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Abstract

We propose a multiple-kernel local-patch descriptor based on efficient match kernels
of patch gradients. It combines two parametrizations of gradient position and direction,
each parametrization provides robustness to a different type of patch miss-registration:
polar parametrization for noise in the patch dominant orientation detection, Cartesian for
imprecise location of the feature point. Even though handcrafted, the proposed method
consistently outperforms the state-of-the-art methods on two local patch benchmarks.

1 Introduction
Representing and matching local features is an essential step of several computer vision
tasks. It has attracted a lot of attention in the last decades, when local features still were a
required step of most approaches. Despite the large focus on Convolutional Neural Networks
(CNN) to process whole images, local features still remain important and necessary for tasks
such as Structure-from-Motion (SfM) [11], stereo matching [20], or retrieval under severe
change in viewpoint or scale [26].

Recently, the focus has shifted from hand-crafted descriptors to CNN-based descriptors.
Learning such descriptors relies on large training sets of patches, that are commonly pro-
vided as a side-product of SfM [34]. Remarkable performance is achieved on a standard
benchmark [5]. However, recent work [6, 27] shows that CNN-based approaches do not
necessarily generalize equally well on different tasks or different datasets. Hand-crafted
descriptors still appear an attractive alternative.

We build upon the hand-crafted kernel descriptor proposed by Bursuc et al. [9] that is
shown to have good performance, even compared to learned alternatives. Its few parameters
are easily tuned on some validation set, while it is shown to perform well on multiple tasks,
as we confirm in our experiments. Post-processing with PCA and power-law normalization
are shown beneficial.

Visualizing and analyzing the parametrization of this kernel descriptor allows us to un-
derstand its advantages and disadvantages, mainly the undesirable discontinuity around the
patch center. We propose to combine multiple parametrizations and kernels to achieve ro-
bustness to different types of patch miss-registration. Experimental evaluation shows that the
proposed descriptor outperforms all other approaches on two benchmarks designed to com-
pare local-feature descriptors, specifically on the newly introduced HPatches dataset [6], and
on the Phototourism benchmark [34].

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Frahm, Fite-Georgel, Gallup, Johnson, Raguram, Wu, Jen, Dunn, Clipp, Lazebnik, etprotect unhbox voidb@x penalty @M  {}al.} 2010

Citation
Citation
{Mishkin, Matas, Perdoch, and Lenc} 2015

Citation
Citation
{Schönberger, Radenovi¢, Chum, and Frahm} 2015

Citation
Citation
{Winder and Brown} 2007

Citation
Citation
{Balntas, Riba, Ponsa, and Mikolajczyk} 2016{}

Citation
Citation
{Balntas, Lenc, Vedaldi, and Mikolajczyk} 2017

Citation
Citation
{Schönberger, Hardmeier, Sattler, and Pollefeys} 2017

Citation
Citation
{Bursuc, Tolias, and J{é}gou} 2015

Citation
Citation
{Balntas, Lenc, Vedaldi, and Mikolajczyk} 2017

Citation
Citation
{Winder and Brown} 2007



2 MUKUNDAN, TOLIAS, CHUM: MULTIPLE-KERNEL LOCAL-PATCH DESCRIPTOR

2 Related work
We review prior work on local descriptors, covering both hand-crafted and learned ones.

Hand-crafted descriptors attracted a lot of attention for a decade and a variety of ap-
proaches and methodologies exists. A popular direction is that of gradient histogram-based
descriptors, where the most popular representative is SIFT [17]. Different variants focus on
pooling regions [16, 19], efficiency [1, 30], invariance [16] or other aspects [14]. Other are
based on filter-bank responses [15], patch intensity [10, 25] or ordered intensity [21].

Kernel descriptors based on the idea of Efficient Match Kernels (EMK) [7] encode en-
tities inside a patch (such a gradient, color, etc) in a continuous domain, rather than as a
histogram. The kernels and their few parameters are often hand-picked and tuned on a val-
idation set. Kernel descriptors are commonly represented by a finite-dimensional explicit
feature maps. Quantized descriptors, such as SIFT, can be also interpreted as kernel descrip-
tors [8, 9].

Learned descriptors commonly require annotation at patch level. Therefore, research
in this direction is facilitated by the release of datasets that are originate from an SfM sys-
tem [22, 34]. Such training datasets allow effective learning of local descriptors, and in
particular, their pooling regions [29, 34], filter banks [34], transformations for dimensional-
ity reduction [29] or embeddings [23].

Kernelized descriptors are formulated within a supervised framework by Wang et al. [33],
where image labels enable kernel learning and dimensionality reduction. In this work, we
rather focus on minimal learning in the form of discriminatively learned projections. This is
several orders of magnitude faster to learn than other learning approaches.

Recently, learning local descriptor is dominated by deep learning. The network architec-
tures are smaller than the corresponding ones performing on images, and use a large amount
of training patches. Among representative examples is the work of Simo-Serra et al. [28]
training with hard positive and negative examples or the work of Zagoruyko [35] where a
central-surround representation is found to be immensely beneficial. CNN-based approaches
are seen as joint feature, filter bank, and metric learning [12]. Finally, the state of the art
consists of shallower architectures with improved ranking loss [4, 5]. Despite obtaining im-
pressive results on a standard benchmark, CNN-based approaches do not generalize well to
other datasets and tasks [6, 27].

A post-processing step is common to both hand-crafted and learned descriptors. This
post-processing ranges from simple `2 normalization, PCA dimensionality reduction, to
transformations learned on annotated data.

3 Preliminaries
Kernelized descriptors. In general lines we follow the formulation of Bursuc et al. [9]. We
represent a patch P as a set of pixels p ∈ P and compare two patches P and Q via match
kernel

M(P,Q) = ∑
p∈P

∑
q∈Q

k(p,q), (1)

where kernel k : Rn×Rn→ R is a similarity function, typically non-linear, comparing two
pixels. EMK uses an explicit feature map ψ : Rn→ Rd to approximate this result as

M(P,Q) = ∑
p∈P

∑
q∈Q

k(p,q)≈ ∑
p∈P

∑
q∈Q

ψ(p)>ψ(q) = ∑
p∈P

ψ(p)> ∑
q∈Q

ψ(q). (2)
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Vector V(P) = ∑p∈P ψ(p) is a kernelized descriptor (KD), associated with patch P , used to
approximateM(P,Q), whose explicit evaluation is costly. The approximation is given by
a dot product V(P)>V(Q), where V(P) ∈ Rd . To ensure a unit self similarity, `2 normal-
ization by a factor γ is introduced. The normalized KD is then given by V̄(P) = γ(P)V(P),
where γ(P) = (V(P)>V(P))−1/2.

Kernel k comprises product of kernels that act on scalar pixel attributes

k(p,q) = k1(p1,q1)k2(p2,q2) . . .kn(pn,qn), (3)

where kernel kn is pairwise similarity function for scalars and pn are pixel attributes such
as position and gradient orientation. Feature map ψn corresponds to kernel kn and feature
map ψ is constructed via Kronecker product of individual feature maps ψ(p) = ψ1(p1)⊗
ψ2(p2)⊗ . . .⊗ψn(pn). Due to the mixed product property it holds that ψ(p)>ψ(q) ≈
k1(p1,q1)k2(p2,q2) . . .kn(pn,qn).

Feature maps. As non-linear kernel for scalars we use the normalized Von Mises prob-
ability density function1, which is used for image [31] and patch [9] representation. It
is parametrized by κ controlling the shape of the kernel, where lower κ corresponds to
wider kernel. We use a stationary kernel that, by definition, depends only on the differ-
ence ∆n = pn− qn, i.e. kVM(pn,qn) := kVM(∆n). We adopt a Fourier series approximation
with N frequencies that produces a feature map ψVM : R→ R2N+1. It has the property that
kVM(pn,qn) ≈ ψVM(pn)

>ψVM(qn). The reader is encouraged to read prior work for details
on these feature maps [32], which are previously used in various contexts [9, 31].

Descriptor post-processing. It is known that further descriptor post-processing [3, 9,
24] is beneficial. In particular, KD is further centered and projected as

V̂(P) = A>(V̄(P)−µ), (4)

where µ ∈ Rd and A ∈ Rd×d are the mean vector and the projection matrix. These are
commonly learned by PCA [13] or with supervision [24]. The final descriptor is always
`2-normalized in the end.

4 Method
In this section we consider different patch parametrizations and kernels that result in different
patch similarity. We discuss the benefits of each and propose how to combine them. We
further learn descriptor transformation with supervision and provide useful insight on how
patch similarity is affected.

Patch attributes. We consider a pixel p to be associated with coordinates px, py in
Cartesian coordinate system, coordinates pρ , pφ in polar coordinate system, pixel gradient
magnitude pm, and pixel gradient angle pθ . Angles pθ , pφ ∈ [0,2π], distance from the center
pρ is normalized to [0,1], while coordinates px, py ∈ {1,2, . . . ,W} for W ×W patches. In
order to use feature map ψVM, attributes pρ , px, and py are linearly mapped to [0,π]. The
gradient angle is expressed w.r.t. the patch orientation, i.e. pθ directly, or w.r.t. to the position
of the pixel. The latter is given as p

θ̃
= pθ − pφ .

1Also known as the periodic normal distribution
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Figure 1: Kernel approximations that we use for pixel attributes. Parameter κ and the number
of frequencies N define the final shape. The choice of kernel parameters is guided by [9].

Patch parametrizations. Composing patch kernel k as a product of kernels over differ-
ent attributes enables easy design of various patch similarities. Correspondingly, this defines
different KD. All attributes px, py, pρ , pθ , pφ , and p

θ̃
are matched by the Von Mises kernel,

namely, kx, ky, kρ , kθ , kφ , and k
θ̃

parameterized by κx, κy, κρ , κθ , κφ , and κ
θ̃

, respectively.
In this work we focus on the two following match kernels over patches. One in polar

coordinates

M
φρθ̃

(P,Q) = ∑
p∈P

∑
q∈Q

pgqg
√

pm
√

qmkφ (pφ ,qφ )kρ(pρ ,qρ)kθ̃
(p

θ̃
,q

θ̃
), (5)

and one in cartesian coordinates

Mxyθ (P,Q) = ∑
p∈P

∑
q∈Q

pgqg
√

pm
√

qmkx(px,qx)ky(py,qy)kθ (pθ ,qθ ), (6)

where pg = exp(−p2
ρ) gives more importance to central pixels, in a similar manner to SIFT.

The KD for the two cases are given by

V
φρθ̃

(P) = ∑
p∈P

pg pmψφ (pφ )⊗ψρ(pρ)⊗ψ
θ̃
(p

θ̃
) = ∑

p∈P
pg
√

pmψ
φρθ̃

(p) (7)

Vxyθ (P) = ∑
p∈P

pg pmψx(px)⊗ψy(py)⊗ψθ (pθ ) = ∑
p∈P

pg
√

pmψxyθ (p). (8)

The V
φρθ̃

variant is exactly the one proposed by Bursuc et al. [9], considered as a baseline in
this work. Different parametrizations result in different patch similarity, which is analyzed
in the following. In Figure 1 we present the approximation of kernels used per attribute.

Descriptor post-processing with supervision. Mean vector µ and projection matrix A
can be learned in an unsupervised way, e.g. by PCA on a sample descriptor set. In such case,
matrix A is formed by the eigenvectors as columns. This is the case in prior work, not only
for local descriptors [9] but also for global image representation [13]. It was previously ob-
served, and our experiments confirm, that discriminative projection [18] learned on labeled
data outperforms post-processing by generative model, such as PCA. The discriminative pro-
jection is composed of two parts, a whitening part and a rotation part. The whitening part is
obtained from the intraclass (matching pairs) covariance matrix, while the rotation part is the
PCA of the interclass (non-matching pairs) covariance matrix in the whitened space. Vector
µ is the mean descriptor vector. To reduce the descriptor dimensionality, only eigenvectors
corresponding to the largest eigenvalues are used. We refer to this transformation as learned
(supervised) whitening (LW) in the rest of the paper.
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Visualization of patch similarity. We define pixel similarityM(p,q) as kernel response
between pixels p and q, approximated asM(p,q) ≈ ψ(p)>ψ(q). To show a spatial distri-
bution of the influence of pixel p, we define a patch map of pixel p. The patch map has the
same size as the image patches, for each pixel q of the patch, mapM(p,q) is evaluated for
some constant value of qθ .

For example, in Figure 2 patch maps for different kernels are shown. The position of p
is denoted by × symbol. The value of pθ = 0 and qθ = 0 for all spatial locations of q in the
top row and qθ =−π/8 in the bottom row. The visualization shows the discontinuity of the
pixel similarity impact of the V

φρθ̃
descriptor near the center of the patch. This is caused by

the polar coordinate system where a small difference in the position near the origin causes
large difference in φ and θ̃ . Also in the bottom row we see that using the relative gradient
direction θ̃ allows to compensate for imprecision caused by small patch rotation, i.e. the
most similar pixel is not the one at the location of p with different θ̃ , but a rotated pixel
with more similar value of θ̃ . Finally, we observe that the kernel parametrized by Cartesian
coordinates and absolute angle of the gradient (Vxyθ , third column) is insensitive to small
translations, i.e. feature point displacement.

We additionally construct patch maps in the case of descriptor post-processing by a linear
transformation, e.g. descriptor whitening. Now the contribution of a pixel pair is given by

M̂(p,q) = (A>(ψ(p)−µ))>(A>(ψ(q)−µ)) (9)

= (ψ(p)−µ)>AA>(ψ(q)−µ) (10)

= ψ(p)>AA>ψ(q)−ψ(p)>AA>µ−ψ(q)>AA>µ +µ
>AA>µ. (11)

The last term is constant and can be ignored, while if A is a rotation matrix then only shift-
ing by µ affects the similarity. After the transformation, the similarity is no longer shift-
invariant. The non-linear post-processing, such as power-law normalization or simple `2
normalization cannot be visualized, as it acts after the pixel aggregation2.

Figure 3 we shows patch maps for V
φρθ̃

in the case of PCA or LW post-processing.
PCA is shown to have some small effect on the similarity, while LW significantly changes
the derived shape. It implicitly affects the shape of the kernels used; observe that the kernels
go wider in the circular direction.

Combining kernel descriptors. We propose to take advantage of both parametrizations
V

φρθ̃
and Vxyθ , by summing their contribution. This is performed by simple concatenation

of the two descriptors. Finally, whitening is jointly learned and dimensionality reduction is
performed.

In Figure 4 we show patch maps for the individual and combined representation, before
and after applying learned whitening. Observe how the combined one better behaves around
the center but also how the final similarity is formed after the whitening.

2Details are omitted due to lack of space.
3Ten isocontours are sampled uniformly. The similarity is shown in a relative manner and, therefore, the absolute

scale is missing (e.g. in Figure 2 the maximum value is larger in top row compared to bottom due to kθ (0)> kθ (π/8)).
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∆

θ
=

0
∆

θ
=

π
/8

kφ kρ kθ kφ kρ k
θ̃

kxkykθ kxkyk
θ̃

Figure 2: Patch maps for different parametrizations and kernels. We present two
parametrizations in polar and two in cartesian coordinates, with absolute or relative gra-
dient angle for each one. ∆θ is fixed and pixel p is shown with “×”. At the bottom of each
column the kernels (patch similarity) approximated are shown.3

∆θ = 0
pθ =0
qθ =0

∆θ = π/8

pθ =0
qθ =−π/8

No transformation PCA Learned whitening (LW)

Figure 3: Patch maps for φρθ̃ parametrization and kernels. ∆θ is fixed by choosing fixed
values for pθ and qθ . Pixel p is shown with “×”. Three different cases are shown: without
transformation, with PCA transformation and with transformation by supervised whitening.3
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kφ kρ k
θ̃

kxkykθ kφ kρ k
θ̃

+kxkykθ kφ kρ k
θ̃

(LW) kxkykθ (LW) kφ kρ k
θ̃

+kxkykθ (LW)

Figure 4: Patch maps for different parametrizations and kernels. We present polar and
cartesian parametrization separately, and their combination by descriptor concatenation. We
present the case for 3 different pixels p (one pixel per row) shown with “×”. ∆θ = 0 in all
examples, in particular pθ = 0 and qθ =0. The cases without descriptor transformation and
with transformation by supervised whitening (LW) are shown.3

5 Experiments

We evaluate the method on two benchmarks, namely the widely used Phototourism (PT)
dataset [34], and the recently released HPatches (HP) dataset [6]. We first compare the
proposed method with the baseline method of Bursuc et al. [9] and then with the state-of-
the-art methods on the two datasets. In all our experiments with descriptor post-processing
the dimensionality is reduced to 128 except for the cases where the input descriptor is already
of lower dimension.

Datasets and protocols. The Phototourism dataset contains three sets of patches, namely,
Liberty (Li), Notredame (No) and Yosemite (Yo). Additionally, labels are provided to indi-
cate the 3D point that the patch corresponds to, thereby providing supervision. It has been
widely used for training and evaluating local descriptors. Performance is measured by the
false positive rate at 95% of recall (FPR95). The protocol is to train on one of the three sets
and test on the other two. An average over all six combinations is reported.

The HPatches dataset contains local patches of higher diversity, is more realistic, and
during evaluation the performance is measured on three tasks: verification, retrieval, and
matching. We follow the standard evaluation protocol [6] and report mean Average Pre-
cision (mAP). When evaluating on HP, we follow the protocol and learn the whitening on
PhotoTourism Liberty, or on a pre-defined split of test and train of the HPatches dataset
provided by the authors.
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Test Liberty Notredame Yosemite

Train D Mean No Yo Li Yo No Li

polar [9] 175 22.42 24.34 24.34 16.06 16.06 26.85 26.85
cartes 63 35.87 34.06 34.06 34.10 34.10 39.47 39.47
polar+ cartes 238 25.37 26.16 26.16 20.04 20.04 29.91 29.91
polar+PCA [9] 128 8.30 12.09 13.13 5.16 5.41 7.52 6.49
polar [9]+LW 128 7.06 8.55 10.48 4.40 3.94 8.86 6.12
cartes+LW 63 15.13 17.31 20.34 10.90 11.85 16.84 13.55
polar+ cartes+LW 128 5.98 7.44 9.84 3.48 3.54 6.56 5.02

Table 1: Performance comparison on Phototourism dataset between the baseline approach
and our combined descriptor. We further show the benefit of learned whitening (LW) over
the standard PCA followed by square-rooting. FPR95 is reported for all methods.

Method Verification Matching Retrieval

polar [9] 80.77 32.51 48.04
cartes 70.67 15.79 30.73
polar+ cartes 77.97 29.34 44.23
polar+PCA [9] 87.11 38.45 54.81
polar [9]+LW 88.00 41.91 58.80
cartes+LW 85.13 33.77 52.94
polar+ cartes+LW 88.64 43.81 61.21

Table 2: Performance comparison of the baseline approach and our combined descriptor via
mAP on HPatches dataset. PCA and LW are learned on a subset of HP.

Comparison with the baseline. The results of the experimental evaluation are shown in
Tables 1 and 2 for the PT and HP datasets, respectively. For all compared methods, including
the baseline, we observed that in the descriptor post-processing stage, the discriminative
whitening (marked LW) outperforms PCA followed by square-rooting (originally proposed
in [9]). The difference is observed among 4th and 5th row of Tables 1 and 2.

Polar parametrization with the relative gradient direction (polar) significantly outper-
forms the Cartesian parametrization with the absolute gradient direction (cartes). After the
descriptor post-processing (polar + LW vs. cartes + LW), the gap is reduced. The perfor-
mance of the combined descriptor (polar + cartes) without descriptor post-processing is
worse than the baseline descriptor. That is caused by the fact, that the two descriptors are
combined with an equal weight, which is clearly suboptimal. No attempt is made to esti-
mate the mixing parameter explicitly, as this is implicitly done in the post-processing stage.
The jointly whitened combination of the two parametrizations (last row of Tables 1 and 2)
consistently outperforms the baseline method.

Comparison with the State of the Art. We compare the performance of proposed
method with previously published results on Phototourism dataset in Table 3. Our method
obtains the best performance, while this is achieved with the supervised whitening which is
much faster to learn than CNN descriptors. It only takes less than 10 seconds to compute on
a modern computer(4 cores, 2.6Ghz) for the polar + cartes case on the Phototourism Liberty
dataset, as opposed to several hours and GPUs for the deep learning approaches.
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Test Liberty Notredame Yosemite

Train D Mean No Yo Li Yo No Li

DC−S2S [35] 512 9.67 8.79 12.84 4.54 5.58 13.02 13.24
DDESC [28] 128 9.85 8.82 8.82 4.54 4.54 16.19 16.19
Matchnet [12] 4096 7.75 6.90 10.77 3.87 5.76 8.39 10.88
T F−M [5] 128 6.47 7.22 9.79 3.12 3.85 7.08 7.82
polar+ cartes+LW 128 5.98 7.44 9.84 3.48 3.54 5.02 6.56

Table 3: Performance comparison with the state of the art on Phototourism dataset. FPR95
is reported for all methods and the best score per dataset is shown in bold.

Verification Matching Retrieval

T F−R 81.92 PCW 33.69 +T F−R 40.23
+T F−M 82.69 +T F−M 34.29 +SIFT 40.36
PCW 82.94 +T F−R 34.37 +RSIFT 43.84
+DC−S2S 83.03 +DDESC 35.44 +DDESC 44.55
+T F−R 83.24 +RSIFT 36.77 PCW 48.26
PCW? 88.64 PCW? 43.81 PCW? 61.21

Verification Matching Retrieval

DC−S 70.04 RSIFT 27.22 DC−S2S 34.76
DC−S2S 78.23 DC−S2S 27.69 DC−S 34.84
DDESC 79.51 DDESC 28.05 T F−R 37.69
T F−M 81.90 T F−R 30.61 T F−M 39.40
T F−R 81.92 T F−M 32.64 DDESC 39.83
PCW 82.94 PCW 33.69 PCW 48.26

Table 4: Best performing methods on HP dataset. On the left we compare all methods, while
on the right only methods that have not used any part of HPatches for training. The “+”
refers to ZCA used in [6]. Our method is noted by PCW (polar + cartes + LW ) and shown
in bold, while training whitening on a subset of HP is denoted by ?. Otherwise it is trained
on Liberty (PT). Previously top performing methods are DC-S2S [35], DDESC [28], TF [5],
and RSIFT [2]. Top 6 methods per task are ranked and shown. Full list of methods in [6].

The comparison on the HPatches dataset is reported in Table 4. On the left all methods
are considered, independently whether the splits of HPatches have been used for training
or not. The table on the right compares only those methods that have not used any part of
HPatches for training. In this case, the post-processing (LW) of our method was learned on
Phototourism Liberty, as done in [6] so that the numbers are directly comparable. Note that
the proposed method trained on Phototourism Liberty scores high even among the methods
that used the split of HPatches in training.

6 Conclusions
We have proposed a multiple-kernel local-patch descriptor combining two parametrizations
of gradient position and direction. Each parametrization provides robustness to a different
type of patch miss-registration: polar parametrization for noise in the dominant orientation,
Cartesian for imprecise location of the feature point. Learning a discriminative whitening
implicitly sets the relative weight between the two representations. The proposed method
consistently outperforms prior methods on two datasets and three tasks.
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