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Abstract

In this paper, we address automatic license plate recognition (ALPR) in the wild.
Such an ALPR system takes an arbitrary image as input and outputs the recognized li-
cense plate numbers. In the detection stage, we adopt a cascade structure comprising of
a fast region proposal network and a R-CNN network. The R-CNN network not only
eliminates false alarms but also regresses corner positions for each detected plate. This
allows us to estimate an affine transformation matrix to rectify the extracted plates. In
the recognition stage, we propose an innovative structure composed of parallel spatial
transform networks and shared-weight recognizers. The system is trained and evaluated
on a Chinese license plate dataset with over 18K images. Results show that our detector
performs better than faster R-CNN (VGG) which is 1.5x slower in testing and 57x larger
in model size. The recognizer is also significantly better than existing solutions, reducing
57.5% of the errors of a state-of-the-art character sequence encoding scheme.

1 Introduction
Automatic license plate recognition (ALPR) is an important computer vision task. It finds
many valuable applications in smart cities, including electronic payment, on-road law en-
forcement and surveillance. Conventionally, an ALPR system is composed of four stages
[4], namely image acquisition, license plate extraction, license plate segmentation and char-
acter recognition. When the image acquisition stage is under control, the entire task is pretty
much solved. Basic algorithms relying on handcrafted image features could work pretty
well[1, 4]. However, if the input image is taken in the wild, ALPR remains to be a challeng-
ing problem because license plates could appear at any places of an image with complicated
backgrounds. Besides, the plates could be small, tilted, blurred or under uneven illumi-
nation. Fig.1 shows a few examples of the input images and zoomed-in license plates we
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handle in this work. The uncontrolled image acquisition stage brings great difficulties to the
subsequent stages of ALPR.

Figure 1: Examples of the input images and zoomed-in license plates we handle in this work.

License plate extraction can be solved by text localization and classification in cascade.
Recently, with the explosive interests in deep learning, there have emerged many CNN-based
text localization solutions[8, 9, 10, 22, 23]. Using such text spotting networks for license
plate detection is a feasible solution, but not an efficient one for our task. This is because
images taken in the wild exhibit complicated background with various types of text blocks,
and license plates only occupy a very small portion of them. We believe that a dedicated
license plate detector is more efficient.

After the license plate is extracted, recognition can be achieved by character segmenta-
tion and recognition [4]. Accurate character segmentation is of paramount importance to the
subsequent recognition stage, but conventional methods based on handcrafted features only
work well when the license plate is accurately extracted and well rectified. Again, this is dif-
ficult for images taken in the wild. Although research efforts have been made on recognizing
text in natural images[12, 14, 18], these methods mainly focus on handwriting or printed
words. The input of these methods is assumed to be well-trimmed image patches, and few
of them take the localization error into consideration. In literature, the system designed by
Li and Shen [15] appears to be the most related work to ours. After license plate detection,
it treats license recognition as a sequence labeling problem and solves it by leveraging CNN
and bidirectional long short term memory (LSTM) network. However, we discover that this
method is very fragile to distortions caused by viewpoint change.

We aim to design a fast and accurate ALPR system for images taken in the wild. Contri-
butions are made in both license plate detection and recognition. In the detection stage, we
adopt a cascade structure composed of region proposal network (RPN) and R-CNN classifier.
The RPN network takes downsampled images as input, so it is fast and effective. Once the
region of interest (RoI) is proposed, the corresponding image patch is cropped from the orig-
inal high-resolution image. The R-CNN not only performs classification, but also regresses
the four corner positions for each positive license plate. The corner positions are used to
calculate an affine transformation matrix for license patch rectification. This step will be
shown to be very important as it significantly improves the subsequent recognition accuracy.
License plate recognition is achieved by a parallel spatial transform network (STN) with
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shared weight classifiers. The unsupervised STN implicitly performs character segmenta-
tion and focuses on the image pixels of each character. Finally, the shared weight classifier
is used to recognize each character. The innovative shared-weight recognizer significantly
reduces model size, and more importantly it makes better use of the limited training data.

We currently focus on Chinese license plates although the proposed methods can be
extended with small modifications to detect and recognize license plates in other countries.
We have collected and annotated our own dataset with more than 18K images. Extensive
experiments show that our solution outperforms state-of-the-art solutions in both license
plate detection and recognition.

The rest of the paper is organized as follows. Section 2 and Section 3 present the design
of license plate detector and recognizer, respectively. Section 4 details the training procedure
and Section 5 presents the evaluation results. We finally conclude in Section 6.

2 License Plate Detection
License plate detection is treated as an object detection problem. For CNN-based object
detection, both proposal-based methods [6, 7, 16, 20] and single shot solutions[5, 17, 19]
have shown their respective advantages. In this work, we adopt a proposal-based method,
as shown in Fig. 2. The cascade structure is inspired by a recent face detector [2]. First, a
light-weight RPN network [20] takes the downsampled image as input and generates license
plate candidates. Then, a sampler extracts the regions of interest (RoIs) from the original
high-resolution image. The extracted patches are classified by the R-CNN network. For
each detected plate, the regression branch predicts the coordinates of four corner points.
This information will be very useful in the subsequent recognition stage.

Region Proposal 
Network

RoIs

Sampler

...

R-CNN

Classification 
Results

Regressed
Corner Points

Down-
sample

Figure 2: The proposed detector first generates region proposals from the downsampled im-
age, and then samples image patches from the original image according to the RoIs. Last, the
R-CNN module classifies each patch and regresses the corner points if the patch is classified
as a license plate.

The reasons why we do not use the state-of-the-art faster R-CNN framework [20] are
two-fold. First, the features extracted from the RPN is too coarse for precise classification
and corner regression. Second, license plates are usually "small" in an image. Doing separate
feature extraction will not cost too much. Besides, such a design allows the RPN to take a
downsampled image as input, greatly reducing the complexity of RPN.

Specifically, following the design in [2], the base network of RPN consists of three con-
volution layers followed by inception block 3a and 3b of GoogLeNet v2 [21]. This design
strikes a good balance between recall performance and runtime speed. Configuration of the
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three convolution layers in RPN are summarized in Table 1. RPN aims at generating license
plate candidates and regressing their bounding box locations. The loss of RPN network con-
sists of classification loss and smooth-L1 bounding box regression loss as defined in [20].
Note that RPN has a feature stride of 8 and the receptive field is not small. In addition, its
input is a downsampled image for efficiency, so its corresponding feature maps of license
patch lacks locality.

Table 1: Configuration of First Three Conv Layers of RPN
conv1 pool1 conv2_1 conv2_2 pool2

Stride 2 2 1 1 2
Kernel size 7×7 2×2 1×1 3×3 2×2
Activation ReLU - ReLU ReLU -

# Output channel 64 64 128 288 288

The R-CNN network does not share features with RPN. Instead, it takes as input the
RGB values of each license patch, which is sampled from the original image and then scaled
to resolution of 48× 120. As such, finer local features can be utilized for better classifica-
tion and corner regression. Feature extraction in the R-CNN network is achieved by three
convolution layers. The configuration is summarized in Table 2. The extracted features are
fed into two fully connected branches, performing classification and regression, respectively.
The loss function of the R-CNN contains two part, one is the cross-entropy classification loss
and the other is the smooth-L1 corner point regression loss:

LR−CNN =
1
N

Σ
N
i=1CrossEntropy(pi, p∗i )+λ

1
N

Σ
N
i=1 p∗i SmoothL1(ti, t∗i ) (1)

where N is the number of training samples, p∗i equals 1 when the ith sample is positive, other-
wise 0. ti = [ti,x1, ..., ti,x4, ti,y1, ..., ti,y4] is the predicted corner shifts and t∗i is the groundtruth.
The x-axis (or y-axis) shift values are normalized by the width(or height) of its correspond-
ing proposal bounding box, for example, when ti,x1 is 0.05 and the width of the ith proposal
box is 100, the shift value is 5 pixels. In our R-CNN, the groundtruth shift values are allowed
to be negative or greater than 1 such that the regressor can imagine where the actual corner
points are if the license plate proposal is truncated.

Table 2: Configuration of R-CNN network
conv_1 pool_1 conv_2 pool_2 conv_3 fc1 fc2

Stride 1 2 1 2 2 - -
Kernel size 5×5 2×2 5×5 2×2 3×3 - -
Activation ReLU - ReLU - ReLU ReLU ReLU
# Output 64 64 64 64 128 64 32

Another thing worthy of mention is the sampler, which crops proposal patches for R-
CNN input. Candidate proposals have different aspect ratios and sizes. In order to keep the
original aspect ratio of proposals when they are fed into R-CNN, the sampler crops candidate
patch with aspect ratio of 1:2.5 centered at the proposal box. Concretely, if aspect ratio of a
proposal box is greater(or smaller) than 1:2.5, the horizontal (or vertical) boundaries of the
proposal box are symmetrically extended. If boundaries expand out of the image region, we
pad with value 128.
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3 License Plate Recognition
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...

Figure 3: Illustration of the proposed recognizer. The detected plates are first rectified ac-
cording to the estimated corner points. Then, the image patch for each character is extracted
by the STNs and is passed to the recognizers. The cyan branches indicate shared weight
recognition networks.

The proposed license plate recognition framework is shown in Fig. 3. The input of
this stage is the license plate image patch and its four corner coordinates generated by the
previous stage. We first perform license patch registration to obtain a rectified license plate of
resolution 48×120. The unsupervised STN [13] implicitly performs character segmentation.
Each of them attentions to the pixels of each corresponding character. The output of the
parallel STN are segments of the input license patch. Finally, the recognizer recognizes each
segment.

For clarity, we illustrate the recognition part using common Chinese license plates. A
common Chinese license plate number contains seven characters. It starts with a Chinese
character denoting one of the 31 provinces followed by an uppercase letter denoting the city.
The remaining five characters are combinations of Arabic numerals and uppercase letters
except ’O’ and ’I’. After the STN sub-network, we will need seven recognizers. While the
first recognizer is separately trained for 31 Chinese characters, the rest six recognizers share
weights. This is an important innovation in our design, because weight sharing has at least
two advantages. First, it saves model size. Second, it makes full use of the limited training
data. Without weight sharing, independent recognizer can only be trained with the digits and
letters appear at its corresponding location. It will easily suffer from insufficient training
data or unbalanced training sample distribution.

Table 3: Configuration of recognizer base network. BN denotes batch normalization[11]
conv1 pool1 conv2 pool2 conv3 conv4 pool3 conv5 fc

Stride 1 2 1 2 1 1 2 1 -
Ker. size 5 2 5 2 3 3 2 3 -

Activation BN - BN - BN BN - BN ReLU
# Output 64 64 64 64 128 128 128 256 -

Specifically, the rectification process is performed by an affine transformation:[
hs

ws

]
=

[
θ11 θ12 θ13
θ21 θ22 θ23

]ht

wt

1

 (2)

where (h,w) denotes the height and width coordinates, superscript s and t denote source
patch and target patch, respectively. We have the four corner coordinates of license plate, and
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our target four corner points are (0,0), (48,0), (0,119) and (48,119). The affine transforma-
tion matrix is estimated using the RANSAC algorithm [3]. The parallel STN sub-networks
are trained to extract character level segments also by affine transformation defined in Equa-
tion 2. In detail, the six parameters of each affine transform matrix for cropping character
segments are predicted by network, then a spatial transformer layer takes the six parameters
and rectified license patch as input and outputs a 48×24 character segment. The training of
STN sub-networks is only supervised by the groundtruth recognition results. In our imple-
mentation, the configuration of the seven STNs are summarized in Table 4.

Table 4: Configuration of STN network
conv1 pool1 conv2 pool2 conv3 fc1 fc2 fc3

Stride 1 2 2 2 2 - - -
Kernel size 5×5 2×2 5×5 2×2 3×3 - - -
Activation ReLU - ReLU - ReLU ReLU ReLU ReLU
# Output 64 64 64 64 128 64 32 6

The seven recognizers share the same network architecture of five convolution layers and
a fully connected layer to learn feature representation. The features are then fed into a fully
connected layer for classification. Per-character classification cross-entropy loss is adopted
in training the recognizer. The details about the feature representation network structure are
depicted in Table 3.

Theoretically, with shared weights recognizers, we should multiply the a priori probabil-
ity to the likelihood estimated by the recognition sub-network. For simplicity, we assume
that the Arabic numerals and uppercase letters are uniformly distributed in the 3rd to 7th

characters. For the 2nd character, the prior probabilities of Arabic numerals digits are zeros.

4 Training

4.1 Detection Network

Dataset: We collected a dataset of 18699 images taken in various background and with
various resolution. Each image has at least one recognizable license plate in its original
resolution. We rescale all the images to 960× 720 for the convenience of processing. The
dataset is divided into a training set (Train_Det) with 12700 images and an evaluation set
(Eval_Det) with 5999 images.

Training Strategy: Our detection and recognition networks are trained separately. For the
detection network, we first train the RPN with anchor areas of [600,1200,1800,2800,8100]
and anchor aspect ratios of [1/2,1/2.7,1/3.5] using Train_Det for 100K iterations. Learn-
ing rate is set to 0.001 and 0.0001 for the first and last 50K iterations, respectively. The
mini-batch size is 64 where positive sample ratio is 0.25 and IoU threshold is set to 0.5 to
distinguish positive and negative anchors. Training image input size is 360× 480. Then,
we fix the RPN and train the R-CNN part for 100K iterations with the same mini-batch and
learning rate settings as RPN. λ is set as 1 to calculate the loss function of R-CNN.
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4.2 Recognition Network
Dataset: To generate dataset for the recognition part, we apply the trained detector on
Eval_Det and get 5835 detected license patches. We annotate the groundtruth recognition
results of 4693 patches (denoted as Train_Rec) for training. The rest 1142 patches (denoted
as Eval_Rec) are left for evaluation. Note that Train_Det is only involved in detection and
not used for recognition. This is because we need to train the parallel STN to perform seg-
mentation when the input license plates are not perfectly aligned. However, the plates in
Train_Det usually have very accurate regressed corner points, so they do not help in training
the parallel STN. Besides, in order to tackle the data unbalance problem of Train_Rec, we
add synthetic license patches to it such that the number of license plates of each province in
Train_Rec is at least 200.
Training Strategy: Using the detected corner points, license patches and annotated recogni-
tion results of Train_Rec as input, we train the recognition network for 40K iterations. The
learning rate is 0.0005 and 0.00005 for the first and last 20K iterations, respectively. Batch
size is set to 64.

5 Evaluation

5.1 Detection Results Comparison
Different from the state-of-the-art detector Faster R-CNN [20], our detector does not share
CNN feature between RPN and R-CNN. Besides, we use a new network structure for RPN
and design our own R-CNN base network. In this experiment, we compare our solution with
Faster R-CNN, denoted as FR-CNN. The training settings of reference schemes are the same
with ours. At the inference phase, 10 RoIs of RPN proposals after NMS are reserved.

Table 5 compares several schemes in terms of detection performance. The AP (average
precision) at different IoU thresholds are listed, e.g., AP0.7 means the AP value is calculated
when the detected box is treated as true positive if IoU overlap with groundtruth box is
greater than 0.7. There is an interesting phenomenon that Faster R-CNN with VGG performs
almost the same as that with ZF when IoU threshold is 0.5. However, when the IoU threshold
is increased, the advantage of VGG becomes visible. This suggests that shallow network
structure can find the coarse location, but more powerful network can localize more precisely.
We also change Faster R-CNN feature stride from 16 to 8, the performance dramatically
improves. This shows that higher feature resolution is beneficial for license plate detection.

Comparing Ours and the FR-CNN series, we can easily find that our detector performs
much better. The gain has three possible sources: 1) we use corner points as supervision
while FR-CNN ZF(or VGG) uses bounding boxes as supervision; 2) we use a new network
as the RPN base network and 3) the R-CNN in our network does not share feature with the
RPN.

In order to figure out which design choices bring the gain and how much gain each design
choice brings, we perform the following evaluation. Ours RPN Only (Corner) and Ours
RPN Only (BBox) denote the methods which only use the RPN network as detector but the
supervision information are groundtruth corner coordinates or bounding boxes, respectively.
From Table 5, we can see that corner points can provide better supervision than bounding
boxes and therefore achieve better performance. That is to say, regressing the corner points
is a good option. If we check the AP values of Ours RPN Only (BBox) and FR-CNN ZF(or
VGG) S16, we can observe that the RPN only solution outperforms original Faster R-CNN
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Table 5: Comparison of detector performance
AP0.5 AP0.6 AP0.7 AP0.8 AP0.9 Average

Ours RPN Only (BBox) 0.9416 0.9084 0.7973 0.5648 0.0758 0.6583
Ours RPN Only (Corner) 0.9434 0.9206 0.8476 0.6134 0.1317 0.6913

Ours 0.9668 0.9640 0.9192 0.7572 0.2994 0.7813
FR-CNN ZF S16 0.9039 0.8161 0.5827 0.3317 0.0694 0.5408

FR-CNN VGG S16 0.9075 0.8236 0.6021 0.3756 0.1159 0.5649
FR-CNN ZF S8 0.9712 0.9341 0.7897 0.6104 0.2258 0.7062

FR-CNN VGG S8 0.9709 0.9390 0.8043 0.6280 0.3405 0.7365

as well. This verifies that our RPN network is an effective structure. The gain obtained by
separate feature representation for RPN and R-CNN is also notable. Comparing Ours with
Ours RPN Only (Corner), it can be observed that separate feature learning can achieve much
better performance especially at higher IoU threshold. Therefore, using an independent light-
weight CNN branch for finer local feature extraction from license patches is helpful.

The running time is evaluated using a NIVIDA K40 GPU. The inference speed in frames
per second (fps) is given in Fig. 4. Using VGG as the base network for faster R-CNN
achieves slightly better performance than using ZF, but both running time and model size
increases dramatically. Our solution produces a much smaller model, whose size is only
1/57 of the model size of fast R-CNN with VGG. Our network also runs 1.5 times faster than
faster R-CNN with VGG S8. Although faster R-CNN with ZF runs faster, its performance is
significantly inferior to our solution. Also note that our RPN only solution could run much
faster, but we choose to sacrifice a little speed to get a much better performance. We believe
that our choice strikes a good tradeoff between speed and performance for practical license
plate detection applications.

(5.63, 16), RPN only(Bbox)

(9.15, 11),Ours

(224, 19), FRCNN ZF S16

(521, 9), FRCNN VGG S16

(224, 14), FRCNN ZF S8

(521, 7), FRCNN VGG S8
5
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15

20
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Figure 4: Runtime and Model Size of different schemes. The exact values of model size and
speed in fps are given in the two-tuple beside each scheme.

5.2 Recognition Results Comparison
In the recognition part, we first rectify the input license patch and then crop character-level
segments for recognition. The recognition networks for the last six characters share weights
in order to make full use of the training data.

To validate the performance gain of each components, we carry out ablation study first.
Table 6 shows the results. In the table, metric Acc denotes the accuracy of plate recognition,
Acc@1e and Acc@2e mean the accuracies if we can tolerate 1 character error or 2 character
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errors, respectively. Acc@1 denotes the accuracy of the first Chinese character and Acc@2-7
mean the accuracy of the 2nd to the 7th characters. From the results, we can conclude that
both rectification and weight sharing can bring obvious performance gain. In particular, rec-
tification brings 3% and weight sharing brings 2.3% gain in accuracy. When rectification is
enabled, Acc@2-7 improves from 0.9611 to 0.9716 when we share weights (Acc@1 does not
change as weight sharing does not affect the first recognizer). When rectification is disabled,
all the accuracy metrics decrease. This confirms that the rectification step is important, which
in turn confirms that corner point regression in the detection stage is very helpful.

Table 6: Ablation study of recognition performance
Rectification Shared Weights Acc Acc@1e Acc@2e Acc@1 Acc@2-7

D - 0.8678 0.9352 0.9632 0.9545 0.9611
- D 0.8599 0.9396 0.9746 0.9299 0.9674
D D 0.8905 0.9510 0.9755 0.9501 0.9716

Fig. 5 visualizes the input patches, rectified patches and the segments generated by
parallel STN subnetworks with or without rectification. The qualitative results show that our
parallel STN subnetworks can perform satisfactory character segmentation even though it is
trained only with the supervision of recognition groundtruth. However, if rectification is not
enabled, training parallel STN subnetworks are much harder.

(a) (b) (c) (d)

Figure 5: Visualize the outputs of Rectification and parallel STN subnetworks. (a) De-
tected patches and predicted corners (b) Rectified patches (c) Character segments produced
by parallel STN subnetworks when rectification is enabled (d) Character segments when
rectification is disabled

To compare our recognizer with the state-of-the-art recognizers, we implement two ref-
erence schemes. One is a character sequence encoding scheme proposed in [12], and the
other is the work of H. Li et al. [15]. They treat license plate recognition as a sequence
labeling task and leverage CNN and Bidirectional LSTM to solve this problem. The results
are summarized in Table 7, where CER means character error rate.

Table 7: Comparison of recognition performance
Acc Acc@1e Acc@2e CER

[12] 0.7425 0.9036 0.9615 0.0614
[15] 0.3187 0.6743 0.8205 0.1961
ours 0.8905 0.9510 0.9755 0.0314

It is obvious that our recognition network outperforms both reference schemes. The CNN
plus bidirectional LSTM solution performs the worst. This is because it is very sensitive to
the distortion of license patches due to viewpoint changing and license plate number has
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very little correlation among all the characters. Therefore, such a solution is not suitable for
license plate recognition in the wild. The character sequence encoding tries to predict each
character based on the feature of entire plate, this scheme performs poorer than ours, because
our recognition network can explicitly focus on pixel values of each character.

6 Conclusion

In this paper, we proposed a CNN-based ALPR system. In the detection stage, we adopt
separate RPN and R-CNN for license plate detection and corner points regression. Recti-
fication is performed to tackle different viewpoints of a license plate. In the recognition
stage, parallel STN is leveraged for implicit character segmentation. We design an inno-
vative shared-weight recognizer to make full use of the limited training data. Our solution
outperforms the state-of-the-art detection and recognition schemes by a large margin. In
the future, we plan to apply our solution to other types of license plates and evaluate its
generalization capability.
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