 based TSM [29] as the main instantiation for integration with W3. Other action
models such as I3D [3] and R2+1D [38, 48] can easily be integrated without architectural
changes (see Supplementary for more details). With ResNet-50 as an example, following
the multi-block stage-wise design, we apply our attention module at each residual block of
the backbone, i.e., performing the attention learning on every intermediate feature tensor of
each stage. A diagram of W3-attention enhanced ResNet-50 is depicted in Fig. 1.b.

3.4 Model Training
Learning discriminative video attention would be challenging if trained with standard gradi-
ent backpropagation through multiple blocks from the top end. This is because each layer of
the action model now has an attention module with temporal reasoning. For those modules,
the loss supervision is indirect and gradually becomes weaker/vanishing when it reaches the
bottom levels. We overcome this issue by exploiting two remedies: (1) attention guided
feature refinement on architecture design and (2) mature feature-guided regularisation on
training strategy.
Attention guided Feature Refinement (AFR). In addition to the standard gradient path-
way across the backbone network layers, we further create another pathway for the attention
modules only. Concretely, we sequentially aggregate all the stage-wise attention masks Ms, j

i
at the frame level, where i and j index the frame image and network stage, respectively.
Suppose there are N network stages (e.g., 4 stages in ResNet-50), we obtain a multi-level at-
tention tensor by adaptive average pooling (AAP) and channel-wise concatenation (Fig. 1.b):

Mms
i = [AAP(Ms,1

i ), · · · ,AAP(Ms,N
i )] ∈ RN×Hl×Wl (7)

where Hl and Wl refer to the spatial size of the last stage’s feature map xi ∈ RCl×Hl×Wl .
AAP is for aligning the spatial size of attention masks from different stages. Taking Mms

i as
input, we then deploy a tiny CNN network θref (composed of one conv layer with Cl 1× 1
sized kernels for channel size alignment) to produce a feature refining map, which is further
element-wise added to xi. Formally, it is written as:

yi = xi + fθref(M
ms
i ), (8)
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where yi is the refined feature map of frame i. This process repeats for all the frames of a
video sample.

The newly introduced pathway provides dedicated joint learning of video attention from
multiple stages of the action model backbone and a shortcut for the gradient flow. This is
because its output is used directly to aggregate with the final stage feature map, enabling the
supervision to flow from the loss down to every single attention module via the shortcuts.
This is essentially a form of deep supervision [4, 25].
Mature Feature-guided Regularisation (MFR). Apart from attention deep supervision,
we introduce mature feature guided regularisation to further improve the model training.
This follows a two-stage training process. In the first stage, we train a video action recogni-
tion model with the proposed attention module and attention guided feature refinement (Eq.
(8)) until convergence, and treat it as a teacher model P. In the second stage, we train the
target/student model Q with identical architecture by mimicking the feature maps of P at the
frame level. Formally, given a frame image i we introduce a feature mimicking regression
loss in the training of Q w.r.t. P as:

L f m = ‖yQ
i −yP

i ‖2 (9)

where yQ
i and yP

i are the feature maps obtained using Eq. (8) by the target (Q) and teacher (P)
models respectively, with the former serving as the mature feature to regularize the student’s
learning process via anchoring to a better local optimum than that of the teacher. For the
training objective function, we use the summation of cross-entropy classification loss and
attention-guided feature refinement loss (Eq. (8)) in the first stage. The feature mimicking
regularisation (Eq. (9)) further adds up in the second stage. During both training and testing,
video-level prediction is obtained by averaging the frame-level predictions.

4 Experiments

4.1 Ablation Study

Setting We conducted an in-depth ablation study of our W3 attention module on Something-
Something V1 and Kinetics-400. We used ResNet-18 based TSM [29] for fast iteration as the
baseline for Tab. 1.a and ResNet-50 for Tab. 1.b. All the models are pre-trained on ImageNet
and we set 8 RGB frames per video. In testing, we used 1 clip per video and center crop of
224×224. We adopted Top-1 and Top-5 accuracy as performance evaluation metrics.
Model component analysis In Table 1.a, we examined the effect of every single compo-
nent in our W3 attention by adding them one at a time. We observed that: (i) In model opti-
misation, our mature feature guided regularisation brings a large performance gain for both
Kinetics and Something-Something, whilst attention guided feature refinement also helps
improve the results. Indeed, we observed that even though the Attention guided Feature
Refinement (AFR) module has a trivial amount of parameters, it aids training of the spatio-
temporal weights, which otherwise show little improvement for Kinetics. (ii) Among all the
attention facets, the channel-temporal (‘what’-‘when’) facets seems to carry more weight in
the final results. This reflects the fundamental difference between video and image analysis
tasks. (iii) Overall, gains for every single element of our proposed model are clearly stronger
for the Something-Something dataset, which is more fine-grained that Kinetics. This is an
interesting finding, further demonstrating that carefully designed attention is more important
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Kinetics-400 Some.-Some.-V1
Top-1 Top-5 Top-1 Top-5

TSM [29] 63.80 85.48 40.59 70.15
+ Static Ch. Att - - 41.02 70.33
+ Static Sp. Att 63.91 85.60 41.29 70.33

+ Temporal Ch. Att 64.40 86.17 42.11 71.08
+ Temporal Sp. Att 64.43 86.15 42.25 71.26

+ AFR 64.57 86.30 42.54 71.46
+ MFR (Full W3) 65.66 86.79 43.39 73.24

TSM +CBAM +NL +W3 w/o MFR +CBAM+MFR +NL+MFR +W3

Top-1 47.2 49.1 49.8 50.3 50.5 50.8 52.6
Top-5 77.1 78.4 78.3 79.2 80.6 80.9 81.3

GFLOPs 65.0 66.5 115.0 67.1 66.5 115.0 67.1

(a) (b)

Table 1: (a) Ablation study of our W3 attention on the validation sets of Kinetics-400 and
Something-Something-V1 datasets. Base CNN: ResNet-18; Baseline action model: ResNet-18
based TSM; Setting: 8 frames per video, using only RGB images. (b) Comparing attention mod-
els on Something-Something-V1. Using 16 frames, ResNet-50 based TSM. NL=Non Local [55];
CBAM=Conv. Attention [58].

for modern action recognition datasets involving fine-grained action categories, with heavy
human-object and object-object interactions. (iv) Finally, all of the elements we propose here
are helpful across both datasets. As clearly shown, W3 improves baseline results by almost
two points in Kinetics, and almost three points in Something-Something. These two datasets
are different enough to demonstrate the flexibility and effectiveness of our method.

Comparing attention models We compared our W3 attention model with two strong
competitors: (1) CBAM [58] which is the state-of-the-art image attention; (2) Non-Local
operator [55] which is the best video attention module thus far in the literature. The results
on the left side of Table 1.b show that, even when ignoring the effects of the proposed reg-
ularisation, (i) Our W3 attention yields the most significant accuracy boost over the base
action model TSM [29], validating the overall performance advantages of our attention oper-
ation. (ii) When combined with TSM and end-to-end trained, CBAM surprisingly produces
a very strong performance on par with Non-Local attention, indicating that a strong video ac-
tion method can be composited by simply applying image attention to top-performing action
models. However, there is still a clear gap against the proposed W3 which is a more princi-
pled way of learning spatio-temporal video attention. (iii) W3 achieves this by being much
less compute-intensive than the Non-local alternative, adding virtually no extra computa-
tional cost on top of TSM. More comparisons against competing methods in other datasets
and further discussion can be found in the Supplementary material. Additionally, in Table 2.b
we compare against concurrent and SoTA CNN-based attention models [26, 30, 57], where
W3 reports favourable results while using a much less intensive test setting.

Effect of MFR on attention models The above analysis suggests that CBAM [58] is very
effective for attentive modelling as long as it is coupled with a strong video model (TSM).
From Table 1 we can see that Mature Feature-based Regularisation (MFR) is a very effective
regularisation method, pushing accuracy performance of our video action models by a large
factor in two very different datasets. We thus expect combining other attention models like
CBAM with MFR to be an even stronger competitor. The results in Table 1.b (right-hand
side) validate this – an extra +1.4% boost in Top-1 accuracy over CBAM alone when our
proposed training strategy is applied. A smaller boost of +1.0% is observed for Non-Local
attention. Interestingly, we note that the gain by MFR is more significant (2.3% increase)
when used with our W3 attention mechanism.
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Model Backbone #Frame GFLOPs Top-1 Top-5

TSN [53] R50 8 33 19.7 46.6
TRN-Multiscale [65] R50 8 33 38.9 68.1

I3D† [3] 3D R50 32×2 clip 153×2 41.6 72.2
I3D†+NL [55] 3D R50 32×2 clip 168×2 44.4 76.0

I3D+NL+GCN [54] 3D R50 32×2 clip 303×2 46.1 76.8
SlowFast [10] 3D R50 32 65×2 47.5 76.0

TSM [29] R50 8 33 45.6 74.2
TSM [29] R50 16 65 47.2 77.1

TSMen [29] R50 8+16 98 49.7 78.5
TSM+W3 (Ours) R50 8 33.5 49.0 77.3
TSM+W3 (Ours) R50 16 67.1 52.6 81.3

Model Backbone # Frames Top-1 Top-5

TRN-Multi. [65] R50 8 38.9 68.1

TSM [29] R50 FR: 8×2 59.1 85.6
TSM [29] R50 FR: 16×2 63.1 88.1

TEINet [30] R50 16×3×10 63.0 -
ACTION-Net [57] R50 16×3×10 64.0 89.3

TEA [26] R50 16×3×10 64.5 89.8

TSM+W3 R50 16×2 65.7 90.2
TSM+W3 R50 FR: 16×2 66.5 90.4

(a) (b)
Table 2: (a) Comparison with state-of-the-art on Something-Something-V1 [16]. (b) Comparison
with state-of-the-art on Something-Something-V2 [32]. FR=Full Resolution testing.

4.2 Comparisons to the State-of-the-Art Methods

Datasets We used three popular fine-grained action recognition benchmarks: (1) Something-
Something V1 [16], contains 108,499 videos from 174 fine-grained action classes about
hand-object interactions. Some of these classes are visually subtle and hence challenging to
differentiate, such as “Pretending to turn something upside down”. (2) Something-Something
V2 [32] presents an extended version of V1, including 220,847 higher-resolution videos
with less noisy labels. (3) Epic-Kitchens-55 [23], a first-person-view dataset that presents
a dual classification task: verbs and nouns. It has 39,594 action segments, with 125 verb
and 331 noun classes. Additionally, we provided the results for Kinetics-400 [3], and Ego-
Gesture [63] in the Supplementary.

Training and testing We followed the common practice as [29, 55]. Specifically, the
model was trained from ImageNet weights for all the datasets. In the case of W3 this implies
that only the backbone is pretrained, while the temporal weights are randomly initialized.
For testing, multiple clips are sampled per video and the full resolution images with shorter
side 256 are employed. For efficient inference, we used 1 clip per video and the center crop
sized at 224×224. Note that all the competitors used the same setting for fair comparison.
We reported Top-1/5 accuracy rates for performance evaluation.

Results on Something-Something V1 We compared our W3 method with the state-of-
the-art competitors in Table 2.a. It is evident that our W3 with TSM [29] yields the best
results among all the competitors, which validates the overall performance superiority of our
attention model. We summarize detailed comparisons as below. (1) 2D models (1st block):
Without temporal inference, 2D models such as TSN [53] perform the worst, as expected.
Whilst the performance can be improved clearly using independent temporal modelling after
feature extraction with TRN [65], it remains much lower than the recent 3D models. (2)
2D+3D models (2nd block): As shown for ECO, the introduction of 3D spatio-temporal fea-
ture extraction notably boosts the performance w.r.t. TSN and TRN. However, these methods
still suffer from high computational cost for a model with competitive performance. (3) 3D
models (3rd block): The I3D model [3] has been considered widely as a strong baseline
and further improvements have been added in [10, 54, 55] including self-attention based
non-local network. A clear weakness of these methods is their huge computational cost,
making deployment on resource-constrained devices impossible. (4) Time-shift models (4th

block): As the previous state-of-the-art model, TSM [29] yields remarkable accuracy with
the computational cost as low as 2D models. Importantly, our W3 attention on top of TSM
further boosts the performance by a significant margin. For instance, it achieves a Top-1
gain of 3.6%/5.4% when using 8/16 frames per video in test, with only a small extra cost of
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0.5G/2.1G FLOPs.

Results on Something-Something V2 The results are shown in Table 2.b. Following
[29], we used two clips per video each with 16 frames in testing. Overall, we have similar
observation as on V1. For instance, TRN [65] is clearly inferior to our baseline TSM [29],
and our method further significantly improves the Top-1 accuracy by 3.4% when using 16×2
full resolution frames. Interestingly, our proposed W3 is able to achieve better results than
any other recent/concurrent CNN-based attention model [26, 30, 57], often by a large margin
and under less intensive test setting.

Verb Noun Action
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Model S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

TRN∗ [65] 58.8 47.3 86.6 76.9 37.3 23.7 63.0 46.0 26.6 15.7 46.1 30.0
TRN-Multiscale∗ [65] 60.2 46.9 87.2 75.2 38.4 24.4 64.7 46.7 28.2 16.3 47.9 29.7

Action Banks [59] - full res 60.0 50.9 88.4 77.6 45.0 31.5 71.8 57.8 32.7 21.2 55.3 39.4

TSM∗ [29] 57.9 43.5 87.1 73.9 40.8 23.3 66.1 46.0 28.2 15.0 49.1 28.1
TSM+W3 64.4 50.2 88.8 78.0 44.2 26.6 68.1 49.5 33.5 17.8 53.9 32.6

TSM+W3 - full res 64.7 51.4 88.8 78.5 44.7 27.0 69.0 50.3 34.2 18.7 54.6 33.7

Table 3: Comparison with state-of-the-art on EPIC-Kitchens [5]. Setting: 8 frames / 10 crops in
test (RGB only). S1: Seen Kitchens; S2: Unseen Kitchens. ‘∗’: Results from [37].

Results on Epic-Kitchens We evaluated the classification task on verb, noun, and action
(verb+noun) on the standard test set. We compared our method with a number of state-of-the-
art action models in Table 3. In this experiment, we adopted the test setup of [37]: two clips
and ten crops per video. On this realistic and challenging dataset, we observed consistent
performance gain obtained by adding our W3 attention model to the baseline TSM across
verb, noun, and action classification. This leads to the best accuracy rates among all the
strong competitors evaluated in the same setting. For example, W3 improves the action top-
1 accuracy by 5.3%/2.8% on seen/unseen kitchen test sets. We also report a clear margin
over the current state-of-the-art model, Action Banks [59] on verb classification. Note that
Action Banks uses more temporal data for every action and noun prediction, and an extra
object detector. This gives it an unfair advantage over our model, and explains its better
performance on noun classification and subsequent action classification. The results validate
the importance of spatio-temporal attention learning for action recognition in unconstrained
egocentric videos, and the effectiveness of our W3 attention formulation.

5 Conclusions

We have presented W3, a novel lightweight video attention module for fine-grained action
recognition in unconstrained videos. Used simply as a drop-in building block, our proposed
W3 module significantly improves the performance of existing action recognition methods
with very small overhead. It yields superior performance over a number of state-of-the-art
alternatives on a variety of action recognition tasks.
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