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Abstract

Transformer, which excels in capturing long-range dependencies, has shown great
performance in a variety of computer vision tasks. In this paper, we propose a hybrid
network with a Transformer-based encoder and a CNN-based decoder for monocular
depth estimation. The encoder follows the architecture of classical Vision Transformer.
To better exploit the potential of the Transformer encoder, we introduce the Attention
Supervision to the Transformer layer, which enhances the representative ability. The
down-sampling operations before the Transformer encoder lead to degradation of the
details in the predicted depth map. Thus, we devise an Attention-based Up-sample Block
and deploy it to compensate the texture features. Experiments on both indoor and outdoor
datasets demonstrate that the proposed method achieves the state-of-the-art performance
on both quantitative and qualitative evaluations. The source code and trained models can
be downloaded at https://github.com/WJ-Chang-42/ASTransformer.

1 Introduction
Depth estimation plays a crucial role in contemporary computer vision tasks, such as 3D
face recognition and VR/AR. Currently, there are two main ways for depth estimation. One
is the active way, getting the depth via illuminating coded signals, such as ToF [18, 27]
and structured light cameras [1, 35, 38]. The other follows a passive way, which is usually
based on multi-view geometry, such as stereo depth estimation [16, 21, 24], structure from
motion [26, 32] and depth from light field [19, 20]. Different from the mentioned methods,
Monocular Depth Estimation (MDE) aims to recover the depth value of each pixel from a
single RGB image.

Previously, researchers utilize structural prior knowledge to reconstruct the depth map
of a scene, such as texture, object shape, edge orientations which are related with 3D infor-
mation [13, 25, 31]. Recently, with the development of deep learning, the performance of
MDE has been significantly improved by CNN-based models [5, 8, 9, 12, 30]. The success
of CNN models is due to that the convolution operation is able to extract the structural prior
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knowledge from training data. The Transformer architecture, which is first introduced to
natural language processing, has also demonstrated outstanding performances on high-level
vision tasks, such as image classification, object detection and segmentation. Compared with
CNN-based networks, Transformer-based models expand the receptive field and are able to
learn global information of an image.

In this paper, we combine a Transformer-based encoder with a CNN-based decoder to-
gether to jointly solve the MDE problem. However, we notice that simply employing the
Transformer-based encoder cannot provide satisfying depth results, which perhaps is due
to that there are no specific objects to concentrate on for low-level vision tasks. Thus, the
attention scheme of Transformer needs to be carefully tuned for low-level vision tasks. To
solve this problem, we introduce Attention Supervision (AS) to the Transformer-based en-
coder. Specifically, we calculate an attention map of each pixel based on the ground-truth
depth and add two attention loss terms in the loss function to provide more guidance for
the convergence of the Tranformer-based encoder. Meanwhile, limited by computing re-
sources, the original RGB images need to be down-sampled to fit the giant Transformer-
based model. This leads to detail degradation in the predicted depth map. To this end, we
propose Attention-based Up-sample Block (AUB) to compensate the texture loss. AUB uti-
lizes the attention information learned from the Transformer layer to generate high resolution
feature map without extra parameter consumption in the encoder. The contribution of this
work can be summarized as follows.

1. A hybrid encoder-decoder network is proposed for MDE. The Vision Transformer
architecture is utilized in the encoder, which extracts features for global 3D information.
Attention Supervision is introduced to the loss function design, which provides guidance for
the convergence of the Transformer layer.

2. A novel Attention-based Up-sample Block, without extra parameter consumption in
the encoder, is proposed to compensate the texture loss due to image down-sampling.

3. Experimental results demonstrate that our proposed method achieves superior perfor-
mances on indoor (NYU Depth V2) and outdoor (KITTI) datasets in both quantitative and
qualitative ways.

2 Related work

2.1 Monocular Depth Estimation

Early works on MDE mainly focused on handcrafted features. For example, Torralba and
Oliva [31] computed the mean depth of the scene from the perspective of object size. Sax-
ena et al. [23] employed designed convolution filter for extracting image features at multiple
scales to improve the performance on depth estimation. Recently CNN-based deep learning
networks have shown great performances on vision tasks including MDE. Eigen et al. [8]
first utilized CNN to predict depth from a single image. Chen et al. [5] proposed the resid-
ual pyramid-based network to learn global structural information for MDE. Huan et al. [9]
considered the depth prediction task as a classification problem, which is further solved by
a CNN-based classification network. Song et al. [30] designed a Laplacian pyramid-based
network to precisely estimate the depth boundary. Yin et al. [36] introduced a geometric con-
straint named virtual normal to predict the depth map. Lam et al. [12] proposed an attention
module after encoder to help the network to learn the planar structures from the scene.
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2.2 Transformer Network
Transformer is one of the most important architectures in natural language processing be-
cause it could discover the relation between the input words in a global size. Recently,
Transformer structure shows great potential in vision tasks. DETR [3] utilized a traditional
Transformer-based encoder-decoder structure for object detection. ViT [7] deployed a gi-
ant Transformer encoder and achieved superior performance on image classification. SETR
[39] combined ViT [7] with a CNN-based decoder together and got reliable image segmen-
tation results. Wang et al. [34] proposed VisTR, an end-to-end model based on Transformer,
for video instance segmentation. Trackformer [17] designed a new tracking-by-attention
paradigm based on Transformer for multi-object tracking. Chen et al. [4] built a large pre-
trained Transformer-based model for image restoration. Ren et al. [22] proposed a dense
prediction network DPT, which leveraged vision transformers in place of CNN. Bhat et al.
[2] introduced a monocular depth prediction network AdaBins, utilizing Transformers to
classify the depth range of each pixel.

3 Approach
In this section, we introduce the details of our proposed approach. We first present the
overview of the architecture in Sec. 3.1. Then we introduce AS in Sec. 3.2 and AUB in Sec.
3.3. The loss function we use to supervise depth prediction and guide attention learning will
be introduced in Sec. 3.4.

3.1 Overview
To recover depth from a single RGB image I ∈ R3×H×W , we first perform a 16× down-
sampling operation via convolution. Then we convert the generated features F ∈R768× H

16×
W
16

via a flattening operation to get the tokens T ∈ R
HW
256 ×768, which are fed to the Transformer

encoder. Our Transformer-based encoder follows the design of ViT [7], which receives 1D
sequence of token embeddings as input. There are 12 Transformer layers in the encoder,
each of which consists of Normalization, Multi-head attention and MLP operations. For the
3rd, 6th, 9th and 12th layers, we output features, queries and keys. The output of the 12th
layer is directly fed to the decoder. The outputs of other three layers are fed to AUB. These
blocks up-sample and generate features at different scales in the decoder. The decoder of our
proposed network is composed of CNN layers at four scales. In practice, our decoder design
is the same with [30]. The layer at the uppermost scale outputs the final depth image. Fig.
1(a) presents the pipeline of the proposed approach.

3.2 Attention Supervision
Self-Attention (SA) is one of the key components in Transformer, which extracts the rela-
tionships among tokens in a sequence. We denote the input sequence as z ∈ RN×M . The
basic Self-Attention operation is formulated as follows.

[q,k,v] = MLP(z) A = SOFT MAX(qk>/
√

M), A ∈ RN×N (1)

SA(z) = Av (2)
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(a) The pipeline of the proposed network

(b) Attention-based Up-sample Block (c) Split and reverse split

Figure 1: An overview of the proposed approach. (a) shows the pipeline of our proposed
network. A Raw RGB image is down-sampled and resized to generate tokens. The Trans-
former layers generate features with the same size, thus we need to up-sample the feature
maps from Transformer layers to form the multi-scale input of the decoder. (b) shows the
architecture of the proposed AUB. The green route is from Image Branching. The orange
route is from Transformer Layer. Queries and keys are the temporary variables which are
used to calculate self-attention. (c) shows split operation and reverse split operation in AUB.
The split operation firstly cuts features from Image Branching into small patches. Then pix-
els in the same position of patches will be combined together as small feature maps to fit the
dimension of attention matrix. The reverse split operation follows opposite procedures.

The input sequence z first passes a Muti-Layer Perception to get the presentation of q,k,v ∈
RN×M which represent query, key and value respectively. Then the attention information Ai, j
is calculated from qi and k j which reflects the similarity between tokens in position i and j.
The final output is generated by multiplying the attention matrix A by the value v.

However, when directly applying the above attention mechanism to depth estimation, the
attention maps extracted from the last Transformer layer do not show enough 3D structure
information (Fig. 2(c)). To guide Transformer learn useful information, we propose AS
under the assumption that pixels in the same depth level should have higher values in the
attention map. The ground-truth of attention map Âi, j, which is calculated from ground-truth
depth map, is formulated as

Âi, j = SOFT MAX(−λ |D̂− d̂i, j|), (3)

where D̂ represents the depth map which is 16× down-sampled from the ground-truth depth
map and normalized to [0,1], d̂i, j represents the depth value at position (i, j), λ is a hyper-
parameter which controls the attention range. We set λ as 8 in our work. The supervision is
only added in the last Transformer layer in the decoder. Meanwhile, the loss function needs
revision after introducing AS, which will be illustrated in the following.

In Fig. 2, we visualize the attention maps extracted from the last Transformer layer and
from DETR [3], a Transformer-based model for object detection, on a single image. The sub-
figures demonstrate that without our AS, the network cannot get useful attention maps. After
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(a) RGB Image (b) DETR (c) w/o AS (d) w/ AS

Figure 2: (a) shows an example RGB image. (b) shows the attention maps from DETR [3],
a Transformer-based model for object detection. Individual instances are separated out from
attention map when reference pixel is on the specific object. (c) and (d) show effects of AS
on the attention maps extracted from the last Transformer layer in our architecture.

adding AS, the attention maps are able to reflect the global attention information related to
the task, which are similar to the attention maps generated by DETR. We will quantitatively
demonstrate the effectiveness of AS in Sec. 4.3.

3.3 Attention-based Upsample Block

From the previous introduction of our Transformer encoder, it can be seen that the output of
Transform layers are 16× smaller than the input RGB image. Direct bi-cubic up-sampling
may lead to texture degradation. We still need operations to perform optimized up-sampling
and provide features to the corresponding layer of the decoder. Thus, we design an Image
Branching module, which is shown in Fig. 1(a), to provide source information with appro-
priate dimensions. With this module, we further propose Attention-based Up-sample Block
(AUB) to tackle the above-mentioned texture degradation problem. Fig. 1(b) shows the
design of this block.

The input of AUB is the outputted features, queries and keys of the Transformer layer
and the unfolded images from the Image Branching module. Specifically, features from
Transformer layers are directly up-sampled to the corresponding scale in the decoder via
bi-cubic interpolation. The unfolded images first passes a split operation, then are multiplied
by attention maps, which are generated by the queries and keys from the Transformer layer.
After a reverse split operation, the result is concatenated with the up-sampled feature. The
split and reverse split operation are shown in Fig. 1(c). In this way, we make full use of
the attention information learned by Transformer and compensate the missing details due to
image down-sampling. It can be seen that there are no extra parameters cost in AUB.

3.4 Loss Function

Depth Loss. Usually, the depth data are dense in the nearby area but sparse in a distance. To
solve the problem of uneven data distribution, we use the loss function proposed by [8] to
measure the depth distance, which computes the depth errors in log space between ground-
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truth and predicted depth data. Mathematically, the depth loss is formulated as

Le (y, ŷ) =

√√√√1
n ∑

i∈V
e2

i −
α

n2

(
∑
i∈V

ei

)2

, ei = log ŷi− logyi (4)

where ŷ is the ground-truth depth map, y is the predicted depth map, V is a set of valid
pixels in the depth map and n is the total number of valid pixels. The factor α is set to 0.85
following [14].
Gradient Loss. The gradient loss is the L1 loss over the gradient g of the depth image. It
can be denoted as

Lgrad(y, ŷ) =
1
n

n

∑
p

∣∣gx (yp, ŷp)
∣∣+ ∣∣gy (yp, ŷp)

∣∣ , (5)

where gx and gy compute the discrepancy in both x and y components for the depth image
gradients of y and ŷ.
Attention loss. To assist the Transformer layer in learning depth variation information, we
add two attention loss terms as follows

Lmae =
1

(hw)2 ∑
∣∣Ai, j− Âi, j

∣∣, Ai, j ∈ Rh×w (6)

Lcos =
1

(hw) ∑

[(
1− cos

(
Ai, j, Âi, j

))
+
(

1− cos
(

A>i, j, Â
>
i, j

))]
, Ai, j ∈ Rh×w (7)

where (h,w) is the resolution of attention map, Âi, j and Ai, j denote the ground-truth and
predicted attention map at position (i, j), cos denotes cosine similarity calculation.
Overall Loss. The overall loss is the summation of the aforementioned loss terms:

Ltotal =

{
Le +Lmae +Lcos epochs ≤ 10
Le +Lgrad +Lmae +Lcos epochs > 10

(8)

In the first 10 epochs, we train the model with depth loss and attention loss. Gradient loss will
be added after 10 epochs. We utilize the training strategy following [30] to avoid unstable
training performance caused by the gradient loss.

4 Experiments
In this section, we describe our experimental details and compare the performance of our
network with existing state-of-the-art methods. We evaluate the performance of our work
on two widely-used datasets: indoor dataset NYU Depth V2 and outdoor dataset KITTI.
Moreover, we perform the ablation studies to explain how the AS and AUB influence the
performance.

4.1 Datasets
NYU Depth V2. The NYU Depth V2 dataset [29] consists of 120K pairs of RGB and
depth images. These image pairs are captured by Microsoft Kinect sensor under 464 indoor
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Method δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ rel ↓ log10 ↓ rmse ↓

DORN [9] 0.828 0.965 0.992 0.115 0.051 0.509
SARPN [5] 0.878 0.977 0.994 0.111 0.048 0.514
VNL [36] 0.875 0.976 0.994 0.111 0.048 0.416
BTS [14] 0.885 0.978 0.994 0.110 0.047 0.392

Adabins [2] 0.886 0.982 0.995 0.112 0.047 0.401
DPT-Large [22] 0.886 0.980 0.994 0.114 0.047 0.398
Lapdepth [30] 0.885 0.979 0.995 0.110 0.047 0.393

Ours 0.902 0.985 0.997 0.103 0.044 0.374

Table 1: Comparisons with state-of-the-art MDE approaches on the NYU Depth v2 Dataset.
The best results on each metric are marked in bold.

Method δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ rel ↓ rmselog ↓ rmse ↓

Godard [11] 0.916 0.980 0.994 0.085 0.135 3.938
VNL [36] 0.938 0.990 0.998 0.072 0.117 3.258
DORN [9] 0.932 0.984 0.994 0.072 0.120 2.727
BTS [14] 0.956 0.993 0.998 0.059 0.096 2.756

Adabins [2] 0.964 0.994 0.999 0.060 0.091 2.765
DPT-Large [22] 0.961 0.994 0.999 0.058 0.089 2.710
Lapdepth [30] 0.962 0.994 0.999 0.059 0.091 2.446

Ours 0.963 0.995 0.999 0.058 0.089 2.685

Table 2: Comparisons with state-of-the-art MDE approaches on KITTI Eigen split (80m
cap). The best results on each metric are marked in bold.

scenes with the resolution of 480×640 pixels. We apply the training/testing split following
[8, 14]. The training set contains 36,253 images from 249 scenes. The testing set consists
of 654 images from remaining 215 scenes. Training and testing samples are cropped to the
resolution of 416×512 with the same configuration in [30].
KITTI. The KITTI dataset [10] is a large-scale outdoor dataset, which contains RGB and
depth image pairs in autonomous driving scenarios. The resolution of acquired images is
375× 1242 pixels. For a fair comparison, we adopt the split strategy introduced in [8].
According to this scheme, the training set is composed of 23,488 images from 32 scenes.
The testing set contains 697 images selected from the remaining 29 scenes. The training and
testing samples are cropped to the resolution 352×704 with the same operation as [30].

4.2 Training Details

We implement our model with the PyTorch framework. The Transformer encoder is pre-
trained on the ImageNet dataset [6]. We train our model on 8 NVIDIA GeForce TitanXp
Graphics cards. The weight decaying factor is set to 0.0005 for the encoder and zero for
decoder with AdamW optimizer [15] where the power and momentum are set to 0.9 and
0.999. Our proposed network is first trained for 30 epochs without AUB. After 30 epochs,
the AUB is deployed for training 15 epochs.

We utilize random rotation, horizontal flip and random adjustments for data augmenta-
tion. The random rotation is within the range of [−3◦,3◦]. The horizontal flip is performed
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(a) RGB (b) Ground Truth (c) SARPN [5] (d) LapDepth [30] (e) Ours w/o AUB (f) Ours

Figure 3: Qualitative comparison with other methods on the NYU Depth V2 dataset.

with 50% probability. Random adjustments in the scale range [0.9, 1.1] are applied on the
brightness, color and gamma values.

4.3 Evaluation
Quantitative Results. We compare our method against state-of-the-art methods quantita-
tively with the following metrics: mean absolute relative error (rel), root mean square error
(rmse) and threshold accuracy (δi). We additionally calculate absolute error in log space
(log10) for NYU Depth V2 and root mean square error in log space (rmselog) for KITTI. The
mathematical expressions of the evaluation metrics are presented in the following.

rel =
1
n

n

∑
p

∣∣yp− ŷp
∣∣

ŷp
, rmse =

√√√√ 1
n

n

∑
p
(yp− ŷp)

2

)

rmselog =

√√√√(1
n

n

∑
p
(logyp− log ŷp)

2

)
, log10 =

1
n

n

∑
p

∣∣log10 (yp)− log10 (ŷp)
∣∣

δ = % of yp s.t.max
(

yp

ŷp
,

ŷp

yp

)
= δ < thr for thr = 1.25,1.252,1.253

For SAPRN [5], we directly apply the pre-trained model 1. For DPT [22] and AdaBins [2],
we train the models with our experimental setting. In [22], there are two DPT networks, of
which we choose DPT-Large with 300M parameters for comparison. Table 1 and Table 2
compare the performance of our method with the state-of-the-art methods on NYU Depth
V2 and KITTI. The proposed method achieves the best performance on NYU Depth V2 in
terms of all metrics and it also provides a superior evaluation result on KITTI in terms of
most metrics.

1https://github.com/Xt-Chen/SARPN
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(a) RGB (b) Ground Truth (c) VNL [36] (d) LapDepth [30] (e) Ours

Figure 4: Qualitative comparison with other methods on the KITTI dataset.

Method Up-sample δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ rel ↓ log10 ↓ rmse ↓

WR 101 [37] bicubic 0.866 0.981 0.996 0.120 0.050 0.398

Ours w/o AS bicubic 0.892 0.983 0.996 0.107 0.046 0.394
Ours w/ AS bicubic 0.900 0.985 0.995 0.104 0.045 0.382

Ours w/ AS

PixelShuffle [28] 0.895 0.984 0.997 0.106 0.045 0.382
CARAFE [33] 0.857 0.972 0.992 0.124 0.154 0.427

DUB 0.900 0.983 0.995 0.104 0.045 0.378
AUB 0.902 0.985 0.997 0.103 0.044 0.374

Table 3: Ablation results on the NYU Depth V2 dataset. ‘WR 101’ denotes the comparing
neural network with Wide ResNet 101 as the encoder.

Qualitative Results. Fig. 3 shows visual results of SARPN [5], LapDepth [30] and our
method. Fig. 3(e) shows the depth results without AUB. SARPN and LapDepth fail in
reconstructing the complex corner from first and second rows. The depth results in the third
row show our method has a better performance on the shadow region. From Fig. 3(e) and
3(f), it can be observed that the AUB module helps the network get sharper depth maps. In
Fig. 4, we show qualitative comparisons on the KITTI dataset among our method, VNL [36]
and LapDepth [30]. We can see that the overexposed region and small objects get better
reconstruction by our proposed method.
Ablation Study. We perform ablation study to investigate the effectiveness of AS and AUB.
To compare our Transformer-based encoder with the CNN-based encoder, we construct a
similar network with a convolutional encoder ‘Wide ResNet 101’, whose parameter size is
in the same level as our Transformer-based encoder (‘Wide ResNet 101’ [37], 83M; Our
Encoder, 88M). To verify the effectiveness of AUB, we replace AUB with several differ-
ent up-sample methods (e.g. bicubic, CARAFE [33], PixelShuffle [28], Direct Up-sample
Block (DUB)). The difference between AUB and DUB is that DUB doesn’t have the atten-
tion scheme in the up-sample block. Detailed illustrations of AUB and DUB are shown in
our Supplementary Material. All ablation experiments are performed on the NYU Depth
V2 dataset, and share the same decoder architecture and training strategy. Table 3 shows
the quantitative evaluation results of ablation experiments. The results demonstrate that the
Transformer-based encoder without AS and AUB shows a similar performance to that with
the CNN-based encoder. Both AS and AUB improve the performance when applied in our
model. Our AUB outperforms all other up-sample methods.

To verify the effectiveness of the loss terms we use in AS, we train models using Lcos
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Method δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑ rel ↓ log10 ↓ rmse ↓

Baseline 0.892 0.983 0.996 0.107 0.046 0.394
Lmae 0.889 0.983 0.996 0.109 0.047 0.395
Lcos 0.895 0.983 0.997 0.106 0.046 0.388

Lcos +Lmae 0.900 0.985 0.995 0.104 0.045 0.382

Table 4: Effectiveness analyses of attention losses on the NYU Depth V2 dataset. The base-
line denotes our model without AS and AUB. We utilize bicubic as the up-sample strategy
in the above experiments.

and Lmae separately. The results are shown in Table 4. Using Lcos has a better performance
than using Lmae. Combining the two losses together could get the best result.

5 Conclusion
In this paper, we propose a Transformer-based deep neural network for MDE. AS is intro-
duced to provide guidance for the convergence of the Transformer encoder. To make full
use of the global depth information learned by Transformer layers, we propose AUB, which
could bring the low scale attention information to the high resolution features without ex-
tra parameter cost. Experimental results demonstrate that our proposed method achieves
superior performances on both indoor dataset NYU Depth V2 and outdoor dataset KITTI.
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