000

004

005

011 012

013014

016

018 019

024

027

031

041

Efficient Video Summarization Using Principal Person Appearance for Video-Based Person Re-Identification

BMVC 2017 Submission # 392 Supplementary Material

1 Derivation of the solution in Section 3.2, equation (9)

In this additional section, we describe details of the derivation for equation (9)~line[238] from equation (7)~line[225] in Section 3.2, **Update** \mathbf{L}_2^{t+1} .

Here, we represent again equation $(7)\sim$ line [225]:

$$\mathbf{L}_{2}^{t+1} = \underset{\mathbf{L}_{2}}{\arg\min} \ \lambda_{L} \|\mathbf{L}_{2}\mathbf{P}\|_{F}^{2} + \frac{\mu_{2}}{2} \|\mathbf{L}_{2} - \mathbf{L}_{3}^{t} - \frac{1}{\mu_{2}} \mathbf{Y}_{2}^{t} \|_{F}^{2}. \tag{1}$$

As we mentioned on the primary paper, the equation (1) is simplified by replacing $\mathbf{L}_3^t + \frac{1}{\mu_2} \mathbf{Y}_2^t = \mathbf{Q}$ as follows:

$$\mathbf{L}_{2}^{t+1} = \underset{\mathbf{L}_{2}}{\arg\min} \ \lambda_{L} \|\mathbf{L}_{2}\mathbf{P}\|_{F}^{2} + \frac{\mu_{2}}{2} \|\mathbf{L}_{2} - \mathbf{Q}\|_{F}^{2}. \tag{2}$$

Now, we want to solve (2) by a closed form based on the element-wise approach. The element of $\mathbf{L}_2\mathbf{P}$ can be expressed as $[\mathbf{L}_2\mathbf{P}]_{i,j} = \sum_{k=1}^{N_s} l_{i,k} \cdot p_{k,j}$. Note that the square of Frobenius norm for a matrix is expressed as $||\mathbf{A}||_F^2 = \sum_i \sum_j |[\mathbf{A}]_{i,j}|^2$. Then, for the element-wise minimization, the necessary condition for an arbitrary element $l_{i,j}$ can be represented as follows:

$$0 = \frac{\partial}{\partial l_{i,j}} \left[\lambda_L \sum_{r=1}^{d} \sum_{c=1}^{N_s - 1} \left| \sum_{k=1}^{N_s} l_{r,k} \cdot p_{k,c} \right|^2 + \frac{\mu_2}{2} \sum_{r=1}^{d} \sum_{c=1}^{N_s} \left| l_{r,c} - q_{r,c} \right|^2 \right],$$

$$= \frac{\partial}{\partial l_{i,j}} \left[\lambda_L \sum_{r=1}^{d} \sum_{c=1}^{N_s - 1} \left| \sum_{k=1}^{N_s} l_{r,k} \cdot p_{k,c} \right|^2 \right] + \mu_2(l_{i,j} - q_{i,j}),$$

$$= \frac{\lambda_L}{\mu_2} \cdot \frac{\partial}{\partial l_{i,j}} \left[\sum_{c=1}^{N_s - 1} \left| \sum_{k=1}^{N_s} l_{i,k} \cdot p_{k,c} \right|^2 \right] + l_{i,j} - q_{i,j}.$$
(3)

The final equation of (3) becomes definitely same with equation (8)~line[231]. The first term of the final equation in (3) is the element-wise derivative of $\|\mathbf{L}_2\mathbf{P}\|_F^2$ with respect to \mathbf{L}_2 ,

^{© 2017.} The copyright of this document resides with its authors. It may be distributed unchanged freely in print or electronic forms.

and it can be reformulated as follows:

$$\frac{\partial}{\partial l_{i,j}} \left[\sum_{r=1}^{N_s-1} |\sum_{c=1}^{N_s} l_{i,c} \cdot p_{c,r}|^2 \right] = \frac{\partial}{\partial l_{i,j}} \left[|\sum_{c=1}^{N_s} l_{i,c} \cdot p_{c,1}|^2 + \dots + |\sum_{c=1}^{N_s} l_{i,c} \cdot p_{c,N_s-1}|^2 \right]. \quad (4)$$

Recall the condition of elements of **P** in equation (2) \sim line[167] to make it simpler, before solving differential equation for (4). Here we show again the condition for an arbitrary element $p_{i,j}$ in **P** as follows:

$$p_{i,j} = \begin{cases} -1 & \text{if } i = j, \\ 1 & \text{if } i = j+1, \quad \forall i \in \{1, ..., N_s\}, \ \forall, j \in \{1, ..., N_s - 1\}. \\ 0 & \text{otherwise}, \end{cases}$$
 (5)

Then the equation (4) can be represented again as follows:

$$\frac{\partial}{\partial l_{i,j}} \left[|l_{i,1} \cdot p_{1,1} + l_{i,2} \cdot p_{2,1}|^2 + |l_{i,2} \cdot p_{2,2} + l_{i,3} \cdot p_{3,2}|^2 + |l_{i,3} \cdot p_{3,3} + l_{i,4} \cdot p_{4,3}|^2 + \dots + \begin{array}{c} 060 \\ 061 \\ 062 \\ 063 \\ 064 \\ 065 \\ 067 \\ 060 \\ 068 \\ 069 \\$$

From equation (6), we can find the completed form of the element-wise derivative of $\|\mathbf{L}_2\mathbf{P}\|$ corresponding to the value of j:

$$\frac{\partial}{\partial l_{i,j}} \left(\| \mathbf{L}_2 \mathbf{P} \|_F^2 \right) = \begin{cases} 2(l_{i,j} - l_{i,j+1}), & \text{if } j = 1, \\ 2(2l_{i,j} - l_{i,j-1} - l_{i,j+1}), & \text{if } 1 < j < N_s, \\ 2(l_{i,j} - l_{i,j-1}), & \text{if } j = N_s. \end{cases}$$
(7) 074

Finally, by substituting (7) into the first term of (3), the closed form on a coordinate decent manner can be directly derived as the solution of equation (9) \sim line[238]:

$$l_{i,j}^{(t+1)} = \begin{cases} \frac{2\tau \cdot l_{i,j+1}^{(t)} + q_{i,j}}{2\tau + 1}, & \text{if } j = 1, \\ \frac{2\tau \cdot (l_{i,j-1}^{(t)} + l_{i,j+1}^{(t)}) + q_{i,j}}{4\tau + 1}, & \text{if } 1 < j < N_s, \\ \frac{2\tau \cdot l_{i,j-1}^{(t)} + q_{i,j}}{2\tau + 1}, & \text{if } j = N_s. \end{cases}$$

$$(8) \ 083$$

$$084$$

$$085$$

$$086$$

046047

056 057

069

070

071072

076

079