
ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING 1

Adaptive End-to-End Budgeted Network
Learning via Inverse Scale Space

Zuyuan Zhong1

zyzhong19@fudan.edu.cn

Chen Liu2

cliudh@connect.ust.hk

Yanwei Fu*1

yanweifu@fudan.edu.cn

1 School of Data Science,
Fudan University,
Shanghai, China

2 The Hong Kong University of Science
and Technology,
Hong Kong

* Corresponding author

Abstract

This paper studies the task of budgeted network learning [35] that aims at discover-
ing good convolutional network structures under parameters/FLOPs constraints. Partic-
ularly, we present a novel Adaptive End-to-End Network Learning (AdeNeL) approach
that enables learning the structures and parameters of networks simultaneously within
the budgeted cost in terms of computation and memory consumption. We keep the depth
of networks fixed to ensure a fair comparison with the backbones of competitors. Our
AdeNeL learns to optimize both the parameters and the number of filters in each layer.
To achieve this goal, our AdeNeL utilizes an iterative sparse regularization path – Dis-
cretized Differential Inclusion of Inverse Scale Space (DI-ISS) to measure the capacity of
the networks in the training process. Notably, the DI-ISS imports a group of augmented
variables to explore the inverse scale space and this group of variables can be used to
measure the redundancy of the network. According to the redundancy of the current net-
work, our AdeNeL can choose appropriate operations for current network such as adding
more filters. By this strategy, we can control the balance between the computational cost
and the model performance in a dynamic way. Extensive experiments on several datasets
including MNIST, CIFAR10/100, ImageNet with popular VGG and ResNet backbones
validate the efficacy of our proposed method. In specific, on VGG16 backbone, our
method on CIFAR10 achieves 92.71% test accuracy with only 0.58M (3.8%) parameters
and 43M (13.7%) FLOPs, comparing to 92.90% test accuracy and 14.99 M parameters,
313M FLOPs of the full-sized VGG16 model.

1 Introduction
Deep Convolutional Neural Networks (CNNs) have made remarkable achievements in the
Computer Vision community. In real-world applications, we are facing a much more se-
vere problem of using the networks as discussed in [35]: it is very difficult to afford the
tremendous computational cost and memory footprint to deploy the full CNNs models in
many practical applications; so how to get the reasonable good generalization performance

© 2021. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Veniat and Denoyer} 2018

Citation
Citation
{Veniat and Denoyer} 2018

2 ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING

with restricted computational resources? As a result, designing the light-weight network
structures have become pretty prevailing. Typically, engineers and researchers will manually
design the architectures [12, 16, 30, 33]. However, it requires expert-level efforts to tune the
key network hyper-parameters, for example, the channel configuration of each layer and the
number of layers.

Training epoch

D
a
ta

 f
lo

w

（a）Growing （b）Pruning

Added channel Pruned channelInitlization

Figure 1: Comparisons between the pruning method and our growing strategy: pruning starts
from full-sized network and remove unimportant filters while our method greedily increases
filters from the small seed network.

To retain or achieve better predictive quality in image classification task under mem-
ory or computation constraints, practitioners have to find better network structures from the
given specific task. Pruning techniques [19, 21] remove the unimportant weights from full-
sized models to meet the parameters/FLOPs budgets. To maintain the accuracy of full-sized
models, they have to fine-tune or train the pruned networks from scratch, which brings extra
computational costs. Neural Architecture Search (NAS) techniques [6, 31, 41, 42] are also
used to search the width configuration for budgeted network learning. These methods train
a super-network and then search the best sub-network under the FLOPs/parameters budgets
from all of possible sub-networks. Unfortunately, NAS methods are naturally much more
computationally expensive than training a budgeted network from scratch.

In this paper, we propose a novel adaptive end-to-end budgeted network learning (AdeNeL)
algorithm to learn budgeted networks during the training process. Contrary to pruning [19,
21] and width searching [31, 41, 42] which start from complex models and target for small
compact models, we propose to solve it in a different way. In detail, we attempt to start
with small seed networks and gradually increase their capacity during the training process.
Both the weights and configurations of the models are optimized; and the key is to eval-
uate whether the model capacity is sufficient. To this end, we repurpose the well-known
Differential Inclusion of Inverse Scale Space (DI-ISS) in applied mathematics [8, 15, 29].
The DI-ISS learns an inverse scale space (ISS) coupled for primal parameter space. While
ISS is derived from LASSO or Group LASSO penalized in the primal space, the ISS can
thus enable the implicit feature selection of the important parameters from the parameter
space. Notably, the ISS utilizes a group of augmented variables to explore important struc-
ture in [8, 15] by learning from a predefined complex network to predict the final weights
and important sub-structure simultaneously in training.

Comparably, our AdeNel starts from a simple seed network, and iteratively measures in
ISS whether the model capacity should be increased . Essentially, we believe that the primary
space should be slightly over-parameterized; and if most of parameters in primary space are
taken as important ones by ISS, we should add the model capacity. Specifically, the model
is initialized by a fixed depth and only a few filters for each layer and our AdeNeL learns to

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{Dong and Yang} 2019

Citation
Citation
{Su, You, Huang, Wang, Qian, Zhang, and Xu} 2020

Citation
Citation
{Yu and Huang} 2019

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{Su, You, Huang, Wang, Qian, Zhang, and Xu} 2020

Citation
Citation
{Yu and Huang} 2019

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{Fu, Liu, Li, Sun, Zeng, and Yao} 2020

Citation
Citation
{Huang, Sun, Xiong, and Yao} 2020

Citation
Citation
{Osher, Ruan, Xiong, Yao, and Yin} 2016{}

Citation
Citation
{Fu, Liu, Li, Sun, Zeng, and Yao} 2020

Citation
Citation
{Huang, Sun, Xiong, and Yao} 2020

ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING 3

increase the number of filters and optimizes the network parameters at the same time. During
the training process, our AdeNeL simultaneously learns to optimize the network weights
from the primary network parameter space, and constructs the support set of weights in the
inverse scale space, respectively. The support set is utilized to measure the capacity of the
current network structure. Accordingly, in the primary parameter space, AdeNeL will grow
the network by dynamically adding more filters to the layers of not enough capacity.

Extensive experiments on several benchmark image classification datasets including MNIST,
CIFAR10/100, ImageNet with popular VGG and ResNet validate the merits of our proposed
method. For example, on VGG16 and CIFAR10, our method achieves 92.71% test accuracy
with only 0.58M (3.8%) parameters and 43M (13.7%) FLOPs, comparing to 92.90% test
accuracy and 14.99M parameters, 313M FLOPs of the full-sized VGG16 model.
Contributions. We summarize the contributions as follows.
1) We propose a novel budgeted network learning approach - Adaptive End-to-End Net-
work Learning (AdeNeL): one starts from small-size models and then delves into proper-size
model according to the capacity of current networks to the datasets in an end-to-end manner.
2) We re-purpose DI-ISS in Statistics to measure the capacity of network capacity. DI-ISS
can efficiently help learn the support set of weights in the inverse scale space, from the pri-
mary network parameter space.
3) Empirically, we validate our AdeNeL on several benchmarks datasets and network back-
bones, and show our method enables the efficient budgeted network learning.

2 Related Work
Budgeted Network Learning. Previous works learn efficient networks in the budgets of
memory cost or predictive quality. Dynamic networks [1, 2, 23, 26] improve the efficiency of
networks by conditionally selecting the modules. For example, Bolukbasi et al. [2] studied
a network evaluation scheme that adaptively selects the modules network to evaluate the
inputs. This avoids the computational cost associated with full evaluation of the network.
In contrast, our AdeNeL learns the balanced networks of both good prediction performance
and model size, computation costand total training computational cost, in better favor of
networks directly applied on the low-resource devices.
Neural Architecture Search (NAS) aims to design better architectures automatically. The
early works [44, 45, 46] use reinforcement learning to search architectures on CIFAR10
dataset. Recently, NAS methods are used to search the width configuration of networks [31,
41] and get budgeted networks. They train large super-networks and search the best budgeted
sub-networks within the super-networks. However, the NAS methods are naturally more
computational expensive than training a budgeted network from scratch because they have
an extra searching process. Our AdeNeL strategy enjoys the benefits of grow in training
paradigm that start from small seed networks and growing during the training process.
Pruning network [9, 10, 19, 21, 24, 39] aims to reduce the parameters/FLOPs of networks
while maintain the prediction quality by removing the weights/filters of full-sized networks.
For example, l1-pruning [19] removes filters with smaller l1 norm to meet the requirement
of parameters/FLOPs budgets. To maintain the performance, pruning methods usually need
to fine-tune or train the found networks from scratch. Besides, the control of pruning rate
in each layer is still manual. On the contrary, our AdeNeL starts from small seed models
and growing filters during the training process until meeting parameters/FLOPs budgets in
an automatic and end-to-end way.

Citation
Citation
{Bengio, Bacon, Pineau, and Precup} 2015

Citation
Citation
{Bolukbasi, Wang, Dekel, and Saligrama} 2017

Citation
Citation
{McGill and Perona} 2017

Citation
Citation
{Odena, Lawson, and Olah} 2017

Citation
Citation
{Bolukbasi, Wang, Dekel, and Saligrama} 2017

Citation
Citation
{Zhong, Yan, Wu, Shao, and Liu} 2018

Citation
Citation
{Zoph and Le} 2016

Citation
Citation
{Zoph, Vasudevan, Shlens, and Le} 2018

Citation
Citation
{Su, You, Huang, Wang, Qian, Zhang, and Xu} 2020

Citation
Citation
{Yu and Huang} 2019

Citation
Citation
{Han, Mao, and Dally} 2015{}

Citation
Citation
{Han, Pool, Tran, and Dally} 2015{}

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{Molchanov, Tyree, Karras, Aila, and Kautz} 2019

Citation
Citation
{Ye, Gong, Nie, Zhou, Klivans, and Liu} 2020

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

4 ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING

Growing network. Network Morphism [3, 4, 36] accelerates training wider or deeper net-
works by morphing the smaller networks to the larger ones. Splitting filters [38], splits
channels into several new channels based on designed loss function. Instead of exploring
network width, AutoGrow [37] explores the effects of expanding network depth by greed-
ily adding the layers during training process. Recent proposed work [42] combines pruning
and NAS methods, which grows and prunes networks during training process in a continuous
way. Although both [42] and our AdeNeL are growing networks from small to large, they
are fundamentally different. [42] introduces indicating variables as the external representa-
tion of networks and update the network architecture through gradient descent. While our
method introduces a group of variables which serve as internal representation, i.e., support
set, of network weights. And we use this support set to measure the capacity of the current
networks and potentially add filters to the networks.
DI-ISS [29], can be related to non-smooth Mirror Descent Algorithm (MDA) in convex op-
timization [25]. Huang et al. [14, 15] learned high-dimensional sparse linear models and
found applications in medical image classification [32] and computer vision [8, 43]. Its con-
vergence has been studied mostly in the convex setting [27, 40], and recently in non-convex
deep learning setting [8]. This work re-purposes DI-ISS through progressively learning an
inverse scale space, in order to facilitate AdeNeL via a coupled inverse scale space.

3 Methodology of AdeNeL

Problem Setup. In supervised learning, convolutional networks with parameters W learn
the mapping ΦW : X →Y from input space X to label space Y , by the objective

W = argmin
W

E(x,y)∼Pdata
[L(x,y;W)] , (1)

where Pdata denotes the training data distribution and L(x,y;W) is loss function. Although
the weights W are learned from data distribution, it is hard to define the capacity of W on
representing data. In this paper, uniting the pruning methods [19, 21] which use the internal
information of networks and network width searching method [42] which uses an external
variable as an indicator, we use an auxiliary variable, Γ, as the internal approximation and
indicator of weights W . Formally, the augmented loss function is

L̄(W,Γ) = L(W)+
1

2ν
‖W −Γ‖2

2, (2)

where ν > 0 is a hyper-parameter.

3.1 Differential Inclusion of Inverse Scale Space

Directly solving problem 2 is difficult. Fortunately, we can take this problem into the Inverse
Scale Space for solution. Specifically, we extend the neural network parameters W to (W,Γ),
where Γ characterizes the support set of large primal parameter W , by the following inverse-
scale-space dynamics introduced in [15, 29] for updating the parameter (Wt ,Γt) at time t,

Citation
Citation
{Cai, Yang, Zhang, Han, and Yu} 2018

Citation
Citation
{Chen, Goodfellow, and Shlens} 2015

Citation
Citation
{Wei, Wang, Rui, and Chen} 2016

Citation
Citation
{Wu, Wang, and Liu} 2019

Citation
Citation
{Wen, Yan, Chen, and Li} 2020

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{Osher, Ruan, Xiong, Yao, and Yin} 2016{}

Citation
Citation
{Nemirovskij and Yudin} 1983

Citation
Citation
{Huang, Sun, Xiong, and Yao} 2016

Citation
Citation
{Huang, Sun, Xiong, and Yao} 2020

Citation
Citation
{Sun, Hu, Yao, and Wang} 2017

Citation
Citation
{Fu, Liu, Li, Sun, Zeng, and Yao} 2020

Citation
Citation
{Zhao, Sun, Fu, Yao, and Wang} 2018

Citation
Citation
{Osher, Burger, Goldfarb, Xu, and Yin} 2005

Citation
Citation
{Yin, Osher, Goldfarb, and Darbon} 2008

Citation
Citation
{Fu, Liu, Li, Sun, Zeng, and Yao} 2020

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{Huang, Sun, Xiong, and Yao} 2020

Citation
Citation
{Osher, Ruan, Xiong, Yao, and Yin} 2016{}

ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING 5

dWt

dt
=−∇W L̄(Wt ,Γt) , (3a)

dZt

dt
=−∇ΓL̄(Wt ,Γt) , (3b)

Zt ∈ ∂ Ω̄(Γt), (3c)

where Z is a sub-gradient of Ω̄(Γ) := Ω1(Γ)+‖Γ‖2 for Lasso or Group Lasso penalties for
Ω1(Γ), ‖·‖ is denoted as the Frobenius norm. In general, we assume that L̄(·) is differen-
tiable with respect to W ; in practice, the gradient in Eq. (3a) is understood as sub-gradient
and Eq. (3a) thus becomes an inclusion.

In the inverse scale space [28], important features/weights will be selected at a faster rate.
During the exploration of inverse scale space, the augmented variables Γ evolve from sparse
to dense. It can be viewed as a weight selection path from simple model to complex model.
The augmented variables Γ are initialized as 0, which means that none of the corresponding
weights are selected. Then during the training process, some of them become non-zero
which indicates they are selected via exploring the inverse scale space. Meanwhile the model
parameters W are also optimized with corresponding loss function to obtain prediction ability
on specific task.

Training epoch

Xin Xin Xin

Xout

τ s/1.00 1.00 τ 1.00

grow=sign(s-τ) grow=sign(s-τ) grow=sign(s-τ)

Grow Grow Stop Grow

𝒔 =
𝟒

𝟒
𝒔 =

𝟓

𝟔 𝒔 =
𝟓

𝟖

Primal Space

Inverse Scale Space

ss

Xout Xout

τ

Figure 2: Illustration of our AdeNeL: initialized by a backbone with a small number of filters,
AdeNeL learns both the structures and parameters from data, by periodically verifying the
network capacity every J epochs. The capacity of each layer is verified by the support set
learned in the inverse scale space.

Solving DI-ISS by LBI. The dynamics of Eqs. (3a) - (3a) can be rewritten as the standard
Linearized Bregman Iteration (LBI), resulting in the problem:

Pt+1 = argmin
P

{
〈P−Pt ,α∇L̄(Pt)〉+Bpt

Ψ
(P,Pt)

}
, (4)

where P := (W,Γ), pt ∈ ∂Ψ(Pt) and Ψ(P) = Ω1(Γ)+‖W‖2+‖Γ‖2. We denote Bq
Ψ
(·) as the

Bregman divergence associated with convex function Ψ(·) and for some q ∈ ∂Ψ(Q), we
have Bq

Ψ
(P,Q) := Ψ(P)−Ψ(Q)−〈q,P−Q〉.

Citation
Citation
{Osher, Ruan, Xiong, Yao, and Yin} 2016{}

6 ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING

Solutions. W explores the parameters of models in primal space by gradient descent, while
support set Γ explores important sub-network architectures in the inverse scale space, where
those important parameters become nonzero faster than the others. A numerical solution (as
Euler forward discretization) of DI-ISS can be given by

Wt+1 =Wt −α∇W L̄(Wt ,Γt) , (5)
Zt+1 = Zt −α∇ΓL̄(Wt ,Γt) , (6)
Γt+1 = Prox(Zt+1) , (7)

where the initialization Z0 = Γ0 = 0; W0 is initialized as [11] and α is the learning rate
. L̄(Wt ,Γt) = Ltask (Wt)+

1
2ν
‖Wt −Γt‖2 indicates the loss function at t, with task-specific

loss Ltask (Wt) (e.g., cross-entropy loss). Γ is learned to approximate W here. Prox(·) is the
proximal mapping function with the following form,

Prox(Z) = min
(

0,λ − 1
‖Z‖1,2

)
Z (λ ≥ 0), (8)

where ‖Z‖1,2 is a group Lasso (`1-`2) norm for convolutional filters or simply the Lasso (`1)
norm for and λ is a constant. Note that, a pilot work [15] explored the sparsity of signal in
linear transformation, i.e., y = XW .

One can see that Eq. (5) is essentially a gradient descent step over the primal parameter
Wt . However, in Eqs. (6)-(7), DI-ISS extends the primal network parameters W , to a coupled
parameter set, (W,Γ), where a sparse proximal gradient descent runs over the dual structural
sparsity parameter Γ enforcing structural sparsity on network models.

3.2 Adaptive End-to-End Budgeted Network Learning
Algorithm Overview. Using the solution of DI-ISS by LBI, we propose the AdeNeL algo-
rithm which grows the networks from small to proper size. As shown in Figure 2, AdeNeL
has the following key steps:
(1) Seed network initialization. Given a network backbone, e.g., VGG16, we set the number
of filters in each convolutional layer as a small number (e.g., 4). This slim network is the
seed network in the later growing and training process.
(2) Growing in training. During training process, we periodically check the capacity of each
convolutional layer using the measurement method in Section 3.2.1 and add new filters to
those lack of capacity. The growing process stops when it meets parameters/FLOPs budgets.
(3) Fine-tuning. After the growing process stops, we adjust the learning rate to train the
learned networks for extra epochs.

3.2.1 Capacity in Layer Level

Along the training path of Eqs. (5)-(8), the Γ will gradually becomes non-zeros and finally
converges. Due to the Eq. 8, the Γ will converge to a sparse approximation of parameter set
W . And if the Γ is too sparse, it means only small parts of Γ can represent the information
of the network weights W . This indicates that the weights W is redundant and the network
capacity is currently sufficient. On the contrary, if the Γ is compact, the network is currently
lack of capacity and may need to add new weights to improve its performance. Formally,
we use sl as the redundancy of the l-th layer of a network: sl = |Γl |/|W l |, where |Γl | is the

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Huang, Sun, Xiong, and Yao} 2020

ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING 7

non-zero item of Γ in the l-th layer and |W l | is the number of filters in the l-th layer. We
introduce a threshold τ to control sign of the growing and if

sl > τ, (9)

it means the l-th layer is lack of capacity and we can add some new filters into this layer.
Otherwise this layer has sufficient capacity and is not need to be grown.

3.2.2 Growing Network in Training

Methods Acc.(%) Params(M) FLOPs(G) Train-Cost

VGG-16

Baseline 92.90 14.99 (100.0%) 0.313 (100.0%) 100.0%
l1-Pruning [19] 91.80 2.98 (19.9%) 0.062 (19.9%) 25.0%

SoftNet [13] 92.10 5.40 (36.0%) 0.113 (36.1%) 62.5%
ThiNet [22] 90.80 5.40 (36.0%) 0.113 (36.1%) 62.5%

Provable [20] 92.40 0.85 (5.0%) 0.047 (15.0%) 28.6%
Grow&Prune [42] 92.50 0.75 (5.0%) 0.042 (13.5%) 20.2%

Ours 92.71 0.58 (4.1%) 0.042 (13.5%) 10.2%

ResNet-20

Baseline 91.30 0.27 (100.0%) 0.041 (100.0%) 100.0%
l1-prune [19] 90.90 0.15 (55.6%) 0.023 (55.4%) 90.9%
SoftNet [13] 90.80 0.14 (53.6%) 0.021 (50.6%) 83.3%
ThiNet [22] 89.20 0.18 (67.1%) 0.028 (67.3%) 90.0%

Provable [20] 90.80 0.10 (37.3%) 0.022 (54.5%) 58.8%
Grow&Prune [42] 90.90 0.096 (35.8%) 0.021 (50.2%) 41.6%

Ours 91.21 0.12 (44.0%) 0.021 (50.0%) 60.0%
Table 1: Results of network slimming of AdeNeL and other methods on CIFAR10. We
evaluate the prediction quality by Top-1 accuracy (%) (↑), memory cost by parameters (M)
(↓), computational cost by FLOPs (G) (↓) and efficiency by train-cost (%) (↓).

Methods Acc@Top-1(%) Acc@Top-5 Params(M) FLOPs(G) Train-Cost
Baseline 69.15 88.87 11.80 1.80 100.0%

l1-prune [19] 67.57 87.50 10.33 1.67 100.0%
MIL [7] 66.33 86.94 - 1.18 -

Ours 68.70 88.65 10.44 1.57 78.7%
Table 2: Results of network slimming of AdeNeL and other methods on ImageNet. We eval-
uate the prediction quality by Top-1 and Top-5 accuracy (%) (↑), memory cost by parameters
(M) (↓), computational cost by FLOPs (G) ↓ and efficiency by train-cost (%) (↓).

Growing filters in training. When the seed network starts training, we periodically verify
the growing indicator s after training every J epochs. If Eq. (9) holds for some convolutional
layers, our algorithm preserves the filters learned before and adds randomly initialized new
filters to these layers and continues the training.
Growing scale. For simplicity, we add the fixed number of new filters to the current mod-
els at each growing round. Indeed, there can be other strategies and we will discuss the
effectiveness of this strategy in the supplement materials.
Stop criterion. Our AdeNeL is stopped once the network has enough capacity for the
dataset. As no filters added in growing round or meet the parameters/FLOPs budgets, the

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{He, Kang, Dong, Fu, and Yang} 2018

Citation
Citation
{Luo, Wu, and Lin} 2017

Citation
Citation
{Liebenwein, Baykal, Lang, Feldman, and Rus} 2019

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{He, Kang, Dong, Fu, and Yang} 2018

Citation
Citation
{Luo, Wu, and Lin} 2017

Citation
Citation
{Liebenwein, Baykal, Lang, Feldman, and Rus} 2019

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Dong, Huang, Yang, and Yan} 2017

8 ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING

AdeNeL will stop growing process and train extra few epochs with a smaller learning rate to
finish the training process.

Methods CIFAR10 CIFAR100 Params(M) FLOPs(G) Train-Cost

W
id

th

ResNet-32-3x [34] 94.81 76.30 4.16 0.619 100.0%
Ours 95.07 - 2.49 0.569 55.8%
Ours - 77.33 4.39 0.460 66.7%

ResNet-32-4x [34] 95.40 77.80 7.39 1.099 100.0%
Ours 95.50 - 5.67 0.861 66.4%
Ours - 77.95 7.44 0.607 90.0%

ResNet-32-5x [34] 95.20 78.34 11.54 1.716 100.0%
Ours 95.50 - 4.47 1.197 49.4%
Ours - 78.97 6.10 0.916 46.6%

D
ep

th

Baseline 94.30 - 4.06 0.597 100.0%
AutoGrow [37] 94.27 - 4.06 0.597 142.3%

Ours 95.07 - 2.49 0.569 57.8%
Baseline - 75.67 5.14 0.759 100.0%

AutoGrow [37] - 74.72 5.14 0.759 159.3%
Ours - 77.33 4.39 0.460 54.6%

Table 3: Comparison between AdeNeL and network width expansion [34] and depth grow-
ing methods [37, 42] on CIFAR10/100. We evaluate the prediction quality by Top-1 accuracy
(%) (↑), computational cost by FLOPs (G) (↓) and efficiency by train-cost (%) (↓).

4 Experiments
Datasets and Backbones. We conduct experiments on several benchmark classification
datasets, including MNIST [18], CIFAR10/ CIFAR100 [17] and ImageNet-2012 [5]. The
standard backbones are utilized for each dataset, including, LeNet-5 for MNIST, ResNet and
VGG family for CIFAR10/CIFAR100, ImageNet-2012 respectively.
Evaluation Metrics. Several evaluation metrics are adopted here. We have Top-1 (Acc@Top-
1) and Top-5 (Acc@Top-5) classification accuracy. The total number of network Parameters,
i.e., Params. (M), reflecting the network size. FLOPs (G), the computational complexity of
a network. Train-Cost (%) is the accumulation of FLOPs along the training epochs. Here we
report the percentage of the train-cost of each method comparing to baseline model, showing
the training efficiency of each method.
Experimental Setup. The filter number is initially set as 4/8/16 (according to settings of
different experiments) for each convolutional layer of each model with the weight initializa-
tion [11]. Our AdeNeL experiments use the optimizer we implement for DI-ISS and added
new filters are initialized as in [11]. For comparison, the baselines are trained by the settings
from the good practices, including SGD optimizer, mini-batch size (128), initial learning
rate (0.1), learning rate decay (0.1 at every 1/3 total epochs), number of epochs (300 for
CIFAR10/100 and 90 for ImageNet) and weight decay (0.0005).

4.1 Results
Results of Network Slimming. On CIFAR10, our AdeNeL is compared against baselines
models, several state-of-the-art pruning methods [13, 19, 20, 21, 22] and growing & pruning

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Wen, Yan, Chen, and Li} 2020

Citation
Citation
{Wen, Yan, Chen, and Li} 2020

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Wen, Yan, Chen, and Li} 2020

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{LeCun, Bottou, Bengio, and Haffner} 1998

Citation
Citation
{Krizhevsky etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{{Deng}, {Dong}, {Socher}, {Li}, {Kai Li}, and {Li Fei-Fei}} 2009

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{He, Kang, Dong, Fu, and Yang} 2018

Citation
Citation
{Li, Kadav, Durdanovic, Samet, and Graf} 2016

Citation
Citation
{Liebenwein, Baykal, Lang, Feldman, and Rus} 2019

Citation
Citation
{Liu, Li, Shen, Huang, Yan, and Zhang} 2017

Citation
Citation
{Luo, Wu, and Lin} 2017

ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING 9

5% 10% 15% 20%
Budgeted Params.

89

90

91

92

93

94

Ac
cu

ra
cy

/%
AdeNeL
Provalble
FT
SoftNet
Reference model

10% 20% 30% 40% 50% 60% 70%
Budgeted FLOPs

92

93

94

AdeNeL
Train scratch
Train scratch - grow
Reference model

Figure 3: The accuracy of the models learned by AdeNeL under various FLOPs/parameters
budgets. The experiments are conducted on CIFAR10 using VGG16 backbone. Left: Com-
parison between AdeNeL and other pruning methods. Right: The results of AdeNeL and the
networks found by AdeNeL trained from scratch.

Model Methods Acc. (%) Params. (M) FLOPs (G) Train-Cost

VGG-16
Train Scratch - Base 91.83 0.589 0.042 100.0%
Train Scratch - Grow 92.33 0.589 0.042 54.5%

Ours 92.71 0.589 0.042 54.5%

ResNet-32
Train Scratch - Base 94.64 4.47 1.197 100.0%
Train Scratch - Grow 94.87 4.47 1.197 70.6%

Ours 95.50 4.47 1.197 70.6%
Table 4: Ablation study: we train the network learned by AdeNeL from scratch with ordinary
and growing manner with SGD optimizer.

method [42]. Table 1 and Table 2 summarize the results of these methods and our AdeNeL.
One can see that: (1) The prediction quality of AdeNeL is the best of all, and even compara-
ble to full-sized baseline models. (2) The parameters and FLOPs of models learned by our
method both small, suggesting that our AdeNeL indeed learns better channel configurations.
(3) The train costs of our AdeNeL are still comparable or even smaller than competitors,
and saves a lot comparing to training baselines, showing the efficiency of our method. (4)
On large-scale dataset ImageNet-2012, our method still achieve better performance and us-
ing significantly fewer train costs. In conclusion, These results shows that our AdeNeL can
learn good prediction quality model under the extreme small parameters/FLOPs budgets.

We also conduct experiments under different FLOPs/parameters targets, the results are
in Figure 3. One can see that only using 20% FLOPs and 7.5% parameters of the full model,
AdeNeL can retain the accuracy of the full model. And given more budgets, AdeNeL can
achieve remarkable better performance than full model, showing the superiority of the pro-
posed method. We also compare AdeNeL with other pruning methods (left in Figure 3). One
can see that AdeNeL achieves better performance under different parameter budgets.
AdeNeL vs Network Width Expansion & Depth Growing. Width and depth are two im-
portant dimensions of networks and it is verified that expanding width/depth is a simple but
efficient way to improve the performance of networks. Thus, in this part we also compare
our AdeNeL with network width expansion [34] and depth growing [37, 42] methods. Ta-
ble 3 summarizes the results. Comparing to directly expanding network width by times,
our growing strategy can learn models with better prediction quality, fewer parameters and
FLOPs and training costs. This suggests that our AdeNeL learns better channel configura-
tions. Table 3 also shows that under the parameters and FLOPs budgets of models grown by

Citation
Citation
{Yuan, Savarese, and Maire} 2020

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{Wen, Yan, Chen, and Li} 2020

Citation
Citation
{Yuan, Savarese, and Maire} 2020

10 ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING

depth, our width growing method achieves better performance.

෪𝑾 of Conv1

AdeNeL intermediate

AdeNeL final

Grow

Grow

Grow

Grow

Stop

Train scratch with

weight decay

Figure 4: Visualization of filters of the first convolutional layer of model trained from scratch
and model during the growing process of AdeNeL.

4.2 Analysis
Ablation Study. To verify the effectiveness of our growing strategy, we train the learned net-
works from scratch, i.e., by ordinary training process using SGD optimizer (Train-Scratch-
Base) and growing in the training process with SGD optimizer (Train-Scratch-Grow). The
results in Figure 3 (right) and Table 4 show that models trained from scratch or repeated the
growing process with SGD optimizer perform significantly worse than the model trained by
our method. This confirms the superiority and effectiveness of our proposed method.
Visualization of AdeNeL. We also visualize the training process of AdeNeL. Specifically,
we use AdeNeL to train a seed LeNet-5 model with 4 filters in each convolutional layer and
we add 2 filters to the layers need to grow at each round. Filters learn by first convolutional
layer at each growing round in Figure 4. Rows in the green box are filters of the first convo-
lutional layers of the model in each growing round. The filters in the red box are W̃ , which
indicates that AdeNeL can indeed correctly select important filters from W .

5 Conclusion
This paper studies the novel task of adaptive end-to-end budgeted network learning and the
proposed algorithm which simultaneously grows and trains filters. Experiments on VGG and
ResNet show that the proposed algorithms can efficiently grow networks with fixed depth and
a small number of filters in each layer. Our algorithms achieve classification accuracy on par
with those of big network models, yet with remarkable economic training cost. Note that
our work is that currently we only focus on exploring network width configuration; and a
potential future work is to explore both width and depth configuration of the network.

6 Acknowledgements
This work was in part supported by Science and Technology Commission of Shanghai Mu-
nicipality Project (#19511120700), and Major Project (No.2021SHZDZX0103).

ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING 11

References
[1] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional

computation in neural networks for faster models. arXiv preprint arXiv:1511.06297,
2015.

[2] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, and Venkatesh Saligrama. Adaptive neural
networks for fast test-time prediction. arXiv preprint arXiv:1702.07811, 2017.

[3] Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-level network
transformation for efficient architecture search. In International Conference on Ma-
chine Learning, pages 678–687. PMLR, 2018.

[4] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via
knowledge transfer. arXiv preprint arXiv:1511.05641, 2015.

[5] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[6] Xuanyi Dong and Yi Yang. Network pruning via transformable architecture search. In
Proceedings of the 33rd International Conference on Neural Information Processing
Systems, pages 760–771, 2019.

[7] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more
complicated network with less inference complexity. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 5840–5848, 2017.

[8] Yanwei Fu, Chen Liu, Donghao Li, Xinwei Sun, Jinshan Zeng, and Yuan Yao. Dessilbi:
Exploring structural sparsity of deep networks via differential inclusion paths. In In-
ternational Conference on Machine Learning, pages 3315–3326. PMLR, 2020.

[9] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[10] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and con-
nections for efficient neural network. In Advances in neural information processing
systems, pages 1135–1143, 2015.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[13] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter prun-
ing for accelerating deep convolutional neural networks. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence, pages 2234–2240, 2018.

12 ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING

[14] Chendi Huang, Xinwei Sun, Jiechao Xiong, and Yuan Yao. Split lbi: An iterative
regularization path with structural sparsity. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, pages 3377–3385, 2016.

[15] Chendi Huang, Xinwei Sun, Jiechao Xiong, and Yuan Yao. Boosting with structural
sparsity: A differential inclusion approach. Applied and Computational Harmonic
Analysis, 48(1):1–45, 2020.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[17] Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[19] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. In International Conference on Learning Representations,
2016.

[20] Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Prov-
able filter pruning for efficient neural networks. In International Conference on Learn-
ing Representations, 2019.

[21] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui
Zhang. Learning efficient convolutional networks through network slimming. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pages 2736–2744,
2017.

[22] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for
deep neural network compression. In Proceedings of the IEEE international conference
on computer vision, pages 5058–5066, 2017.

[23] Mason McGill and Pietro Perona. Deciding how to decide: Dynamic routing in artifi-
cial neural networks. In International Conference on Machine Learning, pages 2363–
2372. PMLR, 2017.

[24] P Molchanov, S Tyree, T Karras, T Aila, and J Kautz. Pruning convolutional neural
networks for resource efficient inference. In 5th International Conference on Learning
Representations, ICLR 2017-Conference Track Proceedings, 2019.

[25] Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. 1983.

[26] Augustus Odena, Dieterich Lawson, and Christopher Olah. Changing model behavior
at test-time using reinforcement learning. arXiv preprint arXiv:1702.07780, 2017.

[27] Stanley Osher, Martin Burger, Donald Goldfarb, Jinjun Xu, and Wotao Yin. An iterative
regularization method for total variation-based image restoration. Multiscale Modeling
& Simulation, 4(2):460–489, 2005.

ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING 13

[28] Stanley Osher, Feng Ruan, Jiechao Xiong, Yuan Yao, and Wotao Yin. Sparse recovery
via differential inclusions. Applied and Computational Harmonic Analysis, 41(2):436–
469, 2016.

[29] Stanley Osher, Feng Ruan, Jiechao Xiong, Yuan Yao, and Wotao Yin. Sparse recovery
via differential inclusions. Applied and Computational Harmonic Analysis, 41(2):436–
469, 2016.

[30] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015.

[31] Xiu Su, Shan You, Tao Huang, Fei Wang, Chen Qian, Changshui Zhang, and Chang
Xu. Locally free weight sharing for network width search. In International Conference
on Learning Representations, 2020.

[32] Xinwei Sun, Lingjing Hu, Yuan Yao, and Yizhou Wang. Gsplit lbi: Taming the proce-
dural bias in neuroimaging for disease prediction. In International Conference on Med-
ical Image Computing and Computer-Assisted Intervention, pages 107–115. Springer,
2017.

[33] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1–9, 2015.

[34] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–6114.
PMLR, 2019.

[35] Tom Veniat and Ludovic Denoyer. Learning time/memory-efficient deep architectures
with budgeted super networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3492–3500, 2018.

[36] Tao Wei, Changhu Wang, Yong Rui, and Chang Wen Chen. Network morphism. In
International Conference on Machine Learning, pages 564–572, 2016.

[37] Wei Wen, Feng Yan, Yiran Chen, and Hai Li. Autogrow: Automatic layer growing in
deep convolutional networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 833–841, 2020.

[38] Lemeng Wu, Dilin Wang, and Qiang Liu. Splitting steepest descent for growing neural
architectures. In Advances in Neural Information Processing Systems, pages 10656–
10666, 2019.

[39] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu.
Good subnetworks provably exist: Pruning via greedy forward selection. In Interna-
tional Conference on Machine Learning, pages 10820–10830. PMLR, 2020.

[40] Wotao Yin, Stanley Osher, Donald Goldfarb, and Jerome Darbon. Bregman iterative
algorithms for \ell_1-minimization with applications to compressed sensing. SIAM
Journal on Imaging sciences, 1(1):143–168, 2008.

14 ZHONG, LIU, FU: ADAPTIVE END-TO-END BUDGETED NETWORK LEARNING

[41] Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot architecture search for
channel numbers. arXiv preprint arXiv:1903.11728, 2019.

[42] Xin Yuan, Pedro Henrique Pamplona Savarese, and Michael Maire. Growing efficient
deep networks by structured continuous sparsification. In International Conference on
Learning Representations, 2020.

[43] Bo Zhao, Xinwei Sun, Yanwei Fu, Yuan Yao, and Yizhou Wang. Msplit lbi: Real-
izing feature selection and dense estimation simultaneously in few-shot and zero-shot
learning. In International Conference on Machine Learning, pages 5912–5921. PMLR,
2018.

[44] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin Liu. Practical block-
wise neural network architecture generation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2423–2432, 2018.

[45] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
In International Conference on Learning Representations, 2016.

[46] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710, 2018.

