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Abstract
The goal of this paper is Human-object Interaction (HO-I) detection. HO-I detec-

tion aims to find interacting human-objects regions and classify their interaction from
an image. Researchers obtain significant improvement in recent years by relying on
strong HO-I alignment supervision from [5]. HO-I alignment supervision pairs humans
with their interacted objects, and then aligns human-object pair(s) with their interaction
categories. Since collecting such annotation is expensive, in this paper, we propose to
detect HO-I without alignment supervision. We instead rely on image-level supervision
that only enumerates existing interactions within the image without pointing where they
happen. Our paper makes three contributions: i) We propose Align-Former, a visual-
transformer based CNN that can detect HO-I with only image-level supervision. ii)
Align-Former is equipped with HO-I align layer, that can learn to select appropriate tar-
gets to allow detector supervision. iii) We evaluate Align-Former on HICO-DET [5] and
V-COCO [13], and show that Align-Former outperforms existing image-level supervised
HO-I detectors by a large margin (4.71% mAP improvement from 16.14%→ 20.85% on
HICO-DET [5]).

1 Introduction
This paper strives for Human-object Interaction (HO-I) detection from an image. HO-I de-
tection receives an astounding attention from the community recently [5, 6, 9, 10, 12, 14, 16,
18, 19, 20, 22, 24, 28], thanks to the large-scale benchmark of HICO-DET [5]. The goal is to
identify the tuples of <human, object, verb, noun> from the input, where human-
object is an interacting bounding box pair, and verb-noun is the interaction type, such as
ride-horse.

To tackle this problem, researchers leverage strong HO-I alignment supervision, see Fig-
ure 1-(a). Annotators first draw a bounding box around all humans and objects, then align
humans with the object-of-interaction (e.g., rider and horse). Finally, they align the interac-
tion category with each human-object pairs.

However, collecting such annotation is costly 1. Annotation costs time, since in a typical
image there are tens of potential human-object interactors, if not hundreds. One can instead
rely on image-level HO-I annotations, see Figure 1-(b). Image-level annotations enumerate
existing HO-I within the image, without specifying where they occur. Image-level annota-
tions are much faster and cheaper to collect.
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Figure 1: Alignment (left) vs. Image-level HO-I supervision (right). a) Alignment super-
vision annotates each human-objects, aligns humans to their interacting objects, then aligns
human-objects to their type of interaction. b) Image-level supervision only lists existing in-
teractions without pointing where they happen. Our goal is to detect HO-I without costly
alignment supervision, by only using image-level labels.

There are few attempts to perform HO-I detection via image-level supervision [21, 31].
Initially, Zhang et al. [31] proposes a two-stream architecture based on Region-FCN [8],
focusing on the regional appearance of subject-objects and spatial relations. Later, Ku-
maraswamy et al. [21] adapted this technique for HO-I detection, and improve it via an
additional stream of human pose. These techniques yield remarkable results on HICO-
DET benchmark [5] in the absence of alignment supervision. However, they are limited in
three major ways: i) These methods isolate human-objects from their context via Region-of-
Interest (RoI) pooling [11, 27], however, contextual information is crucial in understanding
the interaction, ii) The authors propose multiple streams of context to circumvent the miss-
ing contextual information, which increases model complexity. Increased model complexity
results in low performance on especially rarely represented HO-I (i.e., <ride, cow>) as
we will show. iii) Hand-crafted context (i.e., body-pose configuration using key-points) may
not be sufficient to account for the complexity of HO-I detection problem.

To that end, in this paper, we propose Align-Former, a visual-transformer-based architec-
ture based on [4]. Align-Former is a single-stream HO-I detector that is trained end-to-end
using image-level supervision only. Align-Former is equipped with a novel HO-I Align layer
that learns to align a few candidate target HO-I with predictions, allowing detector supervi-
sion. The decision of alignment is based on geometric and visual priors that are crucial in
HO-I detection.

This paper makes the following contributions:

I. We propose Align-Former, an end-to-end HO-I detector that is supervised via image-
level annotation.

II. We equip Align-Former with a novel HO-I align layer, that learns to match few HO-I
predictions with HO-I target(s), therefore allowing detector supervision.

III. We evaluate Align-Former on HICO-DET [5] and V-COCO [13], and show that Align-
Former outperforms competing baselines with the same level of supervision (by 4.71
mAP) on the large-scale benchmark of HICO-DET [5], especially within the low-data
regime of rare categories (by 6.17 mAP).
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Figure 2: To perform HO-I detection via image-level supervision: i) Align-Former maps the
input image I to HO-I predictions P . ii) We also prepare a set of HO-I targets by exhaustively
matching human-object detections and list of interactions. iii) Finally, we find the least costly
prediction-target pair(s) (i.e., (T2,P3)) which will be used for detector supervision.

2 Related Work
Alignment-Supervised HO-I Detection. In HO-I detection, the goal is to find quadruplets
of <human,object,verb, noun> where human-object are bounding boxes and verb-
noun are interaction pairs like <ride, horse>. Initially, HICO-DET authors collect more
than 150k instance annotations to match humans to their interacted object, as well as to their
interaction categories. Then, there has been a surge in detecting HO-I, initially via two-stage
techniques [5, 9, 12, 14, 16, 24], and later by one-stage architectures [6, 10, 20, 22, 28]
leveraging costly strong alignment supervision, see Figure 1-(a).

In this work, our goal is to train HO-I detectors without alignment supervision, by only
relying on image-level HO-I annotations.

HO-I Detection via Image-level Supervision. Few works attempt to train HO-I detectors
by only image-level supervision [21, 31]. Initially, Zhang et al. [31] proposes a two-stream
architecture based on Region-FCN [8] to model the subject-object region appearance and
spatial relations. Later, Kumaraswamy et al. [21] extends this approach via additional pose-
stream. These methods operate on the isolated appearance of human-objects, neglecting
the crucial context. Consequently, they supplement Region-FCN with additional streams,
increasing the model size, decreasing the performance.

To circumvent this, in this work, we propose a single-stream HO-I detector based on
visual-transformer [4]. Our network naturally encodes the surrounding context of human-
objects thanks to self-attention [29] and learns to align few candidate HO-I targets with HO-I
predictions to perform detector supervision, see Figure 2.

Discrete Variable Sampling in Computer Vision. In this work, we treat HO-I target align-
ment as a hard-valued, discrete variable sampling: Amongst all possible target-prediction
pair(s), which subset(s) should be selected for detector supervision? Such decision is non-
differentiable therefore ill-suited in convolutional network training. To that end, we resort
to a continuous relaxation procedure named Gumbel-Softmax trick, which allows end-to-
end training via discrete variables [17, 25]. Gumbel-Softmax has successfully been used to
sample convolutional layers [30], filters [7] or channels [3].

In this work, we adapt Gumbel-Softmax to select the target HO-I for detector supervision.
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Figure 3: Align-Former consists of four main layers. Feature Extraction Layer is an
Encoder-Decoder-based visual-transformer that extracts a set of human-object features xi
using the positional queries qi. Then, Classifier Layer generates HO-I predictions P in the
form of human-object bounding boxes and verb-noun classes. HO-I Align Layer compares
HO-I predictions P with potential HO-I targets T to find few-matching pair(s) that are used
for HO-I detector supervision using Loss Layer.

3 Align-Former for HO-I Detection
Method Overview. An overview of our technique is presented in Figure 2-3. The goal of our

network gθ (·) is to produce HO-I prediction tuples given an image I as I
gθ (·)−−−→ t ′. Here, HO-I

prediction is of size P and represented via t ′ = (h′,o′,v′,n′), where (h′ ∈ RP×4,o′ ∈ RP×4)
are human-object bounding box predictions, and (v′ ∈RP×V ,n′ ∈RP×N) are verb-noun class
predictions for V verbs and N nouns.

Then, assume we have access to a set of HO-I targets of size T with the same structure
t = (h ∈ RT×4,o ∈ RT×4,v ∈ RT×V ,n ∈ RT×N). To supervise Align-Former, we propose to
minimize the following objective:

min
θ

(A× t, t ′) (1)

where we omit θ from now on for clarity. A is a binary matrix of size P× T where only
few entries are non-zero. A is applied separately on all tuple members, as A× t = (A×
h,A×o,A× v,A×n). Here, A(i, j) = 1 means prediction i matches (i.e., aligns) with target
j to use in supervision. Similarly, A(i, j) = 0 indicates target i should not be used in detector
supervision. To identify which target-prediction pairs should be used in detector supervision,
we rely on geometric and visual priors detailed later.

Finally, replacing t ′ with g(I) =C(Dec(Enc(CNN(I)),Q)) yields:

min(A× t,C(Dec(Enc(CNN(I)),Q))) (2)

which is detailed in four Sections:

• HO-I Align Layer (§3.1) generates the alignment matrix A that pairs few HO-I predic-
tion(s) with HO-I target(s),

• Classification Layer (§3.2) generates human-object bounding boxes and verb-noun clas-
sification via C(x) using human-object features x,

• Feature Extraction Layer (§3.3) generates features via x = Dec(Enc(CNN(I)),Q) via
positional queries Q using Encoder-Decoder architecture,

• HO-I Loss Layer (§3.4) computes the human-object box and verb-noun classification
losses to supervise the detector with the generated HO-I targets t.



KILICKAYA, SMEULDERS: HO-I DETECTION W/O ALIGNMENT SUPERVISION 5

3.1 HO-I Align Layer
HO-I align layer consists of two sub-layers, i) Prior layer that judges the compatibility be-
tween all HO-I targets and predictions, ii) Discretization layer that binarizes the likelihood
values to obtain the final hard-alignment.

3.1.1 Discretization Layer

Assume we are given a scoring function S ∈ RP×T where S(i, j) encodes how compatible
HO-I prediction t ′i and HO-I target t j matches. Our goal is to discretize this matrix to obtain
the final hard-valued alignment decision.

To perform this, we discretize S such that only few members will be non-zeros. Specifi-
cally, given raw values of S, we apply the following operation:

A = σ(S+G)≥ δ (3)

where δ = 0.5 is the hard-threshold value, G is the Gumbel noise [17, 25] added to the matrix
S for regularization, and σ(·) is the sigmoid activation to bound S between [0,1]. Note that
Gumbel-noise is crucial to avoid any degenerate solutions like all 1s.

This operation yields the binary alignment matrix A ∈ {0,1} where only a few entries
are non-zero.

3.1.2 Prior Layer

To compute the compatibility between HO-I targets & predictions, we resort to a convex
combination of geometric and visual priors as S = αg ∗GP+αv ∗V P. Our intuition is that
for an HO-I target to be a good candidate for detector supervision, it needs to be compatible
both in terms of human-object bounding boxes (geometric) and verb-noun classes (visual).

Geometric Prior GP(·) computes the bounding box compatibility of human-objects via L1
distance as:

GP = exp(−
∑i j‖h′i−h j‖+‖o′i−o j‖

τ
) (4)

where the exponential function exp(·) converts the distance values to similarity where τ = 1.

Visual Prior V P(·) computes how well a given target-prediction pair matches in terms of
HO-I classes. Remember that our HO-I targets enumerate existing HO-I from the image in
terms of verb-noun pairs. Therefore, V P(·) is calculated as:

V P = v′ ∗ vT +n′ ∗nT (5)

where verb-predictions are of size v′ ∈ RP×V and verb-targets are of size v ∈ RT×V for V
distinct verbs. Similarly, noun-predictions are of size n′ ∈RP×N and noun-targets n′ ∈RT×N

for N distinct nouns.
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3.2 HO-I Classification Layer
Classifier layer is responsible for generating HO-I predictions t ′ consisting of human-object
bounding box predictions (h′,o′) as well as verb-noun category predictions (v′,n′).

Human-Object Bounding Box Classifiers are two multi-layer perceptrons gh(·) and go(·)
that maps human-object features x to coordinates as (h′,o′) = (σ(gh(x)),σ(go(x))).

Verb-Noun Classifiers are also two multi-layer perceptrons as gv(·) and gn(·) that learns to
map human-object features x to corresponding verb-nouns as (v′,n′) = (σ(gv(x)),(gn(x))).

3.3 HO-I Feature Extraction Layer
Our backbone needs to encode: i) Object-object relations, ii) Relative object positions that
are critical to perform HO-I alignment and detection. To that end, we implement the feature
extractor as a visual-transformer based on DETR [4]. The feature extractor yields human-
object features x ∈RP×D, and consists of three sub-layers: Backbone, Encoder and Decoder,
which are detailed below.

Backbone (x = CNN(I)). Backbone is a deep CNN [15] that extracts global feature maps
from the input image I of size x ∈RH×W×C where [H,W ] are the height-width of the feature
map, and C is the number of channels.

Encoder (x = Enc(x)). Encoder further processes the global feature map from the backbone
to increase positional and contextual information. We first reduce the number of channels
from the backbone to a much smaller size via 1× 1 convolutions of C×D. Then, the re-
sulting feature map RH×W×D is collapsed in the spatial dimension as RD×HW where each
pixel becomes a "token" represented by D dimensional features. Finally, this feature un-
dergoes a few self-attention operations via few multi-layer perceptrons, residual operations,
and dropout. At each step, pixel positions are added to the feature map to retain position
information.

Decoder (x = Dec(x,Q)). The Decoder is a combination of self-attention and cross-attention
layers, which yields the final human-object features. The Decoder takes as input the Encoder
output x ∈ RD×HW as well as fixed positional query embeddings Q ∈ RP×D. Decoder alter-
nates between the cross-attention between the feature map x and Q, as well as self-attention
across queries. Cross-attention extracts features from the global feature maps, whereas self-
attention represents object-object relations necessary for HO-I detection. Decoder is imple-
mented as multi-layer perceptrons. Final output is x ∈ RP×D that encodes positional and
appearance-based representations of potential human-object pairs within the image.

3.4 HO-I Loss Layer
Our loss function ensures that the predicted human-object bounding boxes as well as the
verb-noun predictions are in line with the aligned HO-I targets.

The loss function L is a composite of bounding box, classification, and sparsity losses
as L= Lbox +Lclass +Lsparse. Here, Lbox computes the L1 distances between human-object
predictions and (aligned) targets as Lbox = Lhuman +Lob ject . And, Lclass = Lverb +Lnoun are
implemented via classical cross-entropy. As there can be multiple verbs for each instance,
we use sigmoid activation before computing the verb loss.
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Sparsity Loss. Finally, sparsity loss minimizes Lsparse =
1

P×T ∑i j Ai j where 1
P×T is a con-

stant normalizing factor to bound the loss. This ensures the sum over all entries within the
alignment matrix A is minimized, leading to only few pairs of HO-I predictions and targets
to be aligned for further supervision.

Implementation. We set the number of predictions as |P| = 100. Our network is imple-
mented using PyTorch [26]. Feature size D from the last layer of the Decoder is set to
D = 256. Both human-object bounding box classifiers and verb and noun predictors are 2-
layer perceptrons with ReLU activation in between.Initial learning rate is set to 10−6 for the
ResNet backbone and 10−5 for the rest of the parameters. We use weight-decay to regularize
the network with 10−4. We train the network for 150 epochs with an effective batch size of
16 over 8 GPU Titan cards. We decay the learning rate linearly with 10−1 after epoch 100.

4 Experimental Setup

Datasets. We experiment on two large-scale standard datasets, namely HICO-DET [5] and
V-COCO [13]. i) HICO-DET contains 38k images for training and 9.6k images for test-
ing. Images contain 117 distinct verbs and 80 distinct nouns together, making 600 <verb,
noun> pairs. For each noun, there exists a case of "no-interaction", where at least a single
human and the target object is visible, even though not interacting. We only use HO-I align-
ment annotations for testing, and not training, since our goal is to evaluate HO-I detection
via image-level supervision. ii) V-COCO builds upon MS-COCO [23] where the authors
annotate subset of images with human-object alignments and their (inter-)action. The type
of interactions is riding, reading and smiling. The dataset exhibits 2.5k images for training,
2.8k images for validation, and 4.9k images for testing.

Metric. We use the mean Average Precision (mAP) metric for evaluation as is the stan-
dard [5, 13]. A human-object interaction is true positive only if both humans and objects
have an Intersection-over-Union with a ground-truth HO-I pair above > 0.50 and they are
assigned to the correct interaction categories.

Evaluation. i) HICO-DET: We use the evaluation code presented in the server [2]. We
compute the mean over all three splits of full, rare, and non-rare in HICO-DET. We provide
comparison on three standard splits. Full: All 600 categories, Rare: 138 categories with
less than or equal to 10 training instances, Non-Rare: 462 categories with more than 10
training instances. ii) V-COCO: We use the evaluation code presented in authors’ code [1].
We evaluate using three different standard scenarios. Agent: We report the human interactor
detection performance, Scenario-1: We report the detection of humans and objects together,
Scenario-2: We report the detection of humans and objects where the object predictions for
object-less interactions (i.e., smiling) is ignored.

Baselines. We compare Align-Former to i) Weakly-supervised HO-I detectors: PPR-FCN [31]
and MX-HOI [21] that performs HO-I detection without alignment supervision. ii) Strongly-
supervised variants: To measure the upper bound performance as a reference, we also report
MX-HOI and Align-Former performance via strong alignment supervision.
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5 HO-I Detection on HICO-DET & V-COCO

5.1 Comparison to The State-of-The-Art

Method Backbone Alignment-Supervised? Full Rare Non-Rare

PPR-FCN [31] ResNet-101 7 15.14 10.65 16.48
MX-HOI [21] ResNet-101 7 16.14 12.06 17.50
Align-Former (ours) ResNet-50 7 19.26 14.00 20.83
Align-Former (ours) ResNet-101 7 20.85 18.23 21.64

MX-HOI [21] ResNet-101 3 17.82 12.91 19.17
Align-Former (ours) ResNet-50 3 25.10 17.34 27.42
Align-Former (ours) ResNet-101 3 27.22 20.15 29.57

Table 1: Human-Object Interaction Detection mAP on HICO-DET [5]. Our method outper-
forms existing techniques over all splits of full, rare, and non-rare.

HICO-DET Results are presented at Table 1. Overall, Align-Former outperforms the other
two techniques by 3.12 mAP via ResNet-50 and 4.71 mAP via ResNet-101 on all categories.
This confirms that HO-I detection benefits from the end-to-end alignment of the targets and
the predictions. Our improvement is even more pronounced on the rare split via 6.17 mAP
using ResNet-101, exhibiting the sample efficiency of our technique.

Method Backbone HICO-DET Pre-Trained? Alignment-Supervised? Agent Scenario 1 Scenario 2

Align-Former ResNet-50 7 7 24.63 13.90 14.15
Align-Former ResNet-50 3 7 27.95 15.52 16.06
Align-Former ResNet-101 7 7 20.00 10.44 10.79
Align-Former ResNet-101 3 7 30.02 15.82 16.34

Align-Former ResNet-50 7 3 66.78 50.20 56.42
Align-Former ResNet-101 7 3 68.00 55.40 62.15

Table 2: Human-Object Interaction Detection mAP on V-COCO [13]. Even though the per-
formance is limited when trained from scratch on V-COCO, HICO-DET pre-training yields
a considerable improvement on V-COCO.

V-COCO Results are presented at Table 2. We only compare to our own baselines 2. We
evaluate two different settings. i) Training on V-COCO from scratch: Since the number of
training images are quite limited (only 2k examples), training on V-COCO without alignment
supervision yields limited accuracy on all three settings. ii) Transfer learning from HICO-
Det: where we fine-tune a HICO-DET pre-trained model on V-COCO. In all cases, pre-
training on HICO-DET helps significantly. As one of the major goal of annotation-free
training is the ability to pre-train on large-scale benchmarks, we see this as a promising
direction in HO-I detection with cheap image-level supervision.

We confirm that our model yields competitive performance on HICO-DET against com-
peting benchmarks on all full, rare and non-rare splits, and showcases promising first results
without alignment supervision on V-COCO, especially via transfer learning.

2Neither of the existing baselines (PPR-FCN and MX-HOI) evaluates on V-COCO. Additionally, strongly su-
pervised stream of MX-HOI (No-Frills HO-I [14].) also is not evaluated on V-COCO
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5.2 Further Analysis

In this section, we provide analysis to better understand the contribution of Align-Former.

Verb-level Performance Comparison. We visualize verb-level performance difference be-
tween weakly supervised Align-Former and MX-HOI in Figure 4. We observe that Align-
Former outperforms for pose and part-driven interactions like adjust, swing or kiss, while
underperforming for scene-driven interactions like pay or turn. This indicates end-to-end
learning of pose-based representations is more valuable than hand-crafted pose representa-
tions as in MX-HOI. For more results, refer to our Supp. material.

W/ vs. W/O Alignment Supervision. To better understand the gap between strongly vs.
weakly supervised HO-I detection, we provide results of MX-HOI with strong supervision
on HICO-DET in Table 1 as well as strongly supervised Align-Former in both datasets (Ta-
ble 1- 2). Our method is flexible as it can be easily trained with strong and weak supervision
with no change in architecture, whereas MX-HOI ensembles two CNNs (a weak [31] and
strong [14] CNN) to do so.

We have three main findings. i) Weakly-supervised Align-Former outperforms strongly
supervised MX-HOI on HICO-DET (Table 1), which indicates our method compensates
for the lack of supervision with its representational power. ii) Strongly supervised Align-
Former outperforms weakly supervised Align-Former on both datasets (Table 1- 2). This
shows Align-Former better leverages the supervision when is used, and there is a room for
improvement in weakly-supervised techniques. iii) In Figure 5, we plot the confidence of
strongly vs. weakly supervised Align-Former as a function of number of HO-I tuples in
an image on HICO-DET. As can be seen, strongly-supervised variant retains its performance
whereas weakly-supervised degrades in confidence, which may help explain the performance
gap between the two variants of Align-Former.

ResNet-101 vs. ResNet-50. We implement Align-Former with ResNet-50 and 101. Even
though we do not observe significant difference at the verb- or object- level, the difference
is at the interaction-level. Our findings are: i) ResNet-101 outperforms ResNet−50 on both
datasets across all settings, ii) Surprisingly, ResNet-101 outperforms especially on the rare
split of HICO-DET, and exhibits better transferability to V-COCO, despite higher number of
parameters.
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Figure 6: a) Attention analysis of Align-Former reveals the focus on body-part and full-
body. b) Qualitative analysis of Align-Former reveals it can detect both dynamic and static
interactions.

Qualitative Inspection. i) Attention Analysis: To understand where Align-Former is look-
ing at to perform HO-I alignment and detection, we present the attention matrix for a set of
queries from the last layer of the Decoder in Figure 6-(a). We observe that Align-Former at-
tends on body-parts when the visual information is sufficient, and full-body when the human-
object has small scale. ii) Qualitative Results: Finally, we visualize high-confident detection
examples in Figure 6-(b). We observe that Align-Former can detect both dynamic inter-
actions like <kick, sports ball> or static interactions like <eat, sandwich>.
However, our method fails when humans can not be paired with their object of interaction,
as is visualized in the bottom row.

6 Conclusion
This paper addressed HO-I detection from images. We proposed Align-Former, a visual-
transformer based CNN that can learn to detect HO-I without alignment supervision, via
image-level supervision. We equip Align-Former with HO-I align, a novel layer that learns
to select correct detection targets based on geometric and visual priors. We show that Align-
Former outperforms existing techniques for HO-I detection on HICO-DET especially on rare
HO-I, and yields promising results on V-COCO, confirming the efficacy of our method. We
hope our work inspires future research on reducing supervision in HO-I detection.
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