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Abstract

Biological visual systems are exceptionally good at perceiving objects that undergo
changes in appearance, pose, and position. In this paper, we aim to train a computational
model with similar functionality to segment the moving objects in videos. We target the
challenging cases when objects are “invisible” in the RGB video sequence – for example,
breaking camouflage, where visual appearance from a static scene can barely provide
informative cues, or locating the objects as a whole even under partial occlusion.

To this end, we make the following contributions: (i) In order to train a motion seg-
mentation model, we propose a scalable pipeline for generating synthetic training data,
significantly reducing the requirements for labour-intensive annotations; (ii) We intro-
duce a dual-head architecture (hybrid of ConvNets and Transformer) that takes a se-
quence of optical flows as input, and learns to segment the moving objects even when
they are partially occluded or stop moving at certain points in videos; (iii) We con-
duct thorough ablation studies to analyse the critical components in data simulation,
and validate the necessity of Transformer layers for aggregating temporal information
and for developing object permanence. When evaluating on the MoCA camouflage
dataset, the model trained only on synthetic data demonstrates state-of-the-art segmen-
tation performance, even outperforming strong supervised approaches. In addition, we
also evaluate on the popular benchmarks DAVIS2016 and SegTrackv2, and show com-
petitive performance despite only processing optical flow. The project webpage is at:
www.robots.ox.ac.uk/~vgg/research/simo/

1 Introduction
Object segmentation is undoubtedly one of the most widely researched problems in computer
vision. Early attempts took inspiration from psychology, trying to understand the fundamen-
tal rules that cause people to see things as “unified” groups [47], and to translate them into
the computational world, for instance, through clustering algorithms [37] that grouped the
pixels with certain characteristics, e.g. semantics, color, intensity, texture, and motion.

In the recent literature, segmentation has been primarily treated as a problem of pixel-
wise classification, and tackled by training deep networks on large-scale image or video
datasets. This has two drawbacks: first, the requirements for heavy annotations limits the
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Figure 1: Video sequences from DAVIS2016 (left) and MoCA (right). Top to bottom: RGB se-
quence, optical flows, modal (only visible parts) and amodal (object as a whole) masks from our model
prediction. Note that, our model exploits the optical flow as input, and is able to infer the whole mask
of the objects even when they are partially occluded (the dog is partially occluded by the pole), or
hidden in the environment (the fish is blended into the background environment).

scalability; second, the assumption that objects can be well-identified via their visual appear-
ances is often an over-simplification of our visual world, since objects may not be “visible”
in a static scene. For instance, to segment objects that are camouflaged, or only partially vis-
ible due to occlusions (as shown in Figure 1), the visual appearance alone usually provides
inadequate visual cues, thus challenging the existing segmentation models. Instead, motion
cues are required for segmentation, and that is the objective of this paper.

To address the challenge of limited availability of groundtruth annotations, we propose
a scalable pipeline for generating synthetic data, and advocate a Sim2Real training proce-
dure – once trained on synthetic data, the model can directly generalise to the downstream
task, e.g. segmenting moving objects in real videos without finetuning on manual annota-
tions. Generally speaking, although the visual scenes in real-world videos might be arbi-
trarily complex, the motion between two frames can always be factored into a combination
of camera and object motion [14], effectively discarding the nuisance factors in visual ap-
pearance, e.g. color, texture, illumination. We exploit such observation to minimise the gap
between the simulated and real videos. Specifically, for camera motion, it can often be ap-
proximated by a global transformation, while for an individual object, if it does move, pixels
on it tend to form groups moving in similar direction and rate (and similarly in the optical
flow). To this end, we simulate videos by composing moving objects onto a canvas that
undergoes an independent transformation.

In practise, one challenge of only using optical flow comes from the fact that, objects
in videos may stop moving or be partially occluded at any time point, leaving no effective
cues for segmentation. As a consequence, one key ability of a functional vision system is to
develop a sense of object permanence, i.e. realising that objects continue to exist even when
they cannot be seen explicitly. To fulfil this goal, we propose a dual-head architecture, a hy-
brid of ConvNets and a Transformer, digesting a sequence of optical flows, and aggregating
temporal information to flexibly output segmentation for only moving parts (modal), or the
whole object even it is temporally static or under partial occlusion (amodal).

To summarise, we make the following contributions: (i) To address the challenge from
limited availability of training data, we propose a scalable pipeline for generating synthetic
video sequences with objects moving independently to the background motion; (ii) We intro-
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duce a dual-head architecture, a hybrid of ConvNet and Transformer, which takes a sequence
of optical flow images as input, jointly processing them to segment the moving objects at
any time point, and to predict both modal and amodal segmentations; (iii) After training on
synthetic video sequences, we show state-of-the-art performance on the MoCA camouflage
dataset, without even finetuning on manual annotations. In addition, we evaluate on two
other popular benchmarks for video object segmentation, DAVIS2016 and SegTrackv2, and
also show competitive performance.

2 Related Work

Video object segmentation considers the task of grouping pixels that belong to the same ob-
ject. In the recent literature, semi-supervised video object segmentation (semi-supervised
VOS), and unsupervised video object segmentation (unsupervised VOS) have attracted in-
creasing attentions from the community [3, 5, 7, 9, 12, 13, 15, 17, 18, 19, 20, 21, 28, 30, 31,
32, 34, 34, 42, 43, 44, 45, 46, 49, 49, 53]. Specifically, semi-supervised VOS aims to con-
tinuously segment the objects that are specified by the user in the first frame; unsupervised
VOS considers to localise and segment the prominent object in a video sequence. In practise,
all previous approaches heavily rely on manual annotations, as an alternative, in this work,
we consider the problem of video object segmentation from the perspective of Sim2Real, by
that we mean to train the model on synthetic data, and demonstrate direct generalisation to
real video sequences.

Motion segmentation shares some similarity with unsupervised VOS, but focuses only on
the moving objects. In the literature, motion segmentation generally aims to segment the
objects that move independently to the camera. Specifically, [5, 30, 48] tackle the problem
through the lens of clustering, with the goal to assign the same labels to pixels undergoing
similar motion patterns; while [9, 41, 42] train deep networks that map the motion fields to
segmentation masks. In [2, 4, 22, 51], the authors propose to highlight the independently
moving object by compensating the background motion, either by registering consecutive
frames, or explicitly estimating camera motions. [52] proposes an adversarial setting, where
a generator is trained to produce masks, jittering the input flow, such that the inpainter fails to
estimate the missing information. In constrained scenarios, such as the autonomous driving
domain, [36] proposes to jointly optimise depth, camera motion, optical flow and motion seg-
mentation. Concurrent work [50] adopts a layered representation to train a generative model,
with motion segmentation being a by-product. In contrast to the existing approaches, we pro-
pose to train the architecture purely with synthetic video sequences, taking no prior knowl-
edge of the objects’ category or shape, and advocate direct generalisation to real videos.

Camouflage breaking aims to discover the objects that are hiding in the scene, where the
visual appearance barely provide informative cues [3, 22, 23]. As such, the objects will only
be apparent when they start to move, thus is closely related to motion segmentation.

Optical flow usually treated as the default motion representation in computer vision appli-
cations, where synthetic data has been predominantly adopted for training models, e.g. MPI
Sintel [6], FlyingThings3D [29] and Monkaa [29], pose estimation [10], AutoFlow [39].

Amodal segmentation refers to the task of segmenting the object as whole, including the
portions that are partially occluded [25, 35, 55]. Part of this work follows this line of research
and aims to extend amodal perception to video object segmentation.
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3 Synthetic Data Generation
In this section, we describe a scalable pipeline for generating synthetic video sequences to
train our proposed motion segmentation model. Specifically, we generate RGB sequences
with objects being textured with samples from the DTD texture dataset [8], the optical flow
sequences can either be computed from groundtruth transformations, or by an off-the-shelf
flow estimator, e.g. RAFT [40]. In the following sections, we detail the generation process,
and show an example of the generated video sequence in Figure 4. We refer the reader to
supplementary material for more figures and details on the generation procedure.

3.1 Foreground Objects
Synthetic shapes. We start with simple 2D shapes, namely a polygonal sprite, which is
generated from 4-vertex polygons, convex and non-convex, with random holes. To increase
the complexity, we occasionally replace polygons with real objects masks, for example, sil-
houettes that are sourced from a large scale dataset, e.g. YouTube-VOS.

Non-rigid objects. Apart from affine transformations on the entire object, we also generate
non-rigid motions by applying thin plate splines Tt ps with 6 control points. Let Ptl ,Ptr,Pbr,Pbl
denote the vertices of the generated polygon starting from top left to bottom left. The control
points are chosen at these vertices and two additional points located at (xPtl +0.3 ∗w,yPtl +
0.3 ∗ h) and (xPbr − 0.3 ∗w,yPbr − 0.3 ∗ h), where h and w stand for the maximal height and
width of the polygon.

Articulated objects. To simulate the articulated objects, we split the object into 2 to 4 parts
and apply different 2D rotations around the designated articulation vertices, with rotation
angles θ ∈

[
−π

3 ,+
π

3

]
.

Figure 2: Generating foreground objects. Generated object masks with thin plate spline Tt ps, the
control points are shown in red.

3.2 Generating Motion Sequences
At this stage, we compose moving objects onto a canvas that undergoes an independent
transformation, shown in Figure 3. For the optical flow, we consider two options: one is
to use the groundtruth flow based on the applied transformations, and the other is to run an
off-the-shelf flow estimator on the RGB sequence, e.g. RAFT. In the latter case, the back-
ground scenes can also be sourced from other videos. Additionally, we also incorporate
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Figure 3: Sequence of moving sprite undergoing a static subsequence. From top to bottom: RGB
frames, groundtruth optical flows, RAFT flows, segmentation masks.

static sub-sequences at various temporal locations, with the foreground object following the
same transformation as the background. In such cases, objects will temporally disappear in
the flow field, forcing the model to develop a sense of object permanence through temporal
information.

3.3 Artificial Occluders
To simulate partial occlusions, we superimpose occluders on the canvas. They can be of ar-
bitrary shapes, and follow the same motion as the background. As the occluders’ trajectories
intersect with the foreground object, the generated groundtruth segmentation masks will fall
into two categories: masks that only delineate the visible parts of the object; or masks that
delineate the objects as a whole, including the occluded parts. Both are shown in Figure 4.

Figure 4: Sequence of a moving sprite undergoing occlusion. From top to bottom: RGB frames with
the background sourced from a real video, and occluders are selected from different textures; optical
flow sequence that is computed with RAFT; visible object (modal) segmentation; amodal segmentation.

4 Architecture
In this section, we present our proposed architecture for robustly segmenting moving ob-
jects, as illustrated in Figure 5. It is composed of a hybrid architecture, with ConvNets and
Transformers. Specifically, the ConvNets are used to extract features from each input optical
flow image, ending up as a sequence of feature maps, with the Transformer built on top to
aggregate spatial-temporal information, and output framewise segmentations.
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Figure 5: Illustration of our proposed dual-head hybrid architecture for independent motion seg-
mentation. Our model takes a sequence of optical flows as input, and encodes each with a light-weight
ConvNet, then positional spatio-temporal information is added to the outputted features f[t,t+k−1] be-
fore passing through the transformer encoder. Lastly, the output is fed into the dual-head decoder,
predicting amodal M̂ai and modal masks M̂mi .

Motion Encoder. Given a sequence of optical flows computed from consecutive frames,
X = {It , It+1, ...It+k−1} ∈ Rk×C0×H0×W0 , we process the motion fields with a ConvNet:

{ ft , ft+1, . . . , ft+k−1}= ΦENC(X)

where fi ∈ RC×H×W refers to the feature map, H,W,C denote height, width and channels.

Transformer Encoder. As inputs to the Transformer Encoder, we reshape the feature
maps to a sequence of tokens:

V= RESHAPE({ ft , ft+1, . . . , ft+k−1})+POSt +POSs

with V∈RC×kHW representing a total of kHW vectors. To keep track of the spatial-temporal
position for each token, learnable spatial (POSs) and temporal (POSt ) encodings are also
added. To this end, we pass the sequence of vectors into a standard Transformer Encoder
with N layers (N = 3 in our case), each consisting of a stack of Multi-Head self-Attention,
Layer Normalisation, and residual connections:

V= TRANSFORMER-ENCODER(V)

V ∈ RC×kHW refers to the output from the Transformer Encoder.

Discussion. Unlike existing video segmentation works that mainly rely on RGB sequences,
we only use optical flow as input. This has both pros and cons. On the one hand, flow has
been shown to be highly effective in discarding the nuisance factors in visual appearance,
e.g. texture, illumination, greatly facilitating the Sim2Real procedure to generalise towards
real videos. On the other hand, it also brings challenges to segment the objects if they stop
moving or are partially occluded at certain points of the video, as they cannot be seen explic-
itly in the flow fields. At this point, the Transformer layers play a critical role for aggregating
temporal information, effectively capturing the object permanence, i.e. the object does not
vanish even if it stops moving, instead, it just stays in the same place. In Section 6, we
experimentally validate the usefulness of such Transformer layers.

Dual-Head Decoder. The outputs from the Transformer Encoder are passed into a dual-
head decoder, with one head dedicated to predicting framewise amodal moving object masks
M̂ai , and the other one focuses on the visible or modal moving object masks M̂mi , as shown
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in Figure 5. Symmetrically, the decoder uses a similar architecture to the encoder, with
convolution transposes to recover high resolution, and incorporating skip layers in a U-Net-
like manner to fuse fine-grained features. We refer readers to the supplementary material for
more detailed architecture descriptions.

Training. We train the hybrid dual-head architecture using pixel-wise classification:

L=
1
k

t+k−1

∑
i=t

(LBCE(M̂mi ,Mmi)+LBCE(M̂ai ,Mai))

5 Experiments
In this section, we start by describing the evaluation benchmarks and metrics, followed by
the implementation details.

5.1 Evaluation Benchmarks
We conduct evaluation on four different datasets, three of them are used for unsupervised
video object segmentation, and one synthetic dataset to test amodal segmentation.

DAVIS2016 [33] contains a total of 50 sequences (30 for training and 20 for validation), de-
picting diverse moving objects such as animals, people, and cars. The dataset contains 3455
1080p frames with pixel-wise annotations for the predominantly moving objects.

SegTrackv2 [24] contains 14 sequences and 976 annotated frames. Each sequence has 1-6
moving objects, with challenges from motion blur, appearance change, complex deforma-
tion, occlusion, slow motion, and interacting objects.

Moving Camouflaged Animals (MoCA) [22] contains 141 HD video sequences, depicting
67 kinds of camouflaged animals moving in natural scenes. Both temporal and spatial anno-
tations are provided in the form of tight bounding boxes for every 5th frame. Following [50],
we use the provided motion labels (locomotion, deformation, static) to filter out videos with
predominantly no locomotion, resulting in 88 video sequences and 4803 frames.

Dataset for Amodal Segmentation (AMSeg). We evaluate on two datasets for amodal seg-
mentation. Specifically, in terms of quantitative evaluation, we test on a synthetic dataset
generated with moving objects and occluder, totalling 500 sequences with 15K frames.
While for qualitative visualisaiton, we use a subset of DAVIS2016 sequences, with the masks
manually completed for occluded regions. More sample sequences can be found in the sup-
plementary material. We will release the generated sequences and annotations in the project
webpage.

5.2 Evaluation Metrics
Depending on the provided annotations, we use two different evaluation metrics.
Segmentation (Jaccard). For DAVIS2016, SegTrackv2, and AMSeg, pixelwise segmenta-
tions are available, we report region similarity (J ) over the test set. For SegTrackv2, we
follow the common practice [16, 52] and combine multiple objects as one single foreground.

Localization (Jaccard & Success Rate). For MoCA, as only bounding box annotations are
provided, we report results in the form of detection success rate [11, 26], under different IoU
thresholds (τ ∈ {0.5,0.6,0.7,0.8,0.9}).
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5.3 Implementation Details

To get flow sequences on synthetic and real videos, we adopt off-the-shelf estimators, e.g. PWC-
Net [38], RAFT [40]. For all datasets, optical flows are computed at the original resolution
between image pairs, and converted into 3-channel images with the standard colorwheel used
in the flow community [1, 50]. This transformation is equivalent to the vector field repre-
sentation with the advantage of offering an easier visualisation of the flow sequences. Our
architecture takes as input sequence of size X ∈ Rk×3×H0×W0 , H0 = W0 = 128. Note that,
for simplicity, all notations here have ignored the batch dimension (we use a batch size of 8
for training). The Motion Encoder projects the input samples to feature maps with smaller
spatial resolution, Rk×C×H×W , with C = 512, H = H0

16 and W = W0
16 . For the Transformer

Encoder, we use multi-head attention with 8 heads, and 3 layers. During training, we adopt
the Adam optimiser with a learning rate of 5× 10−4. Instead of densely processing k con-
secutive frames, we proceed with a random selection of l < k frames with corresponding
absolute positional encoding (within the original sequence of length k). Effectively, this op-
eration acts as a temporal dropout of input flows, reducing the required memory for training
long video sequences, here, we use k = 16 and l = 8 in our training. At inference time, we
process the entire sequence with all the k temporal samples.

6 Results

Here, we conduct ablation studies by varying one variable at a time, e.g. critical components
for data simulation, and necessity of transformer for developing object permanence. After
that, we compare with other state-of-the-art approaches on different benchmarks.

6.1 Ablation Studies

As shown in Table 1, we report the results by training models on synthetic data gener-
ated with increasing complexities. Note that, all models are directly applied to MoCA,
DAVIS2016 and AMSeg datasets, without any fine-tuning included.

Choice of optical flow. While comparing the results of models trained on different optical
flows, two phenomenon can be observed: First, training on RAFT flows are preferable than
on groundtruth flow, e.g. Ours-(B,C) vs. Ours-(D,E). As during inference time, RAFT flow
is also used, effectively introducing minimal domain gaps between training and testing sce-
narios. Second, RAFT provides higher quality flow estimations compared to other methods,
e.g. PWCNet, showing superior results cf. Ours-(F,G).

Choice of background motion. Unsurprisingly, while training our proposed model, simu-
lating backgrounds with a homography transformation substantially outperforms that of only
a static background, e.g. Ours-A vs. Ours-B; using frames from other videos as background,
i.e. real motions are introduced, can further boost the performance on downstream bench-
marks, e.g. Ours-E vs. Ours-F.

Artificial occluder. While comparing Ours-E to Ours-D, we validate the usefulness of
introducing artificial occluders for data simulation, this is especially true on AMSeg dataset,
which is specifically designed to evaluate model’s ability on amodal segmentation.

Transformer Encoder. We conduct experiment by ablating the Transformer Encoder, as
shown by Ours-F vs. Ours-H, the former shows superior performance on all the datasets,
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Sequence Bg Motion Flow Occluder Transformer MoCA DAVIS2016 AMSeg
Ours-A OF Static GT 7 X 23.1 10.4 11.4
Ours-B OF Homography GT 7 X 54.1 44.2 71.5
Ours-C OF Homography GT X X 52.5 48.8 69.2

Ours-D RGB Homography RAFT 7 X 57.7 50.1 84.7
Ours-E RGB Homography RAFT X X 59.9 52.2 90.3
Ours-F RGB Homography + Real RAFT X X 68.6 67.8 91.0

Ours-G RGB Homography + Real PWCNet X X 62.9 56.4 81.1
Ours-H RGB Homography + Real RAFT X 7 61.3 65.0 84.4

Table 1: Ablation study on synthetic data generation. Performance is measured by Jaccard on all
datasets. Specifically, Sequence denotes the format of simulated video sequence, in RGB or optical
flow (OF) (note that, in all cases, our pipeline only takes as input the optical flow sequence, either
created during the simulation process or computed from the generated RGB sequences); Bg Motion
refers to the background motion used during data simulation; Flow refers to the sources of optical
flows for training. During inference, all the optical flow are computed from RAFT.

clearly demonstrating the necessity of Transformer Encoder, potentially on cases where ob-
jects stop moving or partially occluded at certain time point.

6.2 Comparison with State-of-the-art

In this section, we take the best setting discovered from the ablation study (Ours-F), and
compare its segmentation results with previous approaches on the public benchmarks, e.g. MoCA,
DAVIS2016, SegTrackv2. Again, in all cases, we train the model on synthetic data, and di-
rectly evaluate on the downstream tasks, without using any manual annotations.

6.2.1 On MoCA

As shown in Table 2, we achieve the state-of-the-art results on MoCA, significantly outper-
forming the previous approach (CIS [52] by over 19%, MoSeg [50] by over 4%). Notably,
our proposed model even shows superior performance than the top supervised approaches,
e.g. COSNet and MATNet.

Success Rate

Model Sup. RGB Flow J ↑ τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9 SRmean

CIS [52] 7 X X 49.4 0.556 0.463 0.329 0.176 0.030 0.311
MoSeg [50] 7 7 X 64.2 0.712 0.670 0.599 0.492 0.246 0.544
Ours 7 7 X 68.6 0.772 0.717 0.623 0.464 0.255 0.566

COD [22] X 7 X 44.9 0.414 0.330 0.235 0.140 0.059 0.236
COSNet [27] X X 7 50.7 0.588 0.534 0.457 0.337 0.167 0.417
MATNet [54] X X X 64.2 0.712 0.670 0.599 0.492 0.246 0.544

Table 2: Results on MoCA dataset. Successful localization rate for various thresholds τ following
the same metric proposed in [52].

6.2.2 On DAVIS2016 & SegTrackv2

In this section, we report results on DAVIS2016 and SegTrackv2. Notably, in these two
benchmarks, motion is not playing the dominant role as it is in MoCA, as the objects can

Citation
Citation
{Yang, Loquercio, Scaramuzza, and Soatto} 2019{}

Citation
Citation
{Yang, Lamdouar, Lu, Zisserman, and Xie} 2021

Citation
Citation
{Yang, Loquercio, Scaramuzza, and Soatto} 2019{}

Citation
Citation
{Yang, Lamdouar, Lu, Zisserman, and Xie} 2021

Citation
Citation
{Lamdouar, Yang, Xie, and Zisserman} 2020

Citation
Citation
{Lu, Wang, Ma, Shen, Shao, and Porikli} 2019

Citation
Citation
{Zhou, Wang, Zhou, Yao, Li, and Shao} 2020

Citation
Citation
{Yang, Loquercio, Scaramuzza, and Soatto} 2019{}



10 LAMDOUAR, XIE, ZISSERMAN: SEGMENTING INVISIBLE MOVING OBJECTS

often be well-identified by their appearance. This can be observed from the results of COS-
Net, which shows significantly stronger performance on DAVIS than on MoCA, despite not
using any motion information.

As shown in Table 6a, our model trained on synthetic data still shows competitive perfor-
mance, achieving state-of-the-art results on DAVIS2016 among all self-supervised learning
approaches. While for SegTrackv2, the videos occasionally include multiple objects, with
only a subset of them moving, in such case, no informative cues will support object segmen-
tation in the flow input. We achieve competitive performance nonetheless.

(a) Results on DAVIS2016 and SegTrackv2 (b) Qualitative Results on DAVIS2016, MoCA, SegTrackv2

Figure 6: Results on DAVIS2016 and SegTrackv2.

Qualitative results. As shown in Figure 6b, the following phenomenon can be observed:
First, our model provides high-quality segmentation masks, despite only being trained on
optical flow computed from synthetic data; Second, the model is able to maintain the object
permanence through frames. This is particularly evident for the second and fourth examples,
where the flow fields fail to capture part of the moving object, or completely fail at a specific
time step. Our model is able to recover the missing parts of the dancer in the second example,
and the bird in the fourth column, while MATNet [54] only provides partial segmentations;
Third, as can be seen in the third column, our amodal head is capable of estimating the
correct shape of the object despite the occlusion by jumping poles.

7 Conclusions

To summarise, this paper considers the problem of segmenting moving objects in videos.
Specifically, we propose a scalable pipeline for generating synthetic video sequences, with
objects moving independently to the background motion. This has shown to be effective
for resolving the challenge from limited availability of training data; In addition, we intro-
duce a dual-head architecture (hybrid of ConvNet and Transformer), which enables to jointly
process a sequence of optical flows, and segment the moving objects at any time point, out-
putting both modal (only visible parts) and amodal (object as a whole) segmentations. After
training our proposed model on synthetic video sequences, we show state-of-the-art per-
formance on the MoCA camouflage datasets, even outperforming supervised approaches.
On DAVIS2016 and SegTrackv2, our proposed model also demonstrates competitive perfor-
mance, despite not using any manual annotation.
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