
Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 1

Learning to Sparsify Differences of Synaptic
Signal for Efficient Event Processing
Yusuke Sekikawa, Keisuke Uto

{ysekikawa,kuto}@d-itlab.co.jp

DENSO IT Laboratory

Shibuya, Shibuya-ku, Tokyo, Japan

Abstract
Neural network processors on edge devices need to process spatiotemporal data with

low latency, which requires a large amount of multiply-accumulate operation (MAC). In
this paper, we propose a difference-driven neural network framework for efficient video
or event stream processing. Our framework achieves lower MAC by learning to sparsify
the temporal differences of synaptic signals (TDSS) of proposed masked convolutional
neural networks. By reducing the TDSS, MAC reduction is achieved in a unified manner
by increasing the quantization step size, disconnecting synapses, and learning weights
that respond sparsely to inputs. A novel quantizer is another key to realize unified op-
timization; the quantizer has a gradient called macro-grad that guides the step size to
reduce the MAC by reducing the TDSS loss. Experiments conducted using a wide range
of tasks and data (frames/events) show that the proposed framework can reduce MAC
by a factor of 32 to 240 compared to dense convolution while maintaining comparable
accuracy, which is several times better than the current state-of-the-art methods.

1 Introduction

Figure 1: TDSS-aware training. In an mSD net-
work, only the masked difference DĪ is processed.
MAC could be reduced jointly by weight w, mask
m, and quantization step size s. We realize the opti-
mization by the novel quantizer and loss function.

Edge devices such as autonomous vehicles
and mobile phones often use neural net-
works (NNs) to process spatiotemporal data
such as videos. Processing such data inde-
pendently in a frame-by-frame manner re-
quires intensive computation.

Approaches for the efficient processing
of spatiotemporal data from both algorith-
mic and processor perspectives are explored
[32, 44, 46, 48]. Data from temporal prox-
imity are highly correlated; that is, differ-
ences between each pixel from consecutive
frames are highly sparse. The SD network
[46] was proposed for efficient video pro-
cessing; this is a reformulation of quantized
neural networks into equivalent quantized recurrent neural networks. The network recur-
sively updates its state and output using the sparse temporal difference. The sparse up-
date mechanism results in lower multiply-accumulate operation (MAC). The model has been

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Khoei, Yousefzadeh, Pourtaherian, Moreira, and Tapson} 2020

Citation
Citation
{Neil, Lee, Delbruck, and Liu} 2017

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Pan, Lin, Fang, Huang, Zhou, and Lu} 2018

Citation
Citation
{O'Connor and Welling} 2016

2 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

proven effective for various tasks such as classification, object detection, and pose-estimation
[44, 46, 48]. It has also been shown to be applicable for asynchronous event data [32, 69].
The SD networks provide very efficient inference, especially when mapped to processors that
can take advantage of dynamic sparsity [7, 21, 23, 43]. These devices are becoming popular
due to their efficiency and the advancement of CMOS technology.

We found that there is room for significant performance improvement of the network. In
the existing method, the SD networks are first trained without quantization; then, the quanti-
zation step size is optimized for testing (post-quantization) either by greedy search ([32]) or
by layer-wise stochastic gradient descent [46]. 1) Increasing the step size reduces the MAC
by making the differences sparser, but this is a tradeoff with accuracy. Joint optimization of
weight and step size by end-to-end (E2E) learning seems promising; however, an existing
technique for learning the step size of quantized neural networks such as LSQ [12] cannot
train the step size of SD networks to reduce MAC. 2) MAC could be further reduced by
sparsifying synaptic connections; however, existing weight pruning techniques [25, 34, 67]
is not applicable to learn the synaptic connection of SD networks to reduce MAC.

To this end, we propose a framework called TDSS-aware training, which significantly
improves the MAC/accuracy tradeoff of SD networks with sparse connection by realizing
joint optimization of weight, synaptic connection, and quantization step-size (Fig. 1). Our
framework consists of two core inventions: 1) A quantizer with a gradient macro-grad that
guides the step size toward the direction of reducing MAC; 2) A network module mSD layer
that could represent sparse connection and loss function using the temporal difference of
synaptic signal (TDSS) which directly reflect MAC of mSD networks.

We applied the proposed framework for different kinds of networks/tasks (including both
frame-based and event-based data) and achieved accuracy comparable to the baseline using
dense convolution while significantly reducing MAC up to 240x, which is 39x more efficient
than state-of-the-art methods (SOTAs) utilizing temporal sparsity [32, 42, 46, 48, 69].

The joint optimization with TDSS lets the network select the computational path by
activation, incurring fewer synaptic signals in subsequent layers. Therefore, a somewhat
counterintuitive result for dense networks occurs; larger networks could learn to operate
with lower MACs. We verified this by experiments.

2 Related Works
There has been a great deal of research on speeding up the inference of NNs, which includes
network quantization [12, 30], low-rank approximating of weight [8, 38], designing efficient
network structure [26, 62], and utilization of sparsity. In this section, we first review studies
utilizing sparsity in weight/activation. Then we discuss studies focusing on sparsity in time
for efficient spatiotemporal signal processing, which is the focus of our research.

Sparsity in weight/activation. A popular strategy for exploiting sparsity for efficient com-
putation eliminates unnecessary operations involving zeros in weights and/or features. Weight
pruning removes weights that are considered to have little impact on the output [10, 25, 34,
67]. NVidia’s recent Ampere architecture supports structured sparsity in weight to accelerate
convolution on GPUs. Sparsity in features is also utilized to accelerate convolution on CPUs
[58]. Submanifold sparse convolutional (SSC) [20] is a new kind of sparse convolution that
keeps the same sparsity after the convolution, which has recently been extended to process
sparse event data asynchronously [42]. Efficient inference engine (EIE) [23] is a specifically

Citation
Citation
{Neil, Lee, Delbruck, and Liu} 2017

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Pan, Lin, Fang, Huang, Zhou, and Lu} 2018

Citation
Citation
{Khoei, Yousefzadeh, Pourtaherian, Moreira, and Tapson} 2020

Citation
Citation
{Yousefzadeh, Khoei, Hosseini, Holanda, Leroux, Moreira, Tapson, Dhoedt, Simoens, Serrano-Gotarredona, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Cassidy, Merolla, Arthur, Esser, Jackson, Alvarez-Icaza, Datta, Sawada, Wong, Feldman, Amir, Rubin, Akopyan, McQuinn, Risk, and Modha} 2013

Citation
Citation
{GraphCore}

Citation
Citation
{Han, Liu, Mao, Pu, Pedram, Horowitz, and Dally} 2016

Citation
Citation
{Moreira, Yousefzadeh, Chersi, Kapoor, Zwartenkot, Qiao, Cinserin, Khoei, Lindwer, and Tapson}

Citation
Citation
{Khoei, Yousefzadeh, Pourtaherian, Moreira, and Tapson} 2020

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{He, Lin, Liu, Wang, Li, and Han} 2018

Citation
Citation
{Kusupati, Ramanujan, Somani, Wortsman, Jain, Kakade, and Farhadi} 2020

Citation
Citation
{Wortsman, Farhadi, and Rastegari} 2019

Citation
Citation
{Khoei, Yousefzadeh, Pourtaherian, Moreira, and Tapson} 2020

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Pan, Lin, Fang, Huang, Zhou, and Lu} 2018

Citation
Citation
{Yousefzadeh, Khoei, Hosseini, Holanda, Leroux, Moreira, Tapson, Dhoedt, Simoens, Serrano-Gotarredona, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Jain, Gural, Wu, and Dick} 2020

Citation
Citation
{Chollet} 2017

Citation
Citation
{Li and Shi} 2018

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Dong, Chen, and Pan} 2017

Citation
Citation
{He, Lin, Liu, Wang, Li, and Han} 2018

Citation
Citation
{Kusupati, Ramanujan, Somani, Wortsman, Jain, Kakade, and Farhadi} 2020

Citation
Citation
{Wortsman, Farhadi, and Rastegari} 2019

Citation
Citation
{Shi and Chu} 2017

Citation
Citation
{Graham, Engelcke, and vanprotect unhbox voidb@x protect penalty @M {}der Maaten} 2018

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{Han, Liu, Mao, Pu, Pedram, Horowitz, and Dally} 2016

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 3

designed ASIC to exploit the dynamic sparsity of the input feature maps to accelerate the
inference of a neural network.

Sparsity in temporal difference. Inspired by a biological vision, event-based cameras
[52] detect changes in luminance instead of sensing absolute brightness. This novel mech-
anism enables the efficient sparse sensing of spatiotemporal visual data [17]. Spiking NNs
(SNNs) [19, 37, 53, 56, 65] are promising models for efficiently processing sparse data such
as events or differences between video frames. However, SNNs have not been as successful
as dense artificial NNs, mainly because of difficulties in training larger networks due to the
non-differentiability [37, 56, 65] and the absence of large-scale hardware implementing SNN
neurons such as leaky and fire (LIF), which involves more complex temporal dynamics.

The temporal sparsity also exists in frame-based video data by considering their temporal
differences (e.g., adjacent frames). A common strategy to exploit the temporal sparsity of
video is to propagate activation maps computed at key frames, thus avoiding computing
expensive activation maps for each frame [27, 40, 45, 57, 68, 70]. Subsequent frames then
re-use the spatially aligned activation maps via optical flow [68, 70], dynamic filters [40, 45],
or self-attention [27].

The SD network was first proposed [46] for efficient video processing (Sec. 3.1). A
concurrent work [44] extended it for gated recurrent units (GRU) [9] to model temporal
dependencies. Later on, a simplified model (called the temporal difference (TD) network
in [46]) and its extensions were applied for more complex tasks such as object detection
[22, 48]. The same SD network was proposed in the SNN literature [32, 69] to process data
from event-based cameras [52]. The SD networks enable low-power, low-latency inference,
especially when mapped to devices that can take advantage of dynamic sparsity [7, 21, 23,
43], i.e., devices that can skip operations with zeros in weights and activation. Large-scale
SoCs implementing the SD neuron is emerging on the market [43].

We believe the SD network is a promising candidate for processing sparse temporal sig-
nals because it is easy to train and has hardware-friendly simple temporal dynamics. Our
work aims to extend this to achieve an optimal MAC/accuracy tradeoff by a novel mSD
network and realizing E2E training of the network by a novel quantizer and loss function.

3 Learning to Sparsify the Difference of a Synaptic Signal
3.1 Preliminary
In this preliminary section, we first formalize the SD network [46], which is the premise of
this study, and then discuss the problems of existing approaches for reducing the network’s
MAC. Given a video sequence [I(0)0 , ..., I(0)t , ...]1, our goal is to get the corresponding output
[y0, ...,yt , ...], where yt depends only on input at time t. The SD network is designed to
efficiently process spatiotemporal signals by only processing changes of activation.

Quantized network. An l-th convolution (conv) layer of a quantized neural network is
expressed as:

I(l+1)
t = s(Q(w(l) ⇤ I(l)t +b(l),s)), (1)

where w 2RCout⇥Cin⇥k⇥k and b 2RCout are weights and biases for conv, s is activation func-
tion, such as ReLU, ⇤ represents a convolution, and Q is a quantizer for activation defined
as:

Q(x,s) = sbx/sc, (2)

Citation
Citation
{Posch, Matolin, and Wohlgenannt} 2010

Citation
Citation
{{Gallego}, {Delbruck}, {Orchard}, {Bartolozzi}, {Taba}, {Censi}, {Leutenegger}, {Davison}, {Conradt}, {Daniilidis}, and {Scaramuzza}} 2020

Citation
Citation
{Gerstner and Kistler} 2002

Citation
Citation
{Lee, Delbruck, and Pfeiffer} 2016

Citation
Citation
{Rajendran, Sebastian, Schmuker, Srinivasa, and Eleftheriou} 2018

Citation
Citation
{Shayer, Levi, and Fetaya} 2018

Citation
Citation
{Voelker, Rasmussen, and Eliasmith} 2020

Citation
Citation
{Lee, Delbruck, and Pfeiffer} 2016

Citation
Citation
{Shayer, Levi, and Fetaya} 2018

Citation
Citation
{Voelker, Rasmussen, and Eliasmith} 2020

Citation
Citation
{Hu, Caba, Wang, Lin, Sclaroff, and Perazzi} 2020

Citation
Citation
{Li, Shi, and Lin} 2018

Citation
Citation
{Nie, Li, Luo, Zhang, and Feng} 2019

Citation
Citation
{Shelhamer, Rakelly, Hoffman, and Darrell} 2016

Citation
Citation
{Wu, Xiong, Ma, Socher, and Davis} 2019

Citation
Citation
{Zhu, Xiong, Dai, Yuan, and Wei} 2017

Citation
Citation
{Wu, Xiong, Ma, Socher, and Davis} 2019

Citation
Citation
{Zhu, Xiong, Dai, Yuan, and Wei} 2017

Citation
Citation
{Li, Shi, and Lin} 2018

Citation
Citation
{Nie, Li, Luo, Zhang, and Feng} 2019

Citation
Citation
{Hu, Caba, Wang, Lin, Sclaroff, and Perazzi} 2020

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Neil, Lee, Delbruck, and Liu} 2017

Citation
Citation
{Chung, Gulcehre, Cho, and Bengio} 2014

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Habibian, Abati, Cohen, and Bejnordi} 2021

Citation
Citation
{Pan, Lin, Fang, Huang, Zhou, and Lu} 2018

Citation
Citation
{Khoei, Yousefzadeh, Pourtaherian, Moreira, and Tapson} 2020

Citation
Citation
{Yousefzadeh, Khoei, Hosseini, Holanda, Leroux, Moreira, Tapson, Dhoedt, Simoens, Serrano-Gotarredona, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Posch, Matolin, and Wohlgenannt} 2010

Citation
Citation
{Cassidy, Merolla, Arthur, Esser, Jackson, Alvarez-Icaza, Datta, Sawada, Wong, Feldman, Amir, Rubin, Akopyan, McQuinn, Risk, and Modha} 2013

Citation
Citation
{GraphCore}

Citation
Citation
{Han, Liu, Mao, Pu, Pedram, Horowitz, and Dally} 2016

Citation
Citation
{Moreira, Yousefzadeh, Chersi, Kapoor, Zwartenkot, Qiao, Cinserin, Khoei, Lindwer, and Tapson}

Citation
Citation
{Moreira, Yousefzadeh, Chersi, Kapoor, Zwartenkot, Qiao, Cinserin, Khoei, Lindwer, and Tapson}

Citation
Citation
{O'Connor and Welling} 2016

4 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

where db·c is a round operation and s is quantization step size.

SD network. Eq. (1) is equivalent to the following quantized recurrent neural networks:

DI(l+1)
t =Q(s(X (l)

t)� I(l+1)
t�1 ,s), (3)

where the internal state X (l)
t and I(l+1)

t is also updated recursively as follows,

X (l)
t =X (l)

t�1 +w(l) ⇤DI(l)t (4)

I(l+1)
t =I(l)t�1 +Q(s(X (l)

t)� I(l+1)
t�1 ,s), (5)

which is similar to sigma-delta modulation in digital signal processing. The It stores quan-
tized activation map. In the recursion, X0 and I0 are initialized with zeros, and t starts from
1. When DIt is sparse (i.e., most of its elements are zero), then w ⇤DIt in (4) is computed
more efficiently than the dense operation of (1) when the network is mapped onto processors
which could exploit dynamic sparsity (ignore zeros), such as EIE [23], IPU [21], TrueNorth
[7], or neuron-flow [43], for inference.

Training the SD network. Eq. (3) suggests that computation could be reduced by increas-
ing quantization step size s. In the conventional method, the network of (1) is first trained
without quantization (Q is identity), w and b are fixed, and then s is optimized to increase
the sparsity of DI. It was done by greedy search [32, 69] or by layer-wise stochastic gradient
descent (SGD) [46] to reduce the temporal difference of activation map (TDAM):

LT DAM = Â
l
|C(l+1)

out k(l+1)k(l+1)DI(l)|1 (6)

3.2 TDSS-Aware Training
Problem statement. The quantized network described above is an approximation of trained
non-quantized networks. Increasing the step size s reduces the MAC, but this is a tradeoff
with accuracy. 1) A joint optimization of weight w and step size s is expected to realize
a much better MAC/accuracy tradeoff. However, as discussed in [46], the application of
straight-through estimator (STE) [3] for s could not train the network in a fully E2E manner
(Sec. 3.2.1). They, therefore, adopted layer-by-layer post-quantization. This is sub-optimal
in the sense that s and w at the lower layer could not be optimized to reduce DI in higher
layers. 2) From another perspective, the existing SD network does not utilize the sparsity in
w. Sparse weight could be represented by using binary masks [67]; however, reducing the
TDAM of (6) could not directly reduce the MAC of SD networks with sparse weight.

Summary. To overcome these difficulties, we propose a framework called TDSS-aware
training, which achieves significant MAC reduction over the existing post-quantization of
SD networks. 1) Regarding the quantizer, we contemplate the reasons for this and propose
a quantizer with macro-grad, which realizes E2E joint optimization of weights, synaptic
connections, and step size in a unified manner (Sec. 3.2.1). 2) Regarding the training of
synaptic connections, we propose the novel module called the mSD layer to represent sparse
connection and introduce a notion called TDSS where the MAC of the mSD network could
be directly reduced by minimizing it (Sec. 3.2.2).

1Note that the superscript in parentheses indicates the layer index. It is omitted to avoid clutter if it is obvious.

Citation
Citation
{Han, Liu, Mao, Pu, Pedram, Horowitz, and Dally} 2016

Citation
Citation
{GraphCore}

Citation
Citation
{Cassidy, Merolla, Arthur, Esser, Jackson, Alvarez-Icaza, Datta, Sawada, Wong, Feldman, Amir, Rubin, Akopyan, McQuinn, Risk, and Modha} 2013

Citation
Citation
{Moreira, Yousefzadeh, Chersi, Kapoor, Zwartenkot, Qiao, Cinserin, Khoei, Lindwer, and Tapson}

Citation
Citation
{Khoei, Yousefzadeh, Pourtaherian, Moreira, and Tapson} 2020

Citation
Citation
{Yousefzadeh, Khoei, Hosseini, Holanda, Leroux, Moreira, Tapson, Dhoedt, Simoens, Serrano-Gotarredona, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Bengio, Léonard, and Courville} 2013

Citation
Citation
{Wortsman, Farhadi, and Rastegari} 2019

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 5

3.2.1 Gradient of Quantizer

Figure 2: Gradient of quantizer. The gradi-
ent of the proposed macro-grad (MG) is compared
with the gradient of LSQ [12] when s = 0.9 (Left).
Quantized value x̂ for different step size s (Right).
x = 3.8, x = 5.2 corresponds to a, b on the left.

The gradient of quantizer (2) w.r.t. x and
s need to be computed for each quantized
layer to realize E2E training using error
backpropagation. The gradient w.r.t. x is
easily computed using STE [3], which is 1
everywhere. Now, we focus on the gradient
w.r.t. s. Consider two points xt , xt�1 and
L := |x̂t � x̂t�1| (a, b in Fig. 2). The gradi-
ent of L w.r.t. s is as follows:

∂L
∂ s

= sgn(x̂t � x̂t�1)

✓
∂ x̂t

∂ s
� ∂ x̂t�1

∂ s

◆
(7)

where x̂t =s(Q(xt ,s)). Note that the L cor-
responds to MAC of SD networks, and recall that our goal is to reduce the MAC. In the
following, for simplicity, let the s := ReLU, and assume xt > xt�1 > 0.

LSQ. Considering the gradient of (2) w.r.t. s in each quantization bin, we get the following:

∂ x̂
∂ s

=�x/s+ bx/se (8)

It is the same as the LSQ gradient [12] (without value range Qn and Qp), which is widely
used for learning step size of quantized neural networks. Since this gradient is correct locally,
the LSQ can indeed decrease L, albeit very slightly. In the example of Fig. 2, the gradient at
a, b are ⇡ �0.22, ⇡ +0.22 respectively, and ∂L/∂ s ⇡ +0.44. Therefore, in this case, L is
reduced by decreasing s (making the quantization finer). The gradient guide s to reduce L,
but it does not always coincide with the direction to make L to be zero (equivalent to sparsify
DI), as shown in Fig. 2 (right). If x is random value from uniform distribution in [0,+•],
then the gradient of (8) distribute uniformly in [�0.5,+0.5]; therefore, E(∂L/∂ s) = 0. It
means that LSQ is not capable of guiding s to reduce L (⇠MAC) substantially; this is also
experimentally verified in the ablation study (Sec. 4.2).

Regularizer of s. It is possible to increase s by incorporating additional loss term (regular-
izer) such as |1/s|. In the case of LSQ, the gradient of the quantization error |x̂� x| w.r.t. s
is |� x/s+ bx/se|. A smaller task loss is generally realized by smaller quantization error, so
s tends to become smaller by minimizing the task loss. Therefore, they will balance some-
where; however, this does not take each neuron’s MAC (TDSS or TDAM loss) into account,
resulting in a sub-optimal MAC/accuracy tradeoff. Dynamically adjusting the weight for
the regularizer using the MAC of each neuron is very difficult to realize. Furthermore, the
hyper-parameter for the regularizer makes the optimization and fair evaluation difficult.

Macro-grad. If the two points are not in the same quantization bin, then L > 0. By grad-
ually increasing s (while fixing xt and xt�1), x̂t�1 and x̂t will fall into same bin, and the L
becomes 0 (Fig. 2, right). That is, in a macroscopic point of view, ∂L/∂ s must be negative.
Based on this observation, we propose a quantizer with a gradient called macro-grad,

∂ x̂
∂ s

=�x (x)
s

, (9)

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Bengio, Léonard, and Courville} 2013

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

6 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

where x could be any monotonically increasing function. We use the identity function for
simplicity. In a microscopic view, it does not yield precise gradients as LSQ of (8), and it
sometimes increases L; however, in a macroscopic point of view, the gradient induces xt and
xt�1 to fall into the same quantization bin by increasing s. The gradient ∂L/∂ s is always
negative for non-zero L since x is a monotonic function. In the example of Fig. 2, the
gradient at a, b are ⇡�4.2, ⇡�5.8 respectively, and ∂L/∂ s ⇡�1.6. The gradient makes s
larger; it may not reduce L immediately; however, eventually L become zero as they fall into
the same bin. Now, consider a difference between quantized value x̂ and target value xtgt. The
gradient of |x̂�xtgt| w.r.t. s is positive if x̂< xtgt and negative otherwise. The gradient reduces
the difference in both cases. Therefore, the macro-grad automatically balances between
accuracy (task loss) and MAC (TDAM or TDSS loss). The above discussion is also valid for
the more general TDSS loss of (12) for the mSD (Sec. 3.2.2) network, and the combination
of TDSS and macro-grad significantly reduces MAC of the network by jointly optimizing
weight, mask, and step size. We experimentally verified that s becomes larger by reducing
(6) or (12) in the case of the macro-grad while LSQ does not (Sec. 4.2).

3.2.2 Masked SD Network and TDSS

Figure 3: Synaptic signal. Synaptic signal Ī is
Hadamard product of unfolded input X(I) and mask
m. Sparsifying TDSS DĪ directly reduces MAC.

In the SD network, MAC is proportional to
the total number of signals triggered when
the input differential signal (events or dif-
ference of consecutive video frame) is pre-
sented to the network. In each neuron, an
update signal (quantized difference of ac-
tivation map) is triggered when the differ-
ence of activation map exceeds the step size
s. The update signal is sent to all the con-
nected neurons in the subsequent layer (Fig. 1). Therefore, even if some neuron fires, in-
duced MAC would be small if the neuron’s connection is sparse. In order to reduce MAC by
sparsifying synaptic connections, we propose the mSD network that incorporates a learnable
mask. The mSD updates its internal states as follows:

X (l)
t = X (l)

t�1 + ŵ(l) ⇤DI(l)t = X (l)
t�1 +(m(l)�w(l))⇤DI(l)t , (10)

where, mask m 2 {0,1}Cout⇥Cinkk represents the binary synaptic connection between neurons
in the subsequent layer. After training, synaptic weights having non-zero masks are mapped
to the hardware. The sparse weight reduces both MAC and memory footprints. However, the
TDAM loss of (6) does not yield a precise gradient for each element of the mask w.r.t. MAC.
It enhances overall sparsity in w, but it could not take the relationship with DI into account,
which results in a sub-optimal mask. To this end, we introduce a novel quantity called the
synaptic signal, Īt defined as follows:

Ī(l)t := X(I(l)t)�m(l+1) (11)

DĪ(l)t := Ī(l)t � Ī(l)t�1, (12)

where � is Hadamard product, and X is unfolding2 function (Fig. 3). The TDSS is defined as
a temporal difference of two synaptic signals of temporal proximity, as shown in (12). The

2Flatten each sliding local k2 block of input and copies values along the output channel dimension(It 2RCin⇥WH

! X(I)t 2 RCout⇥Cinkk⇥WH . The Hadamard product is applied along each spatial location (HW dimension).

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 7

sparsity of TDSS directly corresponds to the MAC of the mSD network. In fact, the MAC
of the mSD network is equal to the l0 norm of TDSS. We define TDSS loss LT DSS as the l1
norm of TDSS, which is differentiable. Our mSD networks are trained with a combination
of LT DSS and task loss Ltgt , such that L = Ltgt +hLT DSS, where h is a hyper-parameter to
balance the sparsity of TDSS with accuracy. By learning to reduce LT DSS, the MAC of the
mSD network could be reduced.

Parameterization of weight and mask. We parameterize the mask m and weight w us-
ing the same parameter w to reduce memory footprints and improve training stability. The
masked kernel ŵ for (10) and mask m to evaluate the TDSS loss of (12) is computed as:

ŵ(l) = softshrink(w(l),g) (13)

m(l) = softshrink(w(l+1),g) 6= 0 (14)

This formulation using softshrink enables us to represent an arbitrarily small masked weight
ŵ, which is not the case for simple weight masking by magnitude [10, 25, 67]. The weight
w receives gradient signals from the two sources. Both gradients are specifically designed
such that neurons are masked to reduce the TDSS loss, or they could become active again to
achieve better accuracies to reduce task loss. The threshold g is a fixed parameter that is the
same for both functions, and we set g = 0.1

p
6/Cout. Refer to Supp. F for more detail about

the parameterization, the gradients, and the initialization scheme.

Memory efficient evaluation of TDSS. A large amount of memory (RCoutCinkkWH for a
single layer) is required to explicitly compute TDSS of (12). By noticing,

Â
l
||DĪ(l)||1 = Â

l
|| |X(DI(l))|�m(l+1)||1 = Â

l
|| |DI(l)|⇤m(l+1)||1, (15)

we can directly accumulate the sum into a scalar value. This trick obviates the need to
allocate large amounts of memory.

Random sampling of TDSS. Although the technique of (15) significantly reduces the
memory footprint, computing TDSS requires the additional computation regarding mask
m and consumes memory for backpropagation. To alleviate this problem, we randomly
sample a few layers per mini-batch to evaluate the TDSS. The TDSS of the selected layer is
computed online, avoiding the explicit computation in the other layers.

3.3 Extension to Event Data

Figure 4: Input representation. Dense input I(0)t

for training (Top). Sparse input DI(0)t for testing
(Bottom).

Event data. Event camera triggers an
event when the (logarithmic) luminance
change exceeds a predetermined threshold
s(0) at each pixel. As input representation
I(0)t , we adopt histogram of fixed number of
events t . In this representation, the value on
each pixel is the event count for each polar-
ity, which is visualized in Fig. 4 (top).

Asynchronous update. Given a single event, the difference in input DI(0)t,p for polarity p 2
{�1,+1} is computed as follows:

DI(0)t,p = I(0)t,p � I(0)t�d t,p, (16)

Citation
Citation
{Dong, Chen, and Pan} 2017

Citation
Citation
{He, Lin, Liu, Wang, Li, and Han} 2018

Citation
Citation
{Wortsman, Farhadi, and Rastegari} 2019

8 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

where d t is the time elapsed since the last event has been observed. This difference is
very sparse; only two pixels are nonzero on average (some pixels may go out from the
accumulation window t). The update rule of the mSD network in Sec. 3.2 could directly
applied when we interpret (t�1) as (t�d t). The output and the state of the mSD network are
updated asynchronously by feeding the difference triggered by a single event. This update,
using very sparse DI(0), is much more efficient than processing dense I(0) using (1).

Batch update. It is also possible to update the network using multiple events at once (pro-
cessing step size n). In this scenario, d t is the time elapsed since the oldest event in the
batch has been observed. An important fact is, MAC is not proportional to the number of
events n processed at once. Given n events, the MAC for processing them one by one is
higher than processing them at once. It is partly because SD or mSD network could encode
multiple bits in DI rather than 1-bit of pure SNN. Therefore, the batch update is more effi-
cient than the asynchronous update when output at the input event rate is unnecessary. The
asynchronous update scenario is the particular case where n = 1. Note that output at the rate
of events (it could be more than 107-108 Hz) is usually too much and unnecessary, even for
latency-critical apps [50].

MAC evaluation. We evaluate MAC by changing n , including the special case of asyn-
chronous update where n = 1. Obviously, the computational gain over dense operation of (1)
becomes prominent when small n is used. Nevertheless, we consider the batch update sce-
nario is particularly important for practical application; we will mainly discuss MAC when
n � 1.

Processing step size during training. The network is learned to reduce MAC by using
TDSS loss. We choose processing step size for the TDSS loss ntrain � 1, considering the
practical scenario. The ntrain are visualized in Fig. 4 (bottom) for each dataset.

Other input representation. Other options exist for event representation [1, 35], which
could be updated asynchronously for each incoming event. Moreover, it could be learned
E2E [5, 18, 64] using task loss. This paper uses histograms for simplicity, and the exploration
of learning input representations is left for future work.

4 Experiments Table 1: Experimental setup. bs is batch size for
training, epoch is training epochs, lr is initial learn-
ing rate, hstep/hthr are TDSS scheduling parame-
ter, size is spatial size of input representation, t is
number events for input representation, and ntrain is
processing step size for TDSS loss during training.

PilotNet N-MNIST N-Caltech Gen1 Autom
bs 64 64 64 64

epoch 1,000 1,000 10,000 1,000
lr 1E-3 1E-3 1E-3 1E-3

hstep 4.0 2.0 0.1 1.0
hthr 0.02 0.02 0.29 0.872
size 66⇥200 34⇥34 191⇥255 223⇥287

t - 2,000 25,000 25,000
ntrain 10 100 1,250 1,250

Our experiments are divided into two parts.
First, we benchmark our framework on
different kinds of tasks and data types:
steering angle prediction (video), handwrit-
ing recognition (event), object recognition
(event), and object detection (event). We
achieved a significant reduction in MAC
compared to dense networks while main-
taining comparable accuracy; this is sev-
eral times better than existing SOTAs (Sec.
4.1). Next, we present an extensive abla-
tion study to reveal important elements for
achieving the very low MAC (Sec. 4.2).

Citation
Citation
{Perot, deprotect unhbox voidb@x protect penalty @M {}Tournemire, Nitti, Masci, and Sironi} 2020

Citation
Citation
{Baldwin, Liu, Almatrafi, Asari, and Hirakawa} 2021

Citation
Citation
{{Lagorce}, {Orchard}, {Galluppi}, {Shi}, and {Benosman}} 2017

Citation
Citation
{Cannici, Ciccone, Romanoni, and Matteucci}

Citation
Citation
{{Gehrig}, {Loquercio}, {Derpanis}, and {Scaramuzza}} 2019

Citation
Citation
{Tulyakov, Fleuret, Kiefel, Gehler, and Hirsch} 2019

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 9

Table 2: Experimental result. We compare ours (red) with Dense (gray), Asyc-SSC [42] (green), and
SD-TDAM [46] (cyan). In quantizer (Q), LW represents the layer-wise post-quantization of [46], MG
represents quantization with the proposed macro grad, and LSQ is from [12] without a value range.
The processing step size (frame rate or a number of events) for TDSS during training is shown in bold.

PilotNet (frame) N-MNIST (event)
Processing step size n) 480 120 10 1 10 100

Average processing rate (Hz)) 480 120 10 2.5E+04 2.5E+03 2.5E+02
neuron kernel loss Q MSE# MAC (⇥10�6)# gain Acc." MAC (⇥10�6)# gain
Dense - - 1.441 2.8E+01 2.8E+01 2.8E+01 1.0 0.991 1.7E+01 1.7E+01 1.7E+01 1.0
SSC - - - - - - - - 0.988 2.3E+00 2.0E+00 5.6E+00 3.1
DS conv TDAM LW 1.713 3.5E-02 1.8E+00 4.6E+00 6.1 0.989 8.3E-02 8.3E-02 1.8E+00 9.7
DS mconv TDSS MG 1.427 7.2E-02 4.4E-02 1.4E-01 195.1 0.989 9.5E-03 5.6E-02 2.1E-01 81.5
DS mconv (x2) TDSS MG 2.086 7.0E-02 4.3E-02 1.4E-01 196.6 0.990 8.7E-03 5.4E-02 2.1E-01 82.4
DS mconv (x4) TDSS MG 1.977 6.1E-02 3.7E-02 1.3E-01 217.0 0.991 6.9E-03 5.0E-02 1.8E-01 98.3
DS mconv (x8) TDSS MG 1.969 6.1E-02 3.2E-02 1.2E-01 238.3 0.991 6.4E-03 4.9E-02 1.7E-01 99.5
DS mconv TDSS LSQ 2.103 8.7E-02 1.2E-01 1.9E-01 145.9 0.991 3.0E-02 1.4E-01 3.2E-01 54.5
DS mconv TDAM MG 2.722 8.1E-01 1.8E+00 4.5E+00 6.3 0.989 1.9E-02 1.1E-01 4.8E-01 36.0
DS conv TDSS MG 1.725 6.7E-01 1.6E+00 4.1E+00 6.8 0.990 1.5E-02 8.6E-02 3.6E-01 48.1

N-Caltech101 (event) Gen1 Automotive (event)
Processing step size n) 1 10 1250 1 10 1250

Average processing rate (Hz)) 6.0E+05 6.0E+04 4.8E+03 9.7E+06 9.7E+05 7.7E+03
neuron mask loss Q Acc." MAC (⇥10�6)# gain mAP" MAC (⇥10�6)# gain
Dense - - 0.733 8.1E+02 8.1E+02 8.1E+02 1.0 0.128 1.2E+03 1.2E+03 1.2E+03 1.0
SSC - - - 0.712 1.0E+02 2.3E+02 5.4E+02 1.5 0.119 1.0E+02 2.2E+02 4.9E+02 2.4
DS conv TDAM LW 0.731 5.4E+01 8.9E+01 1.8E+02 4.4 0.124 1.2E+02 2.0E+02 2.8E+02 4.3
DS mconv TDSS MG 0.727 6.0E+00 1.0E+01 2.0E+01 40.6 0.124 1.4E+01 2.6E+01 4.0E+01 30.3
DS mconv (x2) TDSS MG 0.726 5.5E+00 9.4E+00 1.9E+01 43.7 0.126 1.3E+01 2.4E+01 3.7E+01 32.8
DS mconv TDSS LSQ 0.724 1.0E+01 1.9E+01 2.7E+01 29.8 0.125 3.1E+01 6.1E-01 1.2E+00 14.1

4.1 Comparison with SOTA
Experimental setup. For all the experiments, we compare ours (mSD-TDSS) with a net-
work using dense convolution (Dense) and SOTA model (SD-TDAM) of [46]. We also com-
pare ours with another competitive method for event data based on Asynchronous-SSC [42]
(Asyc-SSC) for experiments using event data. All the models share the same network con-
figuration and settings unless otherwise stated. We use AdamW optimizer [41] for all ex-
periments. For the frame-based dataset, we adopted the frame-to-event conversion method
of [69]. For the event-based dataset, we adopted the two-channel histogram representation
used in [42]. The SD-TDAM [46] used learned weights from Dense. The step size of the
quantizer is optimized per layer using the TDAM of (6). Our mSD-TDSS used the mconv
layer, which could represent the sparse synaptic connection. It is trained with the TDSS of
(12) from scratch using the quantizer with the macro-grad of (9). For our model, we also
evaluated the network having k times larger input/output channels for mconv layers (except
FC layer); thus, MAC using the dense computation of (1) is approximately k2 times larger
than the original network (k = 1). Both SD-TDAM and mSD-TDSS are trained with a spe-
cific processing step size during training (ntrain) and evaluated on three different step sizes n .
The TDSS/TDAM weights h are scheduled adaptively using validation result, increased by
hstep when the validation error falls below a predetermined threshold hthr. The quantization
step sizes s are initialized with 2�10 for all layers. The experimental setup is summarized
in Tab.1. Refer to Supp. H-I for Pytorch [49] implementation of propose macro-grad and
TDSS loss.

Results. The results are summarized in Tab.2. We trained and evaluated all experiments
three times using the different initialization of weight and reporting its mean. Our framework
achieved an accuracy level similar to that of the Dense while achieving a significant reduc-
tion of MAC: 240x for Nvidia PilotNet [51], 99x for N-MNIST [47], 43x for N-Caltech101

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{Loshchilov and Hutter} 2017

Citation
Citation
{Yousefzadeh, Khoei, Hosseini, Holanda, Leroux, Moreira, Tapson, Dhoedt, Simoens, Serrano-Gotarredona, etprotect unhbox voidb@x protect penalty @M {}al.} 2019

Citation
Citation
{Messikommer, Gehrig, Loquercio, and Scaramuzza} 2020

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, and Chintala} 2019

Citation
Citation
{PilotNet} 2018

Citation
Citation
{Orchard, Jayawant, Cohen, and Thakor} 2015

10 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

[47], and 33x for Gen1 Automotive [63], which is 8 to 39 times more efficient than the
SOTA model of [46] (SD-TDAM) designed to process spatiotemporal data efficiency. More-
over, our model realizes lower MAC on different processing step sizes used during training.
Refer to Supp. A for a more detailed setup, including a description of the dataset, network
architecture, and additional comparison with more diverse methods.

4.2 Ablation study
Table 2 (under the dashed line) summarizes the ablation results for the factors that enable a
significant MAC reduction of the proposed TDSS-aware training, specifically, TDSS loss,
mask, macro-grad, and network size. 1) By changing loss from TDAM to TDSS, the
MAC/accuracy tradeoff improves up to 31x. 2) By changing conv to mconv the MAC/ac-
curacy tradeoff improves up to 29x. In this case, i.e., when all conv weights are connected,
TDSS of (12) and TDAM of (6) are equivalent. 3) By changing the gradient of quantizer
from LSQ [12] to macro-grad, the MAC/accuracy tradeoff improves up to 2.1x. During
training, s becomes larger as TDSS decreases when the macro-grad is used, while it remains
almost unchanged when LSQ is used. 4) Comparing our model with different sizes shows
interesting results; larger models achieve lower MAC. This supports our assumption that by
learning weight, mask, and step size to reduce the TDSS, the network is learned to select the
computational path by activation, which incurs sparse difference in synaptic signals in the
following layers. Refer to Supp. B-C for additional results on the ablation study.

5 Conclusion
This paper presents a framework called TDSS-aware training that realized E2E training of
proposed mSD network by the quantizer equipped with macro-grad and loss function called
TDSS. Our framework reduces MAC by more than two orders of magnitude than a dense
network without sacrificing accuracy.

5.1 Limitations and Future Works
In the following, we describe some limitations of the proposed framework and also discuss
possible future works.

Challenges for real hardware. Our current model assumes arbitrary step size and weight
has 32-bit floating-point precision. We may achieve further efficiency by taking into account
the specification of actual H/W for inference. For example, quantization with a power of two
or convolution with 4- or 8-bit fixed-point precision would be more hardware friendly [30].

Combination with Gumbel gate. Based on a recurrent model similar to SD neuron3, Skip-
Conv [22] utilizes a mechanism called the Gumbel gate to adaptively estimate pixel-level
gates to skip computation on pixels that are not relevant to the output. We expect adopting
their gate to our framework could further improve the efficiency.

3Their model is based on TD neuron [46, 48], which is a simplification of SD. Refer to the supplement (Sec. E)
for detail about the TD model.

Citation
Citation
{Orchard, Jayawant, Cohen, and Thakor} 2015

Citation
Citation
{Tournemire, Nitti, Perot, Migliore, and Sironi} 2020

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2019

Citation
Citation
{Jain, Gural, Wu, and Dick} 2020

Citation
Citation
{Habibian, Abati, Cohen, and Bejnordi} 2021

Citation
Citation
{O'Connor and Welling} 2016

Citation
Citation
{Pan, Lin, Fang, Huang, Zhou, and Lu} 2018

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 11

References
[1] R Baldwin, Ruixu Liu, Mohammed Almatrafi, Vijayan Asari, and Keigo Hi-

rakawa. Time-ordered recent event (tore) volumes for event cameras. arXiv preprint
arXiv:2103.06108, 2021.

[2] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and
Timothy Lillicrap. Assessing the scalability of biologically-motivated deep learning
algorithms and architectures. In Advances in neural information processing systems,
pages 9368–9378, 2018.

[3] Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or prop-
agating gradients through stochastic neurons for conditional computation. CoRR,
abs/1308.3432, 2013. URL http://dblp.uni-trier.de/db/journals/

corr/corr1308.html#BengioLC13.

[4] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang,
et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

[5] Marco Cannici, Marco Ciccone, Andrea Romanoni, and Matteo Matteucci. Matrix-
lstm: a differentiable recurrent surface for asynchronous event-based data.

[6] Marco Cannici, Marco Ciccone, Andrea Romanoni, and M. Matteucci. Asynchronous
convolutional networks for object detection in neuromorphic cameras. 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages
1656–1665, 2019.

[7] Andrew S. Cassidy, Paul Merolla, John V. Arthur, Steve K. Esser, Bryan Jackson,
Rodrigo Alvarez-Icaza, Pallab Datta, Jun Sawada, Theodore M. Wong, Vitaly Feld-
man, Arnon Amir, Daniel Ben-Dayan Rubin, Filipp Akopyan, Emmett McQuinn,
William P. Risk, and Dharmendra S. Modha. Cognitive computing building block:
A versatile and efficient digital neuron model for neurosynaptic cores. In The 2013
International Joint Conference on Neural Networks (IJCNN), pages 1–10, 2013. doi:
10.1109/IJCNN.2013.6707077.

[8] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[9] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Empirical
evaluation of gated recurrent neural networks on sequence modeling. In NIPS 2014
Workshop on Deep Learning, December 2014, 2014.

[10] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. Learning to prune deep neural net-
works via layer-wise optimal brain surgeon. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, page 4860–4874,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

[11] Gamaleldin Elsayed, Prajit Ramachandran, Jonathon Shlens, and Simon Kornblith. Re-
visiting spatial invariance with low-rank local connectivity. In Hal Daumé III and Aarti

http://dblp.uni-trier.de/db/journals/corr/corr1308.html#BengioLC13
http://dblp.uni-trier.de/db/journals/corr/corr1308.html#BengioLC13

12 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

Singh, editors, Proceedings of the 37th International Conference on Machine Learn-
ing, volume 119 of Proceedings of Machine Learning Research, pages 2868–2879, Vir-
tual, 13–18 Jul 2020. PMLR. URL http://proceedings.mlr.press/v119/

elsayed20a.html.

[12] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy,
and Dharmendra S Modha. Learned step size quantization. In International Conference
on Learning Representations, 2019.

[13] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. International journal of
computer vision, 88(2):303–338, 2010.

[14] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635, 2018.

[15] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network. Bio-
logical cybernetics, 20(3-4):121–136, 1975.

[16] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network
model for a mechanism of visual pattern recognition. In Competition and cooperation
in neural nets, pages 267–285. Springer, 1982.

[17] G. Gallego, T. Delbruck, G. M. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leuteneg-
ger, A. Davison, J. Conradt, K. Daniilidis, and D. Scaramuzza. Event-based vision: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1–1,
2020. doi: 10.1109/TPAMI.2020.3008413.

[18] D. Gehrig, A. Loquercio, K. Derpanis, and D. Scaramuzza. End-to-end learning of
representations for asynchronous event-based data. In 2019 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 5632–5642, 2019. doi: 10.1109/ICCV.
2019.00573.

[19] Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons,
populations, plasticity. Cambridge university press, 2002.

[20] Benjamin Graham, Martin Engelcke, and Laurens van der Maaten. 3d semantic seg-
mentation with submanifold sparse convolutional networks. CVPR, 2018.

[21] GraphCore. Graphcore. https://www.graphcore.ai/.

[22] Amirhossein Habibian, Davide Abati, Taco S. Cohen, and Babak Ehteshami Bejnordi.
Skip-convolutions for efficient video processing. CoRR, abs/2104.11487, 2021. URL
https://arxiv.org/abs/2104.11487.

[23] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally. Eie: efficient inference engine on compressed deep neural network.
ACM SIGARCH Computer Architecture News, 44(3):243–254, 2016.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

http://proceedings.mlr.press/v119/elsayed20a.html
http://proceedings.mlr.press/v119/elsayed20a.html
https://www.graphcore.ai/
https://arxiv.org/abs/2104.11487

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 13

[25] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl
for model compression and acceleration on mobile devices. In Proceedings of the
European Conference on Computer Vision (ECCV), September 2018.

[26] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications, 2017. URL http://arxiv.

org/abs/1704.04861. cite arxiv:1704.04861.

[27] Ping Hu, Fabian Caba, Oliver Wang, Zhe Lin, Stan Sclaroff, and Federico Perazzi.
Temporally distributed networks for fast video semantic segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8818–8827, 2020.

[28] David H Hubel and TN Wiesel. Shape and arrangement of columns in cat’s striate
cortex. The Journal of physiology, 165(3):559, 1963.

[29] David H Hubel and Torsten N Wiesel. Receptive fields and functional architecture of
monkey striate cortex. The Journal of physiology, 195(1):215–243, 1968.

[30] Sambhav Jain, Albert Gural, Michael Wu, and Chris Dick. Trained quan-
tization thresholds for accurate and efficient fixed-point inference of deep
neural networks. In I. Dhillon, D. Papailiopoulos, and V. Sze, editors,
Proceedings of Machine Learning and Systems, volume 2, pages 112–128,
2020. URL https://proceedings.mlsys.org/paper/2020/file/

e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf.

[31] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan Yang, Erik Learned-Miller,
and Jan Kautz. Super slomo: High quality estimation of multiple intermediate frames
for video interpolation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 9000–9008, 2018.

[32] Mina A Khoei, Amirreza Yousefzadeh, Arash Pourtaherian, Orlando Moreira, and
Jonathan Tapson. Sparnet: Sparse asynchronous neural network execution for energy
efficient inference. In 2020 2nd IEEE International Conference on Artificial Intelli-
gence Circuits and Systems (AICAS), pages 256–260. IEEE, 2020.

[33] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

[34] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek
Jain, Sham Kakade, and Ali Farhadi. Soft threshold weight reparameterization for
learnable sparsity. In Hal Daumé III and Aarti Singh, editors, Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 5544–5555. PMLR, 13–18 Jul 2020. URL
http://proceedings.mlr.press/v119/kusupati20a.html.

[35] X. Lagorce, G. Orchard, F. Galluppi, B. E. Shi, and R. B. Benosman. Hots: A hierarchy
of event-based time-surfaces for pattern recognition. IEEE Transactions on Pattern

http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://proceedings.mlsys.org/paper/2020/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/e2c420d928d4bf8ce0ff2ec19b371514-Paper.pdf
http://arxiv.org/abs/1412.6980
http://proceedings.mlr.press/v119/kusupati20a.html

14 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

Analysis and Machine Intelligence, 39(7):1346–1359, 2017. doi: 10.1109/TPAMI.
2016.2574707.

[36] Yann LeCun et al. Generalization and network design strategies. Connectionism in
perspective, 19:143–155, 1989.

[37] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural
networks using backpropagation. Frontiers in Neuroscience, 10:508, 2016. ISSN 1662-
453X. doi: 10.3389/fnins.2016.00508. URL https://www.frontiersin.org/
article/10.3389/fnins.2016.00508.

[38] Chong Li and CJ Richard Shi. Constrained optimization based low-rank approximation
of deep neural networks. In European Conference on Computer Vision, pages 746–761.
Springer, 2018.

[39] Fei-Fei Li, Robert Fergus, and Pietro Perona. Learning generative visual models from
few training examples: An incremental bayesian approach tested on 101 object cat-
egories. Comput. Vis. Image Underst., 106(1):59–70, 2007. URL http://dblp.

uni-trier.de/db/journals/cviu/cviu106.html#Fei-FeiFP07.

[40] Yule Li, Jianping Shi, and Dahua Lin. Low-latency video semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5997–6005, 2018.

[41] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

[42] Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and Davide Scaramuzza.
Event-based asynchronous sparse convolutional networks. 2020. URL http://rpg.
ifi.uzh.ch/docs/ECCV20_Messikommer.pdf.

[43] O Moreira, Amirreza Yousefzadeh, F Chersi, A Kapoor, R-J Zwartenkot, P Qiao,
G Cinserin, Mina A Khoei, M Lindwer, and Jonathan Tapson. Neuronflow: A hybrid
neuromorphic–dataflow processor architecture for ai workloads. In 2020 2nd IEEE In-
ternational Conference on Artificial Intelligence Circuits and Systems (AICAS), pages
01–05. IEEE.

[44] Daniel Neil, Jun Haeng Lee, Tobi Delbruck, and Shih-Chii Liu. Delta networks for
optimized recurrent network computation. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pages 2584–2593. PMLR, 06–11 Aug
2017. URL http://proceedings.mlr.press/v70/neil17a.html.

[45] Xuecheng Nie, Yuncheng Li, Linjie Luo, Ning Zhang, and Jiashi Feng. Dynamic kernel
distillation for efficient pose estimation in videos. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6942–6950, 2019.

[46] Peter O’Connor and Max Welling. Sigma delta quantized networks. arXiv preprint
arXiv:1611.02024, 2016.

https://www.frontiersin.org/article/10.3389/fnins.2016.00508
https://www.frontiersin.org/article/10.3389/fnins.2016.00508
http://dblp.uni-trier.de/db/journals/cviu/cviu106.html#Fei-FeiFP07
http://dblp.uni-trier.de/db/journals/cviu/cviu106.html#Fei-FeiFP07
http://rpg.ifi.uzh.ch/docs/ECCV20_Messikommer.pdf
http://rpg.ifi.uzh.ch/docs/ECCV20_Messikommer.pdf
http://proceedings.mlr.press/v70/neil17a.html

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 15

[47] Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and Nitish Thakor. Con-
verting static image datasets to spiking neuromorphic datasets using saccades. Fron-
tiers in Neuroscience, 9:437, 2015. ISSN 1662-453X. doi: 10.3389/fnins.
2015.00437. URL https://www.frontiersin.org/article/10.3389/

fnins.2015.00437.

[48] Bowen Pan, Wuwei Lin, Xiaolin Fang, Chaoqin Huang, Bolei Zhou, and Cewu Lu.
Recurrent residual module for fast inference in videos. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 1536–1545, 2018.

[49] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

[50] Etienne Perot, Pierre de Tournemire, Davide Nitti, Jonathan Masci, and Amos
Sironi. Learning to detect objects with a 1 megapixel event camera. arXiv preprint
arXiv:2009.13436, 2020.

[51] PilotNet. Pilotnet dataset. https://github.com/lhzlhz/PilotNet, 2018.

[52] Christoph Posch, Daniel Matolin, and Rainer Wohlgenannt. High-dr frame-free pwm
imaging with asynchronous aer intensity encoding and focal-plane temporal redun-
dancy suppression. In Proceedings of 2010 IEEE International Symposium on Circuits
and Systems, pages 2430–2433. IEEE, 2010.

[53] Bipin Rajendran, Abu Sebastian, Michael Schmuker, Narayan Srinivasa, and Evangelos
Eleftheriou. Low-power neuromorphic hardware for signal processing applications.
IEEE SIGNAL PROCESSING MAGAZINE, 1053(5888/18), 2018.

[54] Bharath Ramesh, Hong Yang, Garrick Orchard, Ngoc Anh Le Thi, Shihao Zhang, and
Cheng Xiang. Dart: distribution aware retinal transform for event-based cameras. IEEE
transactions on pattern analysis and machine intelligence, 42(11):2767–2780, 2019.

[55] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[56] Oran Shayer, Dan Levi, and Ethan Fetaya. Learning discrete weights using the local
reparameterization trick. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=BySRH6CpW.

[57] Evan Shelhamer, Kate Rakelly, Judy Hoffman, and Trevor Darrell. Clockwork convnets
for video semantic segmentation. In European Conference on Computer Vision, pages
852–868. Springer, 2016.

https://www.frontiersin.org/article/10.3389/fnins.2015.00437
https://www.frontiersin.org/article/10.3389/fnins.2015.00437
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/lhzlhz/PilotNet
https://openreview.net/forum?id=BySRH6CpW

16 Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL

[58] Shaohuai Shi and Xiaowen Chu. Speeding up convolutional neural networks by ex-
ploiting the sparsity of rectifier units. arXiv preprint arXiv:1704.07724, 2017.

[59] Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error re-
assignment in time. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems, volume 31, pages 1412–1421. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper/2018/file/

82f2b308c3b01637c607ce05f52a2fed-Paper.pdf.

[60] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015.

[61] Amos Sironi, Manuele Brambilla, Nicolas Bourdis, Xavier Lagorce, and Ryad Benos-
man. Hats: Histograms of averaged time surfaces for robust event-based object clas-
sification. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1731–1740, 2018.

[62] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–6114.
PMLR, 2019.

[63] Pierre Tournemire, Davide Nitti, Etienne Perot, Davide Migliore, and Amos Sironi. A
large scale event-based detection dataset for automotive, 2020.

[64] Stepan Tulyakov, Francois Fleuret, Martin Kiefel, Peter Gehler, and Michael Hirsch.
Learning an event sequence embedding for dense event-based deep stereo. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2019.

[65] Aaron R Voelker, Daniel Rasmussen, and Chris Eliasmith. A spike in performance:
Training hybrid-spiking neural networks with quantized activation functions. arXiv
preprint arXiv:2002.03553, 2020.

[66] Chr Von der Malsburg. Self-organization of orientation sensitive cells in the striate
cortex. Kybernetik, 14(2):85–100, 1973.

[67] Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural
wirings. Advances in Neural Information Processing Systems, 32:2684–2694, 2019.

[68] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and Larry S Davis.
Adaframe: Adaptive frame selection for fast video recognition. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 1278–1287.
IEEE, 2019.

[69] Amirreza Yousefzadeh, Mina A Khoei, Sahar Hosseini, Priscila Holanda, Sam Ler-
oux, Orlando Moreira, Jonathan Tapson, Bart Dhoedt, Pieter Simoens, Teresa Serrano-
Gotarredona, et al. Asynchronous spiking neurons, the natural key to exploit temporal
sparsity. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(4):
668–678, 2019.

https://proceedings.neurips.cc/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/82f2b308c3b01637c607ce05f52a2fed-Paper.pdf

Y.SEKIKAWA: LEARNING TO SPARSIFY THE DIFFERENCES OF SYNAPTIC SIGNAL 17

[70] Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature flow
for video recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2349–2358, 2017.

