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Abstract

3D hand pose estimation approaches can be divided into two categories, including
regression-based methods and detection-based methods. Detection-based methods uti-
lize fully convolutional networks to obtain hand-crafted coordinate representations like
heatmaps and then use a coordinate decoding function like soft-argmax to decode co-
ordinates. In contrast, regression-based methods employ low-dimension features from
convolutional networks as unconstrained coordinate representations and then use fully-
connected layers to decode coordinates. This way allows the network to learn the coordi-
nate representations and the corresponding coordinate decoding function automatically.
However, it causes either weak coordinate representational power or decoding’s opti-
mization difficulty. These drawbacks cause regression-based methods far less accurate
than detection-based methods. However, detection-based methods require many compu-
tations for deconvolution, and their hand-crafted coordinate representations may not be
optimal. This paper proposes a novel framework for regression-based methods that can
preserve the strength of representations and avoid severe optimization difficulty while re-
maining flexible, lightweight, and efficient. More specifically, we use joint-specific fea-
ture maps as coordinate representations and the joint-shared coordinate decoding module.
Moreover, we apply a multi-head mechanism to exploit different coordinate representa-
tions and design a learnable re-parameterization method to do multi-stage refinement
better. Our approach outperforms state-of-the-art methods on four public benchmarks,
including FreiHAND, HO-3D, RHD, and STB.

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: The framework of approaches for hand pose estimation can be divided into three
parts, including backbone, representation estimation module, and coordinate decoding mod-
ule. Detection-based methods (a), regression-based methods (b), and our proposed Joint-
Aware Regression (c) all follow this structure. Joint-Aware Regression first utilizes convolu-
tional networks to obtain feature maps. After that, it equably divides feature maps for every
joint in channel order. Then, it uses a multi-head joint-shared decoding module to decode
joints’ coordinates with the corresponding joints’ features. Finally, it applies multi-stage
refinement with pose re-parameterization to obtain more accurate results.

1 Introduction

Hand pose estimation (HPE) is a widely studied research topic in the field of computer
vision, which has various applications in augmented reality (AR), virtual reality (VR), and
many other computer vision tasks [7]. Because monocular RGB cameras are much more
common and cheap to acquire than multi-camera setups and depth cameras, 3D HPE from
a monocular RGB image has become increasingly prevalent in recent years [1, 10, 15, 18,
27, 28, 30, 33, 34, 37]. However, it is still very challenging to achieve efficient and robust
estimation due to highly complex backgrounds, large variations in hand pose, occlusions,
and fingers’ self-similarity.

The approaches of HPE can be categorized into detection-based methods [14, 15, 18,
20, 28] and regression-based methods [10, 25, 26, 27, 30, 33, 34]. As shown in Figure 1
(a) and (b), the framework of those approaches can be divided into three parts, including 1)
backbone for feature extraction, 2) representation estimation module to map feature maps
to the desired coordinate representations, and 3) coordinate decoding module to decode co-
ordinates from coordinate representations. The main differences between regression-based
methods and detection-based methods are 1) coordinate representations and 2) coordinate
decoding module. Detection-based methods utilize fully convolutional networks to predict
hand-crafted coordinates representation like heatmaps and use a fixed joint-shared function
like soft-argmax to decode the coordinates. They are very accurate due to the good coop-
eration between heatmaps representations and soft-argmax decoding function. On the one
hand, convolutional networks (CNNs) can preserve and exploit the 2D structure informa-
tion of heatmaps. On the other hand, using soft-argmax function prevents the network from
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learning a non-linear function to map 2D coordinate representations to coordinates. There are
many works aiming at designing better coordinate representations [8, 15, 20, 21, 24, 31, 35]
and better coordinate decoding methods [22, 29, 35]. Tompson et al. [31] first propose
heatmaps as coordinate representations. Many works adopt 3D coordinate representations
for its accuracy in 3D pose estimation task [8, 21, 24]. Iqbal et al. [15] utilize 2D heatmaps
and root-relative depth-maps for 3D HPE. Zhang et al. [35] propose using unbiased heatmaps
for more accurate prediction. Newell et al. [22] propose to introduce the second maximal to
decode more accurate coordinates. Sun et al. [29] utilize differentiable coordinate decoding
function soft-argmax instead of argmax. Zhang et al. [35] explore the distribution structure
of the predicted heatmap to infer the underlying maximum activation.

On the contrary, regression-based methods do not use hand-crafted coordinate represen-
tations or fixed coordinate decoding functions. Instead, they allow the network to learn co-
ordinate representations and the corresponding coordinate decoding module automatically.
The most popular regression-based methods utilize CNNs and global average pooling to ob-
tain low-dimension coordinate representations. Then, they use a coordinate decoding module
consisting fully-connected layers to map coordinate representations to coordinates. This way
requires much fewer computations than detection-based methods and can avoid severe opti-
mization difficulty caused by using all the feature maps to regress in an overlarge regression
space. However, it discards too much spatial structure information due to global average
pooling, constraining the regression space too much. This drawback makes it still much
less accurate than detection-based methods. Recent popular research about regression-based
methods is using Variational Autoencoder (VAE) to encode input images into a small latent
space and then recover pose from it [10, 27, 30, 33, 34]. This way puts strong prior in the
coordinate representations and the regression space of the coordinate decoding module.

From the discussion above, we can see that coordinate representations and the corre-
sponding coordinate decoding module significantly impact the accuracy and efficiency of
HPE. Though detection-based methods have shown that well-designed coordinate represen-
tations and coordinate decoding functions can achieve good performance, hand-crafted coor-
dinate representations with fixed coordinate decoding modules are not optimal for all cases.
However, it is challenging to design a network that can automatically exploit the best coor-
dinate representations and the corresponding coordinate decoding module because we must
simultaneously consider the coordinate representations’ ability and the coordinate decoding
module’s optimization difficulty. From our observation, there are four critical differences
between detection-based methods and regression-based methods. Detection-based methods
1) utilize coordinate representations with 2D spatial information, 2) use joint-specific coor-
dinate representations, 3) apply the same coordinate decoding function for all the joints, and
4) exploit different kinds of coordinate representations (e.g., 2D heatmaps and depth-maps
[15]). Inspired by those differences, we propose a novel framework for regression-based
methods, Joint-Aware Regression (JAR). JAR adopts four strategies corresponding to each
difference mentioned above. First, we use feature maps as coordinate representations instead
of global average pooling features, which can preserve the 2D spatial structure information
to maintain the strength of coordinate representations. Second, we divide all the feature maps
into joint-specific feature maps for coordinate decoding. This way significantly reduces the
overlarge regression space caused by using feature maps as coordinate representations. It
allows the coordinate decoding module to focus on the corresponding joint sub-space to
avoid irrelevant features’ disturbance. Third, we utilize a joint-shared coordinate decoding
module. By this means, we further constrain those joint sub-spaces by guiding them to ex-
ploit similar features and reduce the parameters significantly. Last, we additionally employ
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a multi-head joint-shared coordinate decoding module. In this way, the network can exploit
different coordinate representations and combine them to obtain more accurate results. With
all these designs, JAR further explores the potential of regression-based methods for HPE
while remaining flexible, lightweight, and efficient.

Recent works [25, 26] have shown that regression-based methods can also perform multi-
stage refinement like detection-based methods [15, 22, 32] by pose re-parameterization.
However, previous pose re-parameterization methods [25, 26] only re-parameterize hand-
crafted coordinate representations (e.g., 2D heatmaps, depth maps, or 3D heatmaps). There-
fore, it can not fully leverage previous stages’ information for refinement. Thus, in our
framework, we design a more appropriate refinement strategy for regression-based methods.
More specifically, we propose a learnable re-parameterization method by mapping joint-
specific multi-head outputs to joint-specific refine maps. After that, we concatenate these
learnable refine maps, 2D heatmaps, and depth-maps together for refinement. In this way,
the subsequent stages can flexibly leverage multi-joint 3D spatial context and powerful dis-
ambiguation clues in re-parameterized coordinate representations to boost the performance.

We evaluate JAR on four publicly available 3D hand pose datasets, including FreiHAND
[38], HO-3D [11], RHD [37], and STB [36]. Our method outperforms all previous state-
of-the-art approaches on these four datasets. In contrast to all previous works, we instead
investigate the issues of coordinate representations and coordinate decoding modules of
regression-based methods, a largely ignored perspective in the literature. We show that
regression-based methods can achieve strong performance in HPE with appropriate archi-
tecture design. Crucially, our work is orthogonal to previous works and can easily be applied
in other regression-based methods, providing different ideas for future works.

Our main contributions are summarized as follows: 1) We propose a novel regression-
based methods framework for 3D hand pose estimation from a monocular RGB image. As
far as we know, we are the first to show that regression-based methods can achieve strong per-
formance in hand pose estimation with appropriate design; 2) We propose using joint-specific
feature maps as coordinate representations, utilizing multi-head joint-shared coordinate de-
coding module, and applying learnable multi-stage refinement. These designs significantly
improve our framework; 3) We conduct extensive experiments to demonstrate our method’s
effectiveness. Moreover, our method achieves state-of-the-art performance on FreiHAND,
HO-3D, RHD, and STB datasets.

2 Method

2.1 A General Framework for Hand Pose Estimation

As shown in Figure 1, HPE frameworks can be divided into three parts, 1) backbone for
feature extraction, 2) representation estimation module for mapping features to the desired
coordinate representations, and 3) coordinate decoding module to decode coordinates from
coordinate representations. They can be defined as:

Y =D(G(F(I))) (1)

where Y ∈Rk×3 is the predicted k joints’ 3D locations, I ∈R3×hi×wi is the input RGB image,
F(·) is the backbone, X = F(I) ∈ Rc×h×w is the feature maps extracted by the backbone,
G(·) is the representations estimation module, and D(·) is the coordinate decoding module.
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Regression-Based Methods. Regression-based methods use CNNs as F(·) to encode input
images into feature maps. Generally, there are two choices of G(·). One is identity mapping
that means directly using X as coordinate representations for decoding. We note this way
Feature Regression (FR). The other is global average pooling to squeeze 2D feature maps X
into a 1D scalar feature vector X . We note this way Average Feature Regression (AFR).D(·)
often consists of fully-connected layers and activation layers.

Directly using all the feature maps for decoding like FR will cause severe optimization
difficulty of coordinate decoding module D(·) due to overlarge regression space for regress-
ing from X ∈ Rc×h×w. For AFR, on the one hand, using global average pooling features
X ∈Rc×1×1 for decoding can significantly relieve optimization difficulty. On the other hand,
the coordinate representations’ power is greatly reduced as the spatial structure information
is squeezed with global average pooling.
Detection-Based Methods. Detection-based methods also use CNNs as F(·) to encode
input images into feature maps. They further use deconvolutional networks as G(·) to re-
cover low-resolution feature maps to high-resolution heatmaps. Their D(·) is a coordinate
decoding function like soft-argmax to decode coordinates from heatmaps.

There are two reasons for the high accuracy of detection-based methods. One is they
only need to focus on predicting fixed coordinate representations like heatmaps because they
utilize a fixed decoding function asD(·) instead of using a learnable module to fit a function.
The other is deconvolutional networks are well suited for reconstructing features with spatial
structure information like heatmaps. However, they also have two drawbacks. First, they
require lots of computations for deconvolution, as shown in Table 2. Second, they restrict
the networks’ ability to some extent due to using hand-crafted coordinate representations.

2.2 Joint-Aware Regression

Joint-Aware Regression is designed to learn the best coordinate representations and the cor-
responding coordinate decoding module automatically. Figure 1 (d) depicts the detailed
framework of JAR. We will introduce each part of JAR detailedly in the following.
Joint-Specific Feature Maps. To better preserve the 2D spatial structure information to
enhance the power of coordinate representations, we use feature maps as coordinate repre-
sentations instead of global average pooling features. However, using all the feature maps
for regression leads to overlarge regression space. Therefore, we add a prior to constraint the
regression space by obtaining the joint-specific feature maps for every joint’s decoding. We
use a distributing module as G(·) that equably distributes several feature maps from the last
layer of the backbone to a joint in channel order:

Gi = Gi(X) =R(Concat(X id ,X id+1, ...,X id+d−1)), i ∈ {0, ...,k−1} (2)

where X i ∈ R1×h×w is the ith channel of the feature maps X ∈ Rc×h×w, d = c
k is the number

of feature maps distributed to a joint, R denotes the reshape operation to flatten 2D feature
maps to 1D vector, and Gi ∈ Rdhw is the obtained coordinate representations of the ith joint.

This way poses a prior that the coordinate decoding module only needs to focus on a fea-
ture sub-space of a joint instead of the whole hand feature space. Therefore, the coordinate
decoding module’s optimization difficulty can be significantly relieved.
Joint-Shared Coordinate Decoding Module. We further add another prior to constraint the
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regression space by using a joint-shared coordinate decoding module. It is defined as:

Yi =Ds(Gi) = T (Gi) = ReLU(GiW1 +b1)W2 +b2 (3)

whereDs denotes coordinate decoding for single head, Yi is the ith joint’s 3D coordinates, Wi
and bi denotes the learnable parameters of linear transformations layer, and T denotes the
transformations consisting of two linear transformations with a ReLU activation in between.

This way can further constrain the regression space because it guides all the joints’ sub-
spaces to exploit the same features (e.g., guide all sub-spaces similar to heatmaps). It also
allows the coordinate decoding module to use all the joints’ information to update itself.
Multi-Head Decoding Module. Considering the variety of the potential coordinate represen-
tations (e.g., 2D heatmaps, depth maps, or 3D heatmaps), we apply a multi-head mechanism
to allow the network to exploit them simultaneously. More specifically, we divide the joint-
specific feature maps into multiple parts, making a part responsible for a kind of coordinate
representation. Joint-shared coordinate decoding module with multi-head is defined as:

Yi =Dm(Gi) = T f (Mi) Mi =Concat(T0(G0
i ), ...,Tn−1(Gn−1

i )) (4)

where Dm denotes coordinate decoding for multi-head, n is the head number, G j
i denotes

the jth head’s features of the ith joint, Gi = concat(G0
i , ...,G

n−1
i ), Ti denotes the transforma-

tions for the ith head, Mi denotes the multi-head outputs of the ith joint, and T f denotes the
transformations for fusing multi-head outputs to regress final coordinates.

With this multi-head mechanism, we can further utilize the feature maps from the back-
bone to strengthen the coordinate representations’ power to exploit many more beneficial
representations for the final results automatically.
Learnable Multi-Stage Refinement. Recent works [25, 26] have demonstrated that introduc-
ing multi-stage refinement by using pose re-parameterization can significantly boost the per-
formance of regression-based methods. The predicted results can provide rich 3D spatial in-
formation and powerful disambiguation clues for further stage networks to refine coarse pre-
dictions. However, previous pose re-parameterization methods only re-parameterize hand-
crafted coordinate representations (e.g., 2D heatmaps and depth-maps), which can not fully
leverage previous stages’ information for the refinement of the following stages. Thus, we
propose a learnable re-parameterization method to reparameterize the multi-head output fea-
tures of every joint to joint-specific refine maps for additional guidance:

Ri =R(Tr(Detach(Mi))) (5)

where Ri is the refine maps for the ith joint, Tr is the transformations for reparameterizing
multi-head output features to refine maps, Detach operation means stop the gradient flow to
previous networks, andR is reshape operation to transform 1D vector to 2D refine maps.

Apart from learnable reparameterized refine maps, we also generate 2D heatmaps H and
depth-maps D based on the previous stage predicted joints for refinement:

Hi(p) = exp(
‖p− ppred

i ‖
σ2 ), p ∈Ω Di(p) =

{
zi, p = ppred

i

0, otherwise
(6)

where ppred
i represents predicted 2D coordinates of the ith joint, σ controls the standard

deviation of the heatmaps, Ω denotes the set of all pixel locations, and zi represents the
predicted root-relative depth from the previous stage.
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ID Method EPE(mm) ↓ AUC ↑ 4(EPE, AUC)

1 baseline (FR) 14.90 0.918 (+0.00,+0.000)
2 + global average pooling (AFR) 14.08 0.927 (+0.82, +0.009)
3 + joint-specific pooling features 13.84 0.938 (+1.06, +0.020)
4 + joint-shared decoding 12.53 0.945 (+2.37,+0.027)

5 + joint-specific feature maps 12.21 0.948 (+2.69,+0.030)
6 + joint-shared decoding 12.10 0.949 (+2.80,+0.031)
7 + multi-head decoding 11.68 0.954 (+3.22,+0.036)

8 + heatmaps refine 11.30 0.957 (+3.60,+0.039)
9 + depth-maps refine 11.19 0.958 (+3.71,+0.040)
10 + refine-maps refine 10.97 0.961 (+3.93,+0.043)

11 + third stage refine 10.87 0.961 (+4.03,+0.043)
Table 1: Ablation studies on RHD dataset.

Finally, we concatenate the middle-level feature maps from the first stage CNNs, refine
maps, 2D heatmaps, and depth-maps for refinement:

A j =Concat(F0,R j,H j,D j) (7)

where A j denotes the final features for the refinement of stage j+1, F0 denotes the middle-
level feature maps from the first stage CNNs, R j, H j, and D j denote all the joints’ refine
maps, heatmaps, and detph-maps of stage j, respectively.

3 Experiments

3.1 Datasets and Metrics
FreiHAND [38] is a real-world 3D hand dataset containing 130,240 training images and
3960 testing images from multi-view setups. Images are annotated with mesh and pose
labels. It is challenging because the backgrounds between training and testing images vary
greatly. The evaluation is performed at an online server.
HO-3D [11] is a real-world 3D hand dataset containing hand-object interaction images. The
dataset is made of 68 sequences, totaling 77,558 frames of 10 users manipulating one among
ten different objects. It contains 66,034 training images and 11,524 testing images. All the
images are with mesh and pose annotations. The evaluation is performed at an online server.
RHD [37] is a synthetic dataset of rendered hand images. It contains 41,258 training images
and 2728 testing images, including 20 different characters doing 39 different actions. The
training set and testing set share no same character or action. Every RGB image of this
dataset has corresponding pose labels and mask labels.
STB [36] is a real-world dataset containing 18,000 images. All the images are with pose
labels. It consists of twelve sequences of data from video under different lighting conditions
and six different backgrounds. Following previous works [2, 37], we modify the palm joint
to the wrist joint and use ten sequences for training and another two sequences for testing.
Evaluation Metrics. To evaluate the performance of our method, we use the two most com-
mon metrics, mean end-point-error (EPE) and area under the curve (AUC) of the percentage
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R-18 R-34 R-50 R-101 R-152 FLOPs(G) Params(M)

2.5D (Det) 11.92 11.56 11.43 11.04 10.69 12.9(7.6) 34.0(10.5)

AFR (Reg) 14.08 13.38 12.46 12.25 12.14 5.6(0.2) 32.0(8.5)

JAR (Reg) 11.68 10.86 10.74 10.40 10.16 5.6(0.2) 28.9(5.4)
Table 2: Comparisons between different methods with different backbones. Det denotes
detection-based methods, Reg denotes regression-based methods, and the number in the
brackets denotes the FLOPs and params of the network apart from the backbone.

of correct keypoints (PCK). EPE is calculated as the average Euclidean distance between
the predicted pose and ground-truth pose. AUC is computed as the percentage of predicted
joints errors falling within certain error thresholds compared with ground-truth joints.

3.2 Implementation Details
Training. We train and evaluate our method on a computer with an Intel(R) Core(TM)
i9-10940X CPU@3.30GHz CPU, 64GB of RAM, and an Nvidia GeForce RTX 3090 GPU
having 24GB of GPU memory. The operating system of the computer is Ubuntu 18.04.3
LTS. All the experiments are implemented with PyTorch-1.7.1 framework [23]. We use
ResNet [13] pretrained on ImageNet [6] as our backbone. The batch size is set to 64. The
model is optimized with Adam solver [16] with an initial learning rate 3e−4. The learning
rate is decayed with cosine schedule. Our model is trained 40 epochs on FreiHAND and 30
epochs on HO-3D, RHD, and STB. We use L1 loss for all the stages.
Data Processing. We crop the hand from the original image according to the bounding
box and resize the cropped image to 256×256. On FreiHAND, we crop the hand from the
center, do not use given ground-truth hand scale information, and use root depth provided by
I2L-MeshNet [20] for a fair comparison. On HO-3D, we use the 2D keypoints information
as bounding box during training, rely on the provided bounding box during testing, and
do not use scale information, following [4]. On RHD and STB, following previous work
[18, 34], we use the ground-truth hand masks to generate bounding box. Moreover, we use
the ground-truth root depth and scale information, following [2, 9, 15, 18, 27, 30, 33, 34, 37].
Data augmentation, including scaling (±10%), rotation (±180°), translation (±10 pixels), and
color jittering (±20%) are performed during training.

3.3 Results
Ablation studies. To understand the influence of the individual parts of our method, we add
them to the baseline method one at a time and evaluate the performance. We use Equation 3
for FR, AFR, every head, and multi-head fuse. Besides, we try to make the number of their
parameters at the same level for fair comparisons. We use 8 feature maps for a head and 8
heads (experiments for tuning these numbers are shown in Supp. material).

As shown in Table 1, FR as the baseline performs the worst (ID-1). Because AFR reduces
the regression space using global average pooling, it achieves better performance (ID-2) and
requires fewer computations and parameters. There is a dramatic performance improvement
when using joint-specific feature maps instead of all the feature maps for decoding (2.69mm,
comparing ID-1 and ID-5). This phenomenon shows the benefits of dividing the whole
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Method mesh scale FPS FreiHAND HO-3D
EPE AUC EPE*

CVPR19-Boukhayma et al.[1] X X / 35.0 0.351 /
CVPR19-Hasson et al.[12] X X / 13.3 0.737 31.8
ICCV20-MANO CNN [38] X X / 10.9 0.783 /

CVPR20-Hampali et al. [11] X / / / / 30.4
CVPR20-YoutubeHand [17] X / / 8.4 0.834 /

ECCV20-I2L-Mesh [5] X / 53 7.4 / /
ECCV20-Pose2Mesh [20] X / 8 7.4 / /
CVPR21-Chen et al. [3] X / 64 6.9 0.863 /

CVPR21-MeshTransformer [19] X / 18 6.5 / /

CVPR21-Chen et al. [4] / / / 11.8 0.77 /
AAAI21-Li et al. [18] / X 48 8.6 0.842 /

Ours(ResNet-34,1-stage) / / 134 7.3 0.856 26.9
Ours(ResNet-34,2-stage) / / 86 6.8 0.865 25.7
Ours(ResNet-34,4-stage) / / 49 6.5 0.870 25.1

Table 3: Comparisons on FreiHAND and HO-3D. * means with scale and trans alignment.

feature space into joint-specific sub-spaces to constrain the regression space. Moreover, after
using a joint-shared coordinate decoding module instead of joint-specific ones to constrain
the regression space further, the performance gains another 0.11mm improvement (ID-6).
Besides, this way reduces the decoding module’s parameters by twenty times.

Experiments show that adding feature maps for a head leads to saturated improvements
(Supp. material). However, applying the multi-head mechanism to exploit more features
can improve the performance significantly (0.42mm, ID-7). This result shows the benefits
of allowing the network to exploit different coordinate representations. Furthermore, those
priors can also bring improvements to AFR (ID-3 and ID-4). Especially, the joint-shared
coordinate decoding module improves AFR a lot (ID-4). Here, ID-4 and ID-6 use the same
dimension of coordinate representations, but ID-6 performs much better. This phenomenon
proves the importance of using coordinate representations with spatial structure information.

Last, we show the effect of multi-stage refinement. From our experiments (Supp. mate-
rial), we find that only using the last block of ResNet for refinement stages to extract features
can achieve good performance with our framework. Therefore, we adopt this scheme to
avoid multi-stage refinement introducing too many computations. Only using 2D heatmaps
for refinement can decrease 0.38mm error (ID-8). Further incorporating depth-maps for
refinement can bring another 0.11mm improvement (ID-9). Finally, by incorporating learn-
able refine maps, the performance gains another 0.22mm improvement (ID-10). This result
demonstrates that only reparameterizing hand-crafted features can not fully leverage previ-
ous stages for refinement, and using learnable refine maps can provide much more informa-
tion. When adding stage number to 3, the improvement is limited on RHD (0.1mm, ID-11).
Comparisons with two baselines using different backbones. Table 2 uses RHD dataset to
compare the performance of the most common regression-based method (AFR), the recent
popular detection-based method for 3D HPE [15, 18, 28] (2.5D), and JAR. The comparisons
between 2.5D and AFR show a performance gap between regression-based methods and
detection-based methods. However, after adding priors on regression-based methods, JAR
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Figure 2: Comparisons of 3D PCK on RHD (left) and STB (right) datasets.

significantly improves the performance and surpasses 2.5D with all the backbones. This
result proves that allowing the network to learn the coordinate representations and the corre-
sponding decoding module can achieve better performance if the regression-based methods
are well-designed. On the last two columns of Table 2, we show the FLOPs and parameters
of them with ResNet-50. Due to the heavy deconvolutional blocks (7.6G-FLOPs and 10.5M-
Params), 2.5D is much less efficient. In contrast, JAR retains the advantages of regression-
based methods and uses the least FLOPs and params while achieves the best performance.

3.4 Comparisons with State-of-the-arts
FreiHAND and HO-3D. We compare with state-of-the-art methods [1, 3, 4, 5, 11, 12, 18,
19, 20, 38] on FreiHAND and HO-3D datasets. As shown in Table 3, our method with
ResNet-34 as the backbone and four stages can achieve the best performance on these two
datasets without using mesh labels for training or ground-truth hand scale information. Fur-
thermore, we test the inference speed of these methods with their publicly released code on
our computer. Our method has the highest inference speed for the same performance.
RHD and STB. We use ResNet-34 as the backbone and two stages for our model to compare
with state-of-the-art methods [2, 3, 9, 10, 15, 17, 18, 27, 30, 33, 34, 37] on RHD and STB
datasets in AUC metric. The comparisons are shown in Figure 2. We outperform all other
methods on RHD dataset and achieve comparable performance on STB dataset with other
methods due to its saturation.

4 Conclusions
In this paper, we propose a novel regression-based methods framework, Joint-Aware Re-
gression. This framework preserves the strength of coordinate representations and simul-
taneously relieves the coordinate decoding module’s optimization difficulty. We achieve
this by using joint-specific feature maps as coordinate representations, a multi-head joint-
shared module for coordinate decoding, and a learnable multi-stage refinement. We show
that regression-based methods can achieve strong performance with appropriate design while
remaining lightweight and efficient for hand pose estimation. Extensive experiments on pub-
lic benchmarks demonstrate the effectiveness and efficiency of our method.
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