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Abstract

One of the most common problems of weakly supervised object localization is that
of inaccurate object coverage. In the context of state-of-the-art methods based on Class
Activation Mapping, this is caused either by localization maps which focus, exclusively,
on the most discriminative region of the objects of interest, or by activations occurring
in background regions. To address these two problems, we propose two representa-
tion regularization mechanisms: Full Region Regularization which tries to maximize the
coverage of the localization map inside the object region, and Common Region Regular-
ization which minimizes the activations occurring in background regions. We evaluate
the two regularizations on the ImageNet, CUB-200-2011 and OpenImages-segmentation
datasets, and show that the proposed regularizations tackle both problems, outperforming
the state-of-the-art by a significant margin.

1 Introduction
Learning how to localize objects in images without relying on data paired with expensive
location-specific annotations is a highly desirable capability. Therefore, it is no surprise
that this task, usually referred to as Weakly-supervised Object Localization (WSOL), has
received increased attention in recent years.

One of the most used methods for this task is based on Class Activation Map (CAM) [23],
see [3, 15, 18, 20, 21, 22]. In these works, it has been noticed that the localization map
generated by CAM focuses on the most discriminative region of the image. The reason is
simple: the backbone is trained for classification since there is no access to the coordinates
of the object, so it learns the discriminative features for each class. As a result, the object
coverage is under-estimated.

Existing efforts to address this problem follow one of three common strategies. They
iteratively occlude/replace relevant regions of the input in order to force the model to learn a
more complete set of features, enabling localization [15, 18], or rely on additional networks
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to assist with the localization task [20, 21]. Alternatively, a more simple strategy is to update
the representation learned by the convolutional layers of the model [3, 22].

For CAM-based methods, the localization map is generated by a linear combination of
the feature maps of the last convolutional layer and then rescaled to the image’s size. If the
size of the feature map is too small, say 7×7 while the input size is 224×224, the resized
localization map will have poor precision. In order to increase the size while still using
the original pre-trained weights of the backbone, a common strategy is to change the stride
in some convolutional blocks [3, 5, 22]. However, we observe that the localization map
generated in this way can activate a lot on the background, i.e. the object coverage is over-
estimated (see Fig. 2). To solve it, activations on the background should be suppressed.

Then, the research question is: how to actively control the activation distribution on the
localization map, maximizing or minimizing the spatial coverage (mass) of the activations
as needed? Aiming at answering this question, we propose MinMaxCAM, a method that
iteratively i) learns a classification task to provide coarse feature maps (Stage I) and ii) reg-
ularizes (part of) the model (i.e. the final linear layer, noted as f c), which learns how to
re-weight the coarse feature maps so that it is capable of shifting the mass of their internal
activations (Stage II), see Fig. 1. This not only enables accurate object localization but is
relatively stable to train and does not need additional networks. In particular, we design
two regularizations, Common Region Regularization (CRR) and Full Region Regularization
(FRR), that can serve as objective functions for the model to optimize f c after the global
average pooling (GAP) operation characteristic of CAM. CRR is based on the fact that mul-
tiple images from the same class share a very similar representation for the common object,
which we call “object-specific representation”. During the training, the coarse localization
map obtained from Stage I via CAM is used to extract the object-specific representation.
When minimizing CRR, we only optimize the final linear layer, whose weights are used by
CAM to combine the feature maps, making the localization map more accurate. Worth not-
ing, intra-class differences can reduce the common region to only a very small part of the
object. The same can happen due to failed localization of the most discriminative region. To
tackle these situations, FRR is proposed. It stimulates covering a larger part of the object,
again only optimizing the final linear layer. Stage I and II are optimized every mini-batch,
where optimizing Stage I guarantees that the coarse localization map is object-centered.

MinMaxCAM has a number of advantages: i) It is light-weight: it only relies on a stan-
dard classification model; no extra network is needed. It saves computation resources and is
relatively simple to train. ii) The proposed method produces more precise or tighter bounding
boxes, addressing the problem of over- and under-estimating the object with a single model.
iii) Despite its simplicity, the proposed method is capable of setting a new state-of-the-art
performance on the ImageNet, CUB-200-2011 and OpenImages-segmentation datasets, out-
performing existing methods by a significant margin.

2 Related Work
Most existing works related to WSOL [3, 15, 17, 18, 20, 21, 22] are based on Class Activa-
tion Mapping (CAM) [23]. They address the WSOL task, indirectly, by solving the problem
that the generated localization map only focuses on the most discriminative regions of the
image. These methods can be divided into two types: non-parametric (w.r.t. CAM) and
parametric methods. In this section, we focus on representative works from these two types.
Please refer to [19] for a more comprehensive survey on the WSOL task.
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Figure 1: Overview of our MinMaxCAM. Stage I and II optimize the model iteratively via
the classification task and our proposed regularizations respectively. After regularizing the
model, the localization map can overcome either the under-estimation problem (right top) or
the over-estimation problem (right bottom).

[1, 3, 10, 15, 18, 22] and our work belong to the first type. These methods do not need ex-
tra networks during the training and inference phases. This makes the methods lightweight,
easy to implement and saves computation resources. [15] forces the neural network to focus
on other relevant regions of the objects of interest by randomly occluding some patches of the
input image when the network is trained for a classification task. Recently, [1] proposes to
occlude one image with two complementary occlusion patterns, creating input image pairs,
to tackle the WSOL task. [18] extends this idea by using patches from other images as
occluding regions in a given image. [3] proposes a simple but effective method: randomly
drop out the most highly activated region or apply an attention mask on the feature maps
when the classification network is trained. [22] uses information shared by two images from
the same class to improve the localization map. They apply two constraints to improve the
quality of the localization map. The first constraint is to learn the consistent features of two
images of the same class by randomly sampling the features located in the most activated
region and minimizing their distance. The second constraint is to compensate the limitation
that features can only keep consistency within batches, where it learns a global class center
for each class. To increase the coverage of the localization map, [10] proposes to erase the
most discriminative regions in the feature map when training a classification task. [17] found
that localization maps generated by CAM also activate on the background. To suppress these
activations, they propose to compute all the possible CAMs first, and then combine them via
a combination function. This combination function is not learned during the training but
pre-defined and related to the prediction probability of each possible class. Differently, our
method only computes the localization map once for each image.

[7, 20, 21] add extra components based on the CAM model. [20] proposes a two-head
architecture where the activation map generated by one stream is used to suppress the most
discriminative region of the activation map generated by another one, which is similar to [10].
By doing this, the model learns to use information from other relevant regions instead of the
most discriminative one. [21] proposes to generate self-produced guidance (SPG) masks
that separate the target object from the background. The masks are learned by the high-
confidence regions within the attention maps progressively and they also provide the pixel-
level supervisory signal for the classification networks. [7] adds a regressor which takes
pseudo-locations generated by the model to learn the coordinates of the object. In addition,
two novel losses are proposed to keep the localization map cover the whole object during
the training process. Instead of using CAM-based methods, [9] uses a encoder-decoder
architecture to learn the location of objects, by leveraging the geometry constrains of objects.
A novel loss function that considers the object’s geometrical shape is proposed.

Different from these methods, we focus on the linear combination part of the CAM
method rather than the feature extraction part, or the structure of the input images. The
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Figure 2: CAM localization maps generated with the VGG16 (left) and MobileNet (right)
backbones with their estimated bounding boxes (red) and ground-truth (green).

linear layer is optimized based on the proposed regularizations, which provides the optimal
combination factors to generate the localization map. Similar to the non-parametric methods,
our method does not have more trainable parameters. We only introduce two more hyper-
parameters which are the weights for the two regularizations.

3 Methodology

3.1 Problem statement
Class Activation Map (CAM) [23] is widely used to localize an object of interest in an image,
in a weakly supervised manner. Given a backbone B applied to input image I, followed by
GAP and a linear layer f c for prediction, in which w ∈ RC×K is the weight matrix, where C
is the number of classes, the CAM of an image is computed as:

CAMraw =
K−1

∑
k=0

wc
kB(I) (1)

where c is the class of image I. In short, the localization map (CAM) is a linear combi-
nation of the feature maps of the last convolutional block of the backbone B. The weights
of this combination are taken directly from the weights of the linear layer w.r.t. the class
predicted for image I. [5, 23] noted that localization maps generated by VGG often focus
on the most discriminative region of the image, rather than on the whole object, i.e. under-
estimating the location. In parallel with [17], we observed that for different backbones B,
the localization map can sometimes cover the whole image, i.e. over-estimating the location.
Fig. 2 shows some examples of the two cases. Current methods solve either one of the two
problems. Here we propose two regularizations that can address these problems within a
single model.

3.2 Common region regularization
The idea of the Common region regularization (CRR) is that different images depicting the
foreground objects of the same class should share very similar features from the common
object. To obtain this object-specific representation from the whole image I, we first acquire
the localization map H via Eq. 1. We freeze the trainable parameters of B (noted as B∗ for
clarity purpose) so that only f c can be updated by H. Then we extract the object-specific
feature f via g(B∗(I�H)), where g and � refer to GAP and element-wise multiplication
respectively. Given S different images from the same class, we have

CRR =
1

S(S−1)

S−1

∑
i=0

S−1

∑
j=0
|| fi− f j||22 (2)

CRR calculates the pair-wise distance of the features of I�H. By minimizing CRR,
we minimize or remove activations on the localization map by suppressing activations in
non-object regions of the images by updating f c.

There are two conditions in place for CRR to work: i) the set of images from the same
class should have different background, and ii) f should have different activation values for
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different backgrounds. The first assumption is dependent on the dataset. We will discuss the
second assumption later in Sec. 4.3.

3.3 Full region regularization
For the case where the localization map H under-estimates the object region, i.e. H focuses
on the most discriminative region, we propose Full region regularization (FRR) to enlarge
the localization map. In addition, FRR can also compensate a possible side-effect of using
CRR, that is B only focusing on a very small part of the object if the objects from the same
class have some inner difference in different images.

FRR =
1
S

S−1

∑
i=0
|| fi− f o

i ||22 (3)

fi is the object-specific feature, which is defined in Sec. 3.2. f o is the feature of the
original image I, i.e. f o=g(B∗(I)). Notably, f o cannot update the model. FRR calculates
the distance between the object-specific feature f and the image feature f o. Minimizing FRR
makes fi closer to f o, hence H will change towards the identity matrix 1 since B∗(I) can be
also interpreted as B∗(I�1). In other words, Minimizing FRR has the effect of maximizing
the activations on the localization map. Similar to CRR, there is one assumption in place for
FRR to work: B should not be invariant to changes in intensity. We will discuss it in Sec.4.3.

3.4 Training process
The training process has two stages. For Stage I, it takes N×S images as input, where N
is the number of the set. The model is trained for the classification task, i.e. update the
backbone B and linear layer f c via the cross-entropy loss. It is the same as CAM. Stage I is
important because it guarantees the localization map H to be object-centered.

LS1 =−
N×S

∑
i=1

cilog(ŷi) (4)

For stage II, the backbone is frozen and used as a feature extractor, noted as B∗. It
receives the images multiplied by the localization map (I�H) as input to get the object-
specific features. H is obtained via Eq. 1 and can only drive the update of f c since the rest
of the architecture, i.e. the backbone, is frozen. This step introduces an intensity change on
the original image. We discuss its effects in Sec. 4.3. The features ( f and f o) extracted by
B∗ are used for the two proposed regularizations. By minimizing CRR and FRR, the loss
updates f c, making H gradually more accurate by adjusting the combination weights (wc

k).

LS2 = λ1CRR+λ2FRR (5)

LS1 and LS2 update the model every mini-batch. Fig. 3 shows the proposed method. To
train our model there is no extra hyper-parameters besides the weights for the two regular-
izations. During testing, the localization map is generated via CAM (Eq. 1), therefore, there
is no need for a set of images per class.

Why freeze the backbone (B) in Stage II? The goal of stage II is to optimize the weights
wc

k which are used to generate the localization map by minimizing CRR and FRR. The back-
bone serves as a feature extractor in this stage. If the backbone was also updated, after min-
imizing FRR, it would become invariant to intensity changes. In the later training process, it
cannot not measure the difference between f o and f .
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Figure 3: The diagram of our proposed method. In Stage I (above the dashed line) we train
B and f c for a classification task. In Stage II (below) we multiply the localization map H
with the images to extract the object-specific features and compute CRR and FRR, where B
is frozen (noted as B∗). The two regularizations update the weights of f c (the blue arrow).

4 Experiments

4.1 Evaluation Protocol

Datasets We consider three widely used datasets ImageNet [6], CUB-200-2011 (CUB) [16]
and OpenImages instance segmentation subset [2, 5] to evaluate our method. ImageNet con-
tains 1,000 classes with over 1 million images. Following [5], we use ImageNetV2 [12] as
the validation set to tune our model. This validation set contains 10 images per class with
the object bounding boxes annotated by [5]. CUB has 200 fine-grained classes of birds with
5,994 images for training and 5,794 images for testing. Similarly, we follow [5] to use a
validation set collected by them to tune the model. The validation set contains 1,000 im-
ages in total, around 5 images per class. OpenImages instance segmentation subset (Open-
Images) [4] covers 100 classes. It contains 29,819, 2,500 and 5,000 images for training,
validation and testing, respectively. Every image has the object segmentation as annotation.

Performance metric [3, 15, 18, 20, 22, 23] use a pre-defined threshold (0.2) for the
generated CAM to produce a localization region. [5] argues that using a fixed pre-defined
threshold can be disadvantageous for certain methods since the ideal threshold may depend
on the data and architecture that are used. In short, for different datasets, architectures and
methods, the ideal threshold is different. We follow this idea and use the metric proposed
by [5]. For the ImageNet and CUB datasets we use two threshold-free metrics to evaluate
the localization map, i.e. MaxBoxAcc and MaxBoxAccV2. MaxBoxAcc is equivalent to
GT-known localization accuracy where one localization map is counted correct when the
intersection over union (IoU) of the estimation and ground truth bounding box is larger than
0.5. Differently, to avoid using a fixed pre-defined threshold for binarizing the localization
map, here we set various τ thresholds to find the best performance. MaxBoxAccV2 is the
average of three MaxBoxAcc when the IoU is 0.3, 0.5 and 0.7. For OpenImages, since we
have access to the segmentation mask, we use the pixel averaged precision (PxAP) proposed
by [5]. Similarly, PxAP is also threshold-free. Please refer to [5] for more details.

Implementation Details We consider three backbones: VGG16 [14], ResNet50 [8] and
the lightweight MobilenetV2 [13]. Following [5, 22], for ResNet50 and MobilenetV2 we
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Figure 4: Qualitative comparison of the localization map H on the ImageNet and dataset.
For reference we show the ground truth bounding box (green) and the one estimated by H
(red) based on the optimal threshold τ .

increase the size of the last feature map by changing the stride of convolution layers from 2
to 1. We set set size S=5, N=12 (i.e. batch size = 60) for all the experiments except those
with the ResNet50 backbone, where N=10 due to GPU memory limitations. For τ we set
100 intervals between 0 and 1.

4.2 Comparison with State-of-the-art Methods
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Figure 5: Qualitative comparison of the lo-
calization map H on OpenImages dataset.
The first row shows the input image with the
target segmentation mask.

In this part, we compare the proposed method
w.r.t. several state-of-the-art methods on Im-
ageNet, CUB and OpenImages datasets. Ta-
ble 1 shows quantitative results. The quanti-
tative results from these methods except I2C
are taken from [4, 5] where the authors used
the validation set to select the final models.
We implement the I2C method and use their
suggested hyper-parameters to train the mod-
els. The results clearly show that our method
outperforms the competing methods on all
three datasets except when ResNet50 is se-
lected as backbone for the CUB dataset. In
this case, our method is only lower by 0.3 pp,
in MaxBoxAcc w.r.t. WTL. Interestingly, for
ImageNet with a ResNet50 backbone, only
our method outperforms CAM. We believe
it is due to the proposed CRR which mini-
mizes the activations in the background. It
is expected that I2C works better when Mo-
bilenetV2 or ResNet50 are used as backbone,
since the constraints proposed by I2C prevent
the model from activating highly in background regions, which is a weakness that Mobilenet
and ResNet suffer from. Please note the performance can be further improved when the
optimal hyperparameters are found.

Fig. 4 and Fig. 5 show qualitative comparisons w.r.t. CAM on the ImageNet, CUB and
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Method Backbone ImageNet CUB OpenImages

MaxBoxAcc (%) MaxBoxAccV2 (%) MaxBoxAcc (%) MaxBoxAccV2 (%) PxAP (%)

CAM [23] VGG16 61.1 60.0 71.1 63.7 58.1
HaS [15] VGG16 0.7 0.6 5.2 0 -1.2
ACoL [20] VGG16 -0.8 -2.6 1.2 -6.3 -3.4
SPG [21] VGG16 0.5 -0.1 -7.4 -7.4 -2.2
ADL [3] VGG16 -0.3 -0.2 4.6 2.6 0.2
CutMix [18] VGG16 1.0 -0.6 0.8 -1.4 0.1
I2C [22] VGG16 - - -2.7 -3 -1
WTL [1] VGG16 2.3 - 6.4 - –
Ours VGG16 3.5 2.4 12.8 6.5 1.9

CAM [23] ResNet50 64.2 63.7 73.2 63.0 58.0
HaS [15] ResNet50 -1 -0.3 4.9 1.7 0.2
ACoL [20] ResNet50 -2.5 -1.4 -0.5 3.5 -0.2
SPG [21] ResNet50 -0.7 -0.4 -1.8 -2.6 -0.3
ADL [3] ResNet50 0 0 0.3 -4.6 -3.7
CutMix [18] ResNet50 -0.3 -0.4 -5.4 -0.2 -0.7
I2C [22] ResNet50 - - 0.3 1.0 2.9
WTL [1] ResNet50 0.6 - 5.3 - –
Ours ResNet50 3.9 2.5 5.0 4.8 2.9

CAM [23] MobilenetV2 60.8 59.5 65.3 58.1 54.9
I2C [22] MobilenetV2 - - 1.9 1.5 3.3
Ours MobilenetV2 4.5 3.8 10.5 6.9 4.4

Table 1: Quantitative comparison w.r.t. state-of-the-art. The numbers indicate the difference
w.r.t. the baseline method CAM. The scores of [3, 15, 18, 20, 21, 23] are taken from [4, 5]
while [1] is taken from itself. [22] was computed by ourselves. Due to limited computation
resources we limit ourselves to report performance only on CUB and OpenImages.

OpenImages datasets. It clearly shows that our method can enlarge H when it originally
focuses on a small region and reduces it when it is highly-activated in the background. In
the fourth-column example from the ImageNet dataset generated by the VGG backbone, the
effect of different optimal thresholds τ can be noticed. The same effect can be seen in the
Mobilenet-based localization map of the last example in the ImageNet dataset. In addition,
in some cases although the estimated bounding box of CAM has a large IoU with the ground
truth, the object region has a stronger activation for our method (e.g. the last example of the
ImageNet).

4.3 Analysis of our method
We analyze several aspects of our method by conducting experiments on the CUB dataset.

Background activation We have introduced in Sec. 3.2 that the backbone should acti-
vate differently for different background regions for CRR to work. If the assumption holds,
then f∈RK ( f=g(B∗(I�H))) from the same class should be distributed together and more
centered in the K-dim feature space, compared with f o ∈ RK ( f o=g(B∗(I))). To quanti-
tatively measure the statistical dispersion of these representations, for each class, we first
L2-normalize the representations and calculate their distance to the class center which is cal-
culated by averaging all the representations of that class, then compute the average distance.
More centered distribution means a shorter distance between each representation and the
class center. Then we compute the average distance for all classes. For f and f o, the average
distance are 1.03± 0.34 and 1.47± 0.38, respectively, which suggests that f is distributed
more centered compared with f o. The result verifies our assumption that the backbone is
activated differently for different backgrounds of the input image.

Intensity change For FRR to work, the backbone should not be robust to changes in
intensity of its input. Otherwise, there would be no difference between f and f o (Sec. 3.3).
The experiment based on the VGG backbone has implied that this assumption holds. Here we
conduct another experiment to verify this condition from another direction. We add intensity
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changes as one of the data augmentations in stage I. In stage II we do not change anything.
By doing this, we force B to become more robust to intensity changes on its input (Please
note, we cannot make B completely robust). We use VGG16 as backbone. The performance
drops 2.5pp and 1.9pp for MaxBoxAcc and MaxBoxAccV2, respectively. This shows that
indeed the performance drops when B becomes more robust to intensity changes.

Masking inputs vs. masking features In order to get the object-specific representation
f , we suggest applying element-wise product between H and the input image I firstly and
then send it to the same backbone with the trainable parameters frozen (B∗). It can be argued
that H can be applied on the extracted feature map (noted as f ′∈RN×C×H×W ) from stage
I directly, which can avoid the re-computation of the feature. However, this may produce
some problems. On the one hand, f ′ not only has spatial information but also has C channels
(around 1024 or 2048 for our backbones), and different channels can represent different
concepts of the image [11]. On the other hand, the localization map H∈RH×W only contains
spatial information, no channel-wise information. Information can be lost if H is directly
applied on f ′ since the activations on the same spatial location but different channels will be
encouraged/suppressed in the same scale. To verify our analysis, we conduct an experiment
where we apply H directly on f ′. Table 3 suggests that our analysis is correct. Especially,
for VGG16 the performance is even worse than CAM.

Method Top 1 Loc. / Top 5 Loc.

VGG-ACoL 45.9 / -
VGG-ADL 52.3 / -
VGG-CCAM 50.1 / 63.8
VGG-WTL 58.12 / -
VGG-Ours 66.0 / 83.9

MobilenetV1-HaS 44.7 / -
MobilenetV1-ADL 47.7 / -
MobilenetV1-Ours 54.8 / 69.4

Table 2: Top-1 and Top-5 localization
rate.

Classification vs. localization The classifi-
cation task sometimes rely on information from
the background [11], while the localization task
only focuses on the foreground object. There-
fore, a good localization model is not necessarily
a good classification model. The evaluation met-
ric top-1/5 Loc. takes into account both localiza-
tion and classification accuracy of a given localiza-
tion model, therefore, it is not able to accurately
measure the localization performance [5]. Top-1/5
Loc. can be low because of the classification accu-
racy even if the localization accuracy is good. In
order to compute Top-1/5 Loc. fairly, we propose a
simple path: train a separate classification model to provide the predicted class for the object
localization model. In practice, we use ResNet50 to train the classifier, whose classification
accuracy on CUB dataset is 77.3%. Table 2 shows the Top-1/5 Loc. results. In order to com-
pare with the competitive methods, here we use MobilenetV1 as backbone. The numbers of
the competitive methods are taken from [1, 3, 17].

4.4 Ablation study
Effects of CRR and FRR for different backbones (B) We analyze the effect of CRR and
FRR on different backbones. In practice, intuitively, if the localization map H always local-
izes the most discriminative region of the object, FRR should play a more important role in
the training process. On the contrary, CRR should be more essential if H is relatively highly
activated in background regions. To verify the influence of CRR and FRR, we gradually
increase/decrease the weight of one regularization with the other one fixed.

Fig. 6 shows the performance curve. For VGG16, performance decreases gradually as
the weight for CRR increases. The opposite occurs with FRR. The performance increases and
reach the peak when the weight of FRR is 10, afterwards the performance decreases slightly
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Figure 6: Ablation study w.r.t. CRR and FRR for the VGG16 (top) and MobilenetV2 (bot-
tom) backbones, respectively. For each plot, we fix one regularization and ablate the other.

(weight=20). On the contrary, increasing the weight of CRR boosts the performance for
MobilenetV2. The performance decreases slightly when the weight of FRR is 0 while it drops
dramatically when a larger weight is applied. These trends are expected. VGG16 focuses on
small discriminative regions rather than the whole object, hence FRR which maximizes the
activations on the localization map improves the object localization ability while CRR which
suppresses the activations makes the model worse. An opposite trend can be observed from
MobilenetV2 which activates frequently on the background. The ablation study confirms
the effectiveness of our proposed FRR and CRR.

Effect of the set size (S) Here we discuss how the set size S influences the performance
of CRR. CRR can benefit from using a relatively large S because more representations can
be grouped together simultaneously. We conduct series of experiments, where we decrease
S from 5 to 2 gradually. We use Mobilenet as backbone and keep the batch size the same (60
images). The results in Table 4 indicate that for a larger set size S, CRR indeed works better.

Method MaxBoxAcc (%) MaxBoxAccV2 (%)

VGG-Ours 83.9 70.2

Apply H on f ′ -19.1 -12.5

MobilenetV2-Ours 75.8 65.0

Apply H on f ′ -4.1 -3.0

Table 3: Masking inputs vs.masking features

Set size S MaxBoxAcc (%) MaxBoxAccV2 (%)

S=5 75.8 65.0

S=4 74.7 64.6

S=3 74.4 64.4

S=2 73.9 63.9

CAM 65.3 58.1

Table 4: Effect of the set size S.

5 Conclusion
We propose two representation regularizations, Common Region Regularization and Full Re-
gion Regularization, to overcome the weaknesses of CAM-based weakly supervised object
localization methods. Our method relies only on a standard classification model; no extra
network is needed. Through extensive analysis, we discuss relevant aspects of our method
and show that it is capable of surpassing the state-of-the-art by a significant margin.
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