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Abstract

Modeling objects with a set of geometric primitives is a key problem in computer vi-
sion and pattern recognition with numerous applications including object detection and
retrieval, tracking, motion and action analysis. In this paper, we attempt to represent 2D
object shapes with a number of ellipses with semantic meaning (e.g. one ellipse may cor-
respond to an arm, while two other ellipses may represent a bent leg), while maintaining
a high coverage of the shapes. We propose a novel ellipse fitting method based on psy-
chology and cognitive science studies on shape decomposition and show that our shape
coverage compares well with the state of the art methods, while significantly outperform-
ing them in run-time by as much as 508 times in our evaluation of the methods on over
4000 2D shapes. We also demonstrate the value of our method to higher-level processing
via an example application in creating 3D ellipsoid models of PASCAL horses.

1 Introduction
Fitting ellipses to 2D shapes has many applications in object detection and retrieval [27, 28],
tracking [12], motion and action analysis [1, 20]. For modeling 2D shapes, ellipses provide a
compact representation of complex objects and their structure, as most objects can be broken
down into a set of rigid parts. Specifically, ellipse fitting can serve as an intermediary step
for modeling human body parts [9, 11], where each ellipse models a semantic component
(e.g. arms, torso, head, legs). Given the ability of the state of the art semantic segmentation
approaches [6, 16, 24, 25, 30] and motion boundary detection methods [7, 18, 21, 26] to
produce reliable object masks, representing these masks as ellipse models becomes a natural
next step for understanding the segmented objects’ structures. We demonstrate an example
application of this by combining the results of multiple 2D ellipse models to hypothesize a
pseudo-3D ellipsoid model. Leveraging such models can facilitate detection and segmenta-
tion in images and video where objects are partially occluded or difficult to recognize.

Fitting a single ellipse to a set of pixels has well-studied solutions (e.g. Least Square Fit-
ting [8] and the Hough Transform [32]). Fitting a set of ellipses to cover a pixel-wise mask,
however, proves more difficult as one must consider the alignment of ellipses to the mask as
well as the relationships between the ellipses. The task of 2D shape modeling using ellipses
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Figure 1: Examples of the output on four different datasets: LEMS, MPEG-7, SiSHA, PAS-
CAL Horses. The top row denotes the given 2D shape and the bottom denotes our results.
Thin lines of varying color indicate the symmetry axes of distinct parts. Black ellipses de-
note our output set of ellipses fit to the parts. Note: our method finds the locations of joints
and models them with multiple ellipses (e.g. the limbs of the humanoids).

(Fig. 1) can be viewed as a difficult search problem as one must determine the number of
ellipses n and estimate the parameters of the n-ellipses that approximate the 2D shape ob-
jects. We use the shape coverage of the ellipses1 to define how well the model fits the shape.
Trivially, fitting a large number of ellipses will provide good coverage; however, it will also
increase the model complexity. We propose a method that achieves a balance between the
model complexity and shape coverage. Inspired by psychology and cognitive science studies
[2, 5, 10], our method produces parts that align well with the human perception of objects
as compositions of parts. Since our work effectively yields a mid-level representation of 2D
object parts, we demonstrate an application of our approach by constructing 3D ellipsoid
models of PASCAL horses (Fig. 6) in Sec. 5.

We describe an overview of our method in Fig. 2. Like [19], we employ the 2D skeleton
[3] as an initialization for our method. However, our method also considers the protrusion
cues [33] of the 2D shape, with which we approximate the n-ellipse regions. Protrusion cues
refer to local deformities where a 2D shape region protrudes from the main body resulting in
a new branch segment in the 2D skeleton (see Fig. 3). On the other hand, [19] attempts to find
n by minimizing the Akaike and Bayesian information criterion (AIC/BIC) with an iterative
search over n and the parameters for each ellipse, incurring a large run-time overhead. Our
contribution is two-fold: first, we propose a fast local fitting method that decomposes a 2D
shape into candidate regions based on intuitions drawn from [2, 5, 10] and selects a set of
ellipses to describe each region by minimizing a cost function. Second, we propose a greedy
ellipse merging procedure that considers all ellipses resulting from the local ellipse fitting
and minimizes the overall cost of the sets of ellipses while maximizing the shape coverage.

We compare our method with three other ellipse fitting methods proposed by [19] and
[31]. We test each method on over 4000 2D shapes of different objects, sizes and orientations
from four datasets: LEMS, MPEG-7, SiSHA, and PASCAL Horses. We measure the shape
coverage of each method and their respective run-times. Our method obtains higher shape
coverage scores than [31] and gives comparable results to the methods proposed by [19]
while beating all methods by a large margin in terms of run-time (see Table 1). Example
output from our approach is provided in Fig. 1, 2 and 6, which also illustrate that our
proposed ellipses correspond to parts (e.g. arms, legs, etc.) of an object that are meaningful
to human understanding. The output of our method can be used for higher level processing
such as generating a 3D ellipsoid model of an object class (e.g. horses) as shown in Fig. 6.

1Computed as the norm of the residual image between the object mask and the union of ellipse images.
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Figure 2: Overview of our approach. We initialize our approach via 2D skeleton and protru-
sion cues of the 2D object to produce a set of candidate regions for ellipse fitting. We apply
our local ellipse fitting method and minimize the cost of the model for the final results.

2 Related Work
Our 2D shape modeling approach stems from principles of cognitive science and psychology,
from which the studies describe the human perception of objects as compositions of parts [2]
(e.g. a person has legs, arms, a torso, and a head). The minima rule, [5, 10], suggests that the
perceived part boundaries of an object are generally located at points on a curve where there
exists a negative curvature minima. Many works [13, 15, 22] follow the notion that convex
regions determine visual parts. Moreover, [2] proposes that the object’s semantic parts can
be described by primitive geometric elements. Using these ideas, our 2D shape modeling
approach automatically fits a set of ellipses that represents semantically meaningful regions.

Modeling 2D Objects with Ellipses. Modeling 2D objects with primitive shapes not
only allows for the simplification of the data to benefit higher levels of processing, but also
describes the geometric structure of the object, which can aid in the reconstruction of the
object shape. While early works [4, 8, 17] utilized least-square methods for shape fitting, re-
cent literature leans towards approximating the structure of an object through a combination
of connected shape primitives. [31] uses an EM algorithm to propose ellipses based on a
randomly generated set of initial guesses of where they are located and uses the Levenberg-
Marquardt algorithm to solve for a least-square cost to adjust the ellipses to the 2D shape
object. Our method for fitting ellipses to a 2D shape object is much simpler as we employ
the 2D skeleton and protrusion cues to find candidate regions for the ellipse fitting step. We
minimize Eqn. 2, which models the shape coverage and ellipse fitting costs and automati-
cally determines the number of ellipses for the fit. [19] attempts to find the set of n-ellipses
by minimizing the AIC/BIC criterion, which becomes a costly search over the large space of
n and the ellipse parameters. We leverage the ideas of [2], [5] and [33], allowing us to ap-
proximate the n-ellipses for fitting the 2D shape object while considering local deformities.

2D Shape Decomposition. Many 2D shape decomposition methods leverage the minima
rule [10] as a general criterion for how humans conceptually break objects into parts. The
minima rule stems from the observation that humans generally perceive convex regions as
important visual components to an object. [13, 14, 15, 22, 23] follows this intuition to
measure the convexity of a region’s boundaries to determine if the region should be classified
as a distinct part. This important observation also leads to methods such as [29] and [33],
which use the symmetry (medial) axes of a shape as a cue for convex parts. Moreover,
[33] states that an important feature to determining whether a local convex region should
be considered as a distinct part is the strength of protrusion given by its symmetry axes.
A junction connecting three or more branches of the symmetry axes serves as a cue for
multiple protrusions or convex regions extending from an object and a protruding region
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local ellipse fittingκ-1 cutsprotrusion cues

Figure 3: (a) To compute protrusion strength (Eqn. 1), we search outwardly from a junction
j for the base of protrusion bh

1 and bh
2 at radius rj. γ(sj

h) is the length of protrusion from j. (b)
We perform 2-cut over a region R j with the symmetric axis A j to generate 3 segments a j

k for
k = {1,2,3} and their corresponding subregions r j

k denoted by red, purple and blue. (c) We
use least-square ellipse fitting to generate the local ellipse model e j

k for the part region, R j.

will be considered a visual part if its protrusion strength exceeds some threshold.

3 Our Approach
Our goal is to model objects with ellipses that capture semantic meaning (i.e. correspond
to distinct object parts). We do so by leveraging the Symmetry Axis Transform [3] and
protrusion cues [33] to partition the foreground pixels into an initial set of candidate regions.
We then compute a set of ellipses for each region via least square fitting [8]. Minimizing
Eqn. 2, which attempts to maximize part coverage of the object shape while minimizing
spurious ellipses, yields a set of ellipses modeling each region. A greedy cost minimization
is then applied to the entire model to merge any suboptimal ellipses such that we maximize
the coverage of the 2D shape. We provide an overview of our method in Fig. 2.

3.1 Initialization
Given a binary 2D object shape image I ∈ {0,1}M×N , our goal is to estimate a set of ellipses
to model the 2D shape where each ellipse holds semantically meaningful information about
the 2D shape part that it is fitted over. We denote a 2D shape part as a set of pixels P ⊂ I
that defines a semantically meaningful region of the larger 2D shape. We first initialize the
probable set of ellipses by decomposing the 2D shape into part regions using cues given by
the skeleton S of the 2D shape, generated by applying Symmetry Axis Transform (SAT) [3]
to the image I. We use SAT as a shape descriptor because it is able to capture the structure of
the 2D shape while providing a set of cues for decomposing the skeleton. Let S be a skeleton
with H segments. We denote a segment sh for h ∈ {1,2, . . . ,H} in S as a set of singly
connected pixels between a terminal pixel t and a junction j ∈ J or between two junctions.
The set of junctions J and segments sh form a partition of the skeleton S.

To generate each part region Ph ∈ P corresponding to segment sh, we map each pixel in
I to the nearest segment sh. Each segment in the skeleton implies that there is a protrusion
of pixels in the shape and hence we can model such a set of pixels with an ellipse. However,
the results of SAT are generally noisy. Therefore, rather than assuming that each of these
segments should be a candidate ellipse, we employ protrusion cues from [33] to determine if
a given segment and part region, sh and Ph, should be considered its own part or if it should
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Figure 4: We show the affects of τ on determining the merging of the adjacent branches of
the skeleton. Each color highlighting the horse heads and legs correspond to the number of
branches given a set of τ values . Blue denotes three parts, red denotes two, and green one.
We see that the number of branches are stable for a large range of τ values.

be merged with the part that Ph protrudes from (see Fig. 3).
When attempting to decompose an object, a protrusion from the main body of the object

tends to highlight it as a potential part region. However, this protrusion may not necessarily
correspond to a meaningful part (e.g. arm, leg, etc.) as each shape may contain small local
deformities that are not semantically meaningful. Rather, it does serve as a good initial guess
of where a candidate part region is located. For example, a hand may be decomposed into
a palm and five fingers because the fingers protrude from the palm. However, we do not
consider the small bumps on each finger as a semantic part because they do not protrude
as significantly as the fingers do, which we determine by the protrusion strength. This is
particularly the case when applying SAT to natural shapes. Because the shapes are imperfect,
SAT will generate spurious branches. To mitigate this, we use protrusion cues to merge the
spurious branches to major protrusions from the main object, making us robust to local
deformations. To model this notion: for every junction j ∈ J connecting the H segments sj

h,
we define the protrusion strength fp for each segment sj

h as the ratio quantifying the amount
a part region protrudes out from another. Fig. 3 shows an illustration of protrusion cues.

fp =
γ(sj

h)− rj

|bh
1−bh

2|
(1)

where γ(sj
h) is the length of sj

h from the junction to the peak of the protrusion, rj is the
radius from the junction j to the closest edge pixel of I and bh

1 and bh
2 denotes the left and

right pixels sitting at the base of the protrusion. To identify bh
1 and bh

2, we take the set of
edge pixels p within rj distance of j and compute the sign of the cross product of vectors:
sign(〈p, j〉×〈th, j〉) for a segment sj

h and its terminal point th . We separate the points whose
sign is negative and positive and denote each sign as the left and right side of sj

h. Given a
junction j and the attached segments, if the protrusion strength f h

p of a segment sj
h exceeds a

threshold τ , then it will be considered distinct. Otherwise, the segment will be merged with
the maximally protruding segment attached to j (see Fig. 4). This method is applied from the
outside-in, beginning with segments that contain a terminal pixel t. The result after applying
the protrusion cues is the image mask containing the set of candidate regions, denoted as R,
whose non-maximal local protrusions are suppressed.
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3.2 Local Model Selection
We estimate a set of ellipses e j for each part region R j ∈ R. Each e j not only provides a
tight fit over the region, but also models its structure (e.g. joints in a leg). We estimate the
individual ellipses e j

k ∈ e j by minimizing the cost function C (Eqn. 2), which describes the
coverage of the model and its complexity. The first term (coverage) computes the mismatch
between the areas of the proposed ellipses and the region. The latter term (model complexity)
penalizes spurious ellipses that can be merged with other ellipses to accomplish a similar fit.

C(R j,e j) = ||R j−
κ⋃

k=0

I(e j
k)||

2 +κ
||R j||

η(sj)+1
(2)

where I(e j
k) is the projection of an ellipse k into the image space for κ ellipses and η(sj)

is the number of branches in the segment sj. Each e j
k is fitted via a least square estimator.

Increasing kappa improves fit but increases the complexity cost. Hence, Eqn. 2 allows us to
find the best local fit while keeping the model complexity low.

To estimate the set of semantically meaningful ellipses e j that models the joints and
bends that may exist for a part region R j, we must have some understanding of the structure
of R j and whether or not this shape can be further decomposed into subregions. We borrow
the intuition from the well-studied minimal-rule [2, 5], which proposed that the human per-
ceived part boundaries of an object are generally located at points on a curve where there
exists a negative minima. To model this intuition, we first apply SAT to the part region R j

to obtain a skeleton of the part. Then we choose the longest continuous segment through the
major axis of the part region as the symmetric axis A j of R j. For each point ao ∈ A j, there
exists the points on the symmetric axis, ap and aq, that are w pixels away on either side of
ao. The three points form the vectors, ~apo and ~aqo, with which we compute the inner angle
θo ∈ θA using four-quadrant inverse tangent at every point ao:

θo = tan−1(

∥∥ ~apo× ~aqo
∥∥

~apo · ~aqo
) (3)

To produce the κ ellipses to model the part region R j, we perform κ −1 cuts along the
symmetric axis A j (Fig. 3a). The value of κ may vary from each part region as the final κ

will be selected by minimizing the fitting cost C (Eqn. 2) over all values of κ . For each point
ao ∈ A j, we compute the inner angle θo over a window of size 2w where the two points ap
and aq defining the vectors ~apo and ~aqo are w pixels away from ao. We perform non-minimal
suppression over the set of θA within their respective windows and choose the top κ − 1
locations where the set of θA is smallest, implying the greatest change in the local gradient
direction. The symmetric axis A j is then cut at each location, producing a set of κ segments
a j ⊂ A j. We then map each pixel in the part region R j to the nearest segment a j

k ⊂ a j to
generate a set of subregions rj ⊂ R j where each subregion r j

k ∈ r j correspond to each a j
k.

Given the set of subregions r j, we fit a candidate ellipse e j
k using least-square over each

subregion r j
k to produce the set of candidate ellipses e j to model the part region R j (Fig. 3b).

We begin estimating our set of candidate models starting from κ = 1 where we do not make
a cut over the symmetric axis A j and fit a single ellipse over the entire region R j. We then
increase the number of cuts by one on each subsequent iteration. We compute the cost of the
candidate ellipses e j via Eqn. 2 on each iteration and denote the cost as ∞ if we are unable
to fit an ellipse ej

k over a subregion r j
k. This occurs when the estimated points of the ellipse
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Figure 5: The results of local ellipse fitting with the cost of each model given the output of
κ − 1 cuts. Given the local shape region, we generate κ − 1 cuts along the symmetric axis
and fit κ ellipses to each sub-regions. The cost associated with each κ is given by Eqn. 2.
The local model with the minimum cost is selected.

lie outside of the N×M space of the image I or when the least square fitting fails due to
matrix inversion. When these cases happen, we terminate the κ−1 cut procedure. The best
set of ellipses ê j modeling each of the local part regions R j of the 2D shape are selected by
minimizing the cost function C (Eqn. 2) over all proposed sets of candidate ellipses e j.

3.3 Model Cost Minimization
Upon completing the local ellipse fitting procedure, we take the union of the all sets of ê j as
the initial fitting of all ellipses to model the 2D shape image in I. We denote the set union as
E and each ellipse as Eu for u = [1,U ]. We now find the set of best fit ellipses globally over
the entire 2D shape image I by only merging adjacent ellipses that may be better fitted by a
single ellipse. We propose a greedy algorithm that finds a local minima for the overall model
cost by choosing a pair of adjacent ellipses to merge at each iteration; the process terminates
when no benefits can be gained by merging any pair of adjacent ellipses (refer to the final
step in Fig. 2, where the ellipses representing the horse’s head are merged).

We first assign each pixel in the 2D shape to the closest ellipse to produce a region Qu ∈Q
where each Qu corresponds to each Eu. Using the regions Q, we define the adjacency graph
G ∈ {0,1}U×U , where regions Qu and Qv are adjacent if Guv is 1. For all pairs of adjacent
regions, we compute the cost of replacing the pair of regions with a single new ellipse Euv to
fit over both of them with the following cost function:

Duv =C(Qu,Eu)+C(Qv,Ev)−C(Uuv,E′uv) (4)

We choose the pair Eu and Ev to be replaced by E′uv such that E′uv maximizes the error
reduction over the entire model:

(u,v) = argmax
u,v

(Du,v) (5)

Then G is rebuilt with the new set of ellipses. We perform this greedy strategy over the entire
model until the max(Du,v) < 0, in which case we obtain no gain from merging any of the
adjacent ellipses. We denote the final set of ellipses as the output of our method.

4 Experimental Results
Four models were tested on the ellipse fitting task: our method, Augmentative Ellipse Fitting
Algorithm (AEFA) and Decremental Ellipse Fitting Algorithm (DEFA) from [19] and the

Citation
Citation
{Panagiotakis and Argyros} 2015



8 WONG, TAYLOR, YUILLE: FAST AND EFFECTIVE SHAPE MODELING

Intersection-Over-Union Run-time (seconds)
Method LEMS MPEG-7 SiSHA Horses LEMS MPEG-7 SiSHA Horses
Ours 0.9634 0.9597 0.9638 0.9507 3.88s 2.20s 2.19s 19.96s
DEFA 0.9623 0.9615 0.9629 0.9545 211.44s 255.87s 125.28s 2503.21s
AEFA 0.9711 0.9600 0.9654 0.9527 745.45s 1001.92s 528.36s 12088.02s
EMAR 0.9326 0.9219 0.9600 0.9470 120.57s 78.41s 63.23s 740.81s

Table 1: Intersection-Over-Union (IOU) results (left) and run-time (in seconds) results (right)
for each method. Each method was tested on a single core. Our method provides comparable
results to the competing methods while outperforming them by a large margin in run-time.

EM algorithm (EMAR) described by [31]. We ran each model on over 4000 shapes given
by LEMS, MPEG-7, SiSHA, and PASCAL Horses. We allow each method to choose the
optimal number of ellipses to describe the 2D shape object based on their own metrics for
model selection. We measure the Intersection-Over-Union (IOU) of the output ellipses from
each method and the input mask. The mean IOU is computed across each dataset to show
the shape coverage of each method. The mean run-time of each method on a single core is
measured in seconds. We show that our method performs comparably to competing methods
while outperforming the competition in mean run-time.

For the experiments, we use an Intel processor with eight cores running at 2.99 GHz with
32 GB of physical memory. We would like to highlight that our method involves a number
of inexpensive computations, which in fact allows us to run our model on a conventional
laptop. In our experiments, we set w (Sec. 3.2) to 5 pixels and the protrusion threshold τ

(Sec. 3.1) to 0.5. We used the implementation of AEFA, DEFA, and EMAR given by [19].

Examples of our output are provided in Fig. 1, 2 and 6. Results of our experiments are
summarized in Table 1. We show that our method performs comparably to DEFA and AEFA
(where the maximal change in mean IOU between our method and DEFA and AEFA is less
than 0.01) while consistently outperforming EMAR [31] in mean IOU (Table 1 left). How-
ever, we see a significant difference in the run-times of each method (Table 1 right). While
AEFA and DEFA outperforms EMAR in terms of mean IOU, EMAR experiences a 3-fold
improvement in speed over DEFA and approximately14-fold over AEFA. Our method, how-
ever, compares well with both DEFA and AEFA in mean IOU, but instead we gain a 109-fold
of mean run-time improvement over DEFA and 508-fold over AEFA. Our implementation
runs on a single core, however, our local ellipse model fitting can be applied in parallel to
part regions, which would yield an even greater speed up.

We note that DEFA, AEFA and our method use SAT [3] as a way of initializing each
respective algorithm. Due to this similarity, each method shares an initial set of parame-
ters for the ellipses and hence the comparable performance across the datasets. Despite this
similarity, each method may differ in number of ellipses n and vary in model complexity
due to their fitting criterion. In order to estimate n, DEFA and AEFA performs an iterative
search while minimizing the AIC/BIC criterion. This results in slow run-times due to the
large search space over n and the ellipse parameters. Our method estimates n via protru-
sion cues and our fitting criterion (Eqn. 2), which are computationally inexpensive. This
makes our method a feasible candidate for a mid-level representation of objects in a larger
image or video processing pipeline. In addition, our method produces ellipses that describe
semantically meaningful structures (e.g. arms and legs) and captures joint locations of such
structures while being robust to local deformities.
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Figure 6: Pseudo-3D model built by applying our method to two images in PASCAL horses.
(a) denotes the model of the profile view of a horse. (b) denotes the model the frontal view of
another horse. (c) denotes a model generated by combining (a) and (b). We rotate the ellipses
about the vertical axis by 22.5◦ increments. In (a) and (b), we have no depth information
(we assume all ellipsoids lie on the same plane), and thus all parts align perfectly in the
highlighted column (90◦ and 270◦ rotations). We match the ellipses to the semantic parts
of the horses and establish correspondence between the two sets, allowing us to generate a
pseudo-3D model. Despite the two images being taken from different horses at different
viewpoints and poses, our method is able to register the two and render a richer model
representing the horses’s 3D structure (see separated legs in the highlighted column).

5 Application of our Model
One application of our 2D ellipse models is to construct a pseudo-3D horse model composed
of geometric primitives (e.g. ellipsoids). We show a simple example of this in Fig. 6 by com-
bining the ellipse models obtained from two viewpoints (side-profile and frontal view). The
resulting model can act as a mid-level representation of the object, which can facilitate the
detection and segmentation of horses from additional viewpoints. The process of generating
it is computationally cheap and described below.

Let x, y, z represent a 3-coordinate system where x, y describes the coordinates in the
2D image and z is a pseudo-depth estimate. Given the output from our approach, we first
assume that all of the ellipses lie on the same plane (z = 0) since we do not have any depth
information. We then generate a pseudo-3D representation of our 2D ellipses model by
performing perspective transformation on the ellipses and scaling the ellipses based on depth.
For simplicity, we restrict our set of transformations to rotations about the vertical axis as the
images in the dataset reflect only these poses as shown in Fig. 6. We transform our ellipses
into ellipsoids using the short-axis, a, of each ellipses to model the "thickness" of each part.
The ellipse projection proceeds as follows: We model each ellipsoid with two points, the
center X̄ (the pseudo-3D coordinate of X̄ = [x̄1, x̄2, x̄3], initialized as X̄ = [x̄1, x̄2,0]) and a
point along the long axis Ȳ , and b. Next, we rotate the ellipse about the vertical axis by
transforming X̄ ,Ȳ with the rotation matrix:

R(φ) =

[
cos(φ) 0 sin(φ)

0 1 0
−sin(φ) 0 cos(φ)

]
(6)

We define the rotated coordinates as X̄φ = R(φ)X̄ . Projecting the points onto the image
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plane by normalizing by their z coordinate allows us to recompute a and φ from X̄φ and
Ȳ φ . In combination with b, we have all the ellipse parameters and can re-render the 2D
ellipses from unseen angle φ , creating a pseudo-3D model of the object. We define a set of
confidence scores C̄ = [c1,c2,c3] corresponding to each coordinate where C̄ is initialized as
[1,1,0]. We compute the confidence scores at each rotation C̄φ via C̄φ = R(φ)C̄.

We perform this procedure for each set of ellipses. We then map each ellipses to the
semantic parts of the horses (e.g. head, torso, front right leg) and establish correspondence
between two sets of ellipses. Given that multiple ellipses may represent the same part, we
choose the set with the greater number of ellipses as our method can locate joints via our
κ − 1 cuts procedure (Sec. 3.2). Upon establishing correspondence, we combine the two
models by taking the weighted linear combination of their respective C̄φ and X̄φ to generate
the new pseudo-3D coordinates. As seen in Fig. 6c, we can estimate depth of the legs as
shown by the spacing of the leg in the highlighted 90◦ and 270◦ rotated frontal image. With
more samples, we can learn a 3D ellipsoid model using our approach as an intermediary step.

6 Discussion
Ellipse fitting becomes an important problem as it can serve as the next step in modeling seg-
mented objects from semantic segmentation and boundary detection in images and videos.
We introduce a technique for modeling 2D objects by fitting a set of ellipses over the shape.
Our approach finds an initial set of candidate regions to fit the ellipses using a 2D skeleton
with protrusion cues (Sec. 3.1). We further decompose the regions into sub-regions using the
κ−1 cuts approach (Sec. 3.2) and determine the set of ellipses by minimizing Eqn. 2. The
cost is then minimized via Eqn. 4, 5 to produce the final model. We validate our approach
on over 4000 2D shape images, illustrating comparable performance to recent work while
taking a significantly lower computational toll. Our method is useful as an intermediary step
for part-based methods such as constructing a mid-level representation of an object.

Our method does have room for improvement as the IOU scores show some margin of
error. However, it is difficult to model every part of a shape with an ellipse. For example,
multiple ellipses are needed to accurately fit the fine-grained corners of a region, but this
increases the model complexity. We can extend our method to include other shape primitives
(e.g. triangles) to improve the fit, however, this would also add to the complexity of the
approach as we need to choose the optimal shape or shape combination for a region.

There exist two hyper-parameters w and τ that we need to tune. To automatically find
these parameters, we can employ a multi-scale framework to produce models based on dif-
ferent window sizes or infer the protrusion threshold based on the skeleton of the 2D shape.
Although this will increase our computational complexity, our approach will scale with par-
allelism since the local-ellipse fitting per region is computed independently. However, we
have used the same parameters for all four datasets where the images varied in sizes and
poses and we showed our method to be effective on each dataset.

Our results show that our method is an effective framework for modeling objects and that
there are many avenues we can explore. Can we extend to general shape primitives? Our
method has also proven to be able to locate ellipses that correspond to semantic parts of an
object. Is it possible to extend our framework for semantic parsing? We plan to explore these
directions given the promising results of our work.

Acknowledgements : This work is supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Interior/ Interior Business Center (DoI/IBC)
contract number D16PC00007 and NSF award CCF-1317376.



WONG, TAYLOR, YUILLE: FAST AND EFFECTIVE SHAPE MODELING 11

References
[1] Xianye Ben, Weixiao Meng, and Rui Yan. Dual-ellipse fitting approach for robust gait

periodicity detection. Neurocomputing, 79:173–178, 2012.

[2] Irving Biederman. Recognition-by-components: a theory of human image understand-
ing. Psychological review, 94(2):115, 1987.

[3] Harry Blum. Biological shape and visual science (part i). Journal of theoretical Biol-
ogy, 38(2):205–287, 1973.

[4] Fred L Bookstein. Fitting conic sections to scattered data. Computer Graphics and
Image Processing, 9(1):56–71, 1979.

[5] Myron L Braunstein, Donald D Hoffman, and Asad Saidpour. Parts of visual objects:
An experimental test of the minima rule. Perception, 18(6):817–826, 1989.

[6] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L
Yuille. Semantic image segmentation with deep convolutional nets and fully connected
crfs. arXiv preprint arXiv:1412.7062, 2014.

[7] Qingnan Fan, Fan Zhong, Dani Lischinski, Daniel Cohen-Or, and Baoquan Chen.
Jumpcut: non-successive mask transfer and interpolation for video cutout. ACM Trans-
actions on Graphics (TOG), 34(6):195, 2015.

[8] Andrew Fitzgibbon, Maurizio Pilu, and Robert B Fisher. Direct least square fitting
of ellipses. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 21(5):
476–480, 1999.

[9] Nikos Grammalidis and Michael G Strintzis. Head detection and tracking by 2-d and
3-d ellipsoid fitting. In Computer Graphics International, 2000. Proceedings, pages
221–226. IEEE, 2000.

[10] Donald D Hoffman and Whitman A Richards. Parts of recognition. Cognition, 18(1):
65–96, 1984.

[11] Bogdan Kwolek. Stereovision-based head tracking using color and ellipse fitting in a
particle filter. In European Conference on Computer Vision, pages 192–204. Springer,
2004.

[12] Nikolaos Kyriazis and Antonis Argyros. Scalable 3d tracking of multiple interacting
objects. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages
3430–3437. IEEE, 2014.

[13] Longin Jan Latecki and Rolf Lakämper. Convexity rule for shape decomposition based
on discrete contour evolution. Computer Vision and Image Understanding, 73(3):441–
454, 1999.

[14] Jyh-Ming Lien and Nancy M Amato. Approximate convex decomposition of polygons.
In Proceedings of the twentieth annual symposium on Computational geometry, pages
17–26. ACM, 2004.



12 WONG, TAYLOR, YUILLE: FAST AND EFFECTIVE SHAPE MODELING

[15] Hairong Liu, Wenyu Liu, and Longin Jan Latecki. Convex shape decomposition. In
Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
97–104. IEEE, 2010.

[16] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3431–3440, 2015.

[17] Gabor Lukács, Ralph Martin, and Dave Marshall. Faithful least-squares fitting
of spheres, cylinders, cones and tori for reliable segmentation. In Computer Vi-
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