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Abstract

Dense semantic correspondence is usually cast as a variational optimization problem.
Current methods generally focus on obtaining more discriminative features (to improve
the data/correspondence term), and adopt a message-passing algorithm for inference,
which is generally a variant of loopy belief propagation. One drawback of such opti-
mization is that the flow vectors are constrained to be discrete variables resulting in pixel
resolution, “blocky” flow fields. The main hinderance to formulating the problem in
continuous space, and hence solving the problem at subpixel resolution, is the use of
histogram based descriptors such as SIFT, HOG, etc. Such sparse feature descriptors
are distinctive but linearize poorly. In this paper, we revisit a classic dense descriptor,
namely Geometric Blur, which is, in contrast, extracted from a linear filter (spatially
varying Gaussian) response that can be linearized and therefore interpolated at subpixel
values. In addition to the data and smoothness terms used in variational models, we also
add a term promoting bidirectional flow consistency. As there is no longer a finite set
of values a flow vector can take, we use gradient descent based continuous optimization.
We present promising results encouraging the use of gradient based continuous optimiza-
tion in establishing dense semantic correspondences. The proposed subpixel approach is
applicable to any dense descriptor, including the mid-level convolutional layer outputs of
convolutional neural networks (CNNG).

1 Introduction

Image alignment deals with finding the optimal geometric transformation that maps corre-
sponding pixels across images. It is one of the core problems in computer vision and is used
in many applications such as semantic image segmentation [18], scene parsing [19], video
depth estimation [14], image enhancement [9], etc. The fundamental difficulty in aligning a
pair of images is not only due to the vast range of photometric and geometric variations im-
ages might exhibit, but also due to the variations in the meaning of correspondence. In stereo
matching and optical flow, correspondence means projections of the same 3D world coor-
dinates, while in semantic alignment of objects, correspondence is anatomical equivalence,
e.g., the eyes, beak and tail of one type of bird should align with the eyes, beak, and tail of a
different instance of a bird, respectively. In other words, in some problems correspondence
is faced with projection variation while in others it is faced with intra-class variation.
Recently, many approaches have targeted the semantic image alignment problem. Most
of these methods adopt a variational model combining correspondence and transformation
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(d)

Figure 1: Subpixel semantic flow. (a) A pair of car images (source on top and target at
the bottom). From (b) to (d): The top rows show the results obtained using SIFT flow [18],
one of the state-of-the-art methods in dense semantic image alignment, and the bottom rows
show the results obtained using the proposed method. (b) Warped target images. (c) Overlay
of source and target images after alignment. (d) Flow fields. Notice the “block™ effect in
SIFT flow [18] due to flow fields obtained at pixel resolution.

constraints in data and regularizer terms, respectively. In order to accomplish correspon-
dences across different instances of objects/scenes while being robust to small affine de-
formations, popular sparse feature representations such as SIFT [20], HOG [8], etc., have
been used. The general approach to optimization has been graph-based, especially message-
passing algorithms, such as belief propagation, to infer flow fields relating the images. The
limitation in such a message-passing based algorithm is that the search problem is cast as a
labelling problem, thus constraining the flow vectors to be discrete variables taking values
from a finite set of labels. This results in obtaining pixel resolution flow fields. Even when
robust functions, such as truncated L' norms, have been utilized to eliminate outliers and
account for flow discontinuities, “blocky” flow fields are obtained. Alternatively, gradient
descent type of optimization techniques have generally been overlooked in providing local
minimizers, mainly because it is not straightforward to approximate the descent direction [5]
and hence the linearization of discriminative but sparse feature representations. Subpixel
resolution, being a superset of pixel resolution, based flow fields are preferable as they can
better localize flow discontinuities and can better keep the integrity of objects after warp
transformation.

The contribution of this paper is to present a framework to address this problem that
achieves dense semantic correspondences at subpixel resolution. We revisit a dense de-
scriptor, specifically Geometric Blur [4] in this paper, and reformulate the semantic image
alignment problem in continuous space. We also introduce a new term to the variational
objective function related to bidirectional flow consistency and show how to optimize the
new objective function. Experiments have been carried out on a recently introduced dataset
having different object categories, showing promising results.

The rest of the paper is organized as follows. In Section 2 we review the relevant work
on semantic image alignment. In Section 3 we introduce our subpixel semantic flow formu-
lation. Section 4 presents experimental results leading to conclusions and insights on future
work, which are then discussed in Section 5.

2 Related Work

One of the earliest works, SIFT flow [18], leaped into densely aligning similar scene con-
tents from densely aligning same 3D scene content using SIFT [20] features, as low level
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image cues such as observed pixel brightness values is not of much help in the former case.
Extracting SIFT signatures at a predefined scale and adopting a graph based optimization,
loopy belief propagation is used to obtain flow fields in a hierarchical manner. Scale-Space
SIFT flow (SSF) [21] additionally extracts SIFT [20] descriptors at different scales in or-
der to robustly match similar image content when viewed at different scales. Deformable
Spatial Pyramid (DSP) [15] matching reconsiders the graph representation, introducing de-
formable grid cells connected across a pyramid. Generalized Deformable Spatial Pyramid
(GDSP) [13] extends the search space of feature correspondences by considering various
scales and rotations. The work of [12] combines flow field outputs obtained using different
feature descriptors so that discriminative powers of each can be efficiently exploited.

There has also been interest in obtaining fast dense correspondences. The Generalized
PatchMatch [3] algorithm performs a fast nearest neighbor search across translations, scales
and rotations, however, sacrifices geometric coherency of matches. The DAISY filter flow
(DFF) [25] uses the PatchMatch search strategy and combines filter-based inference to obtain
smoother flow fields.

When the background clutter in which the different instances of the same object category
is seen is not of a simple type or when only some portions of a pair of images depict similar
scene content, object proposals have been exploited to detect the commonality across images.
The work of [22] uses object proposals to avoid cross-talk in the correspondence between the
common objects of interest and background clutter. ProposalFlow [10] uses object proposal
matching to anchor and guide the geometric transformation relating the images. The work
of [24] aims to jointly cosegment and align the common object of interest.

FlowWeb [26] aims to densely align a set of images, starting from pairwise flow fields
initialized with DSP and iteratively improving them in order to achieve cycle consistency.

Last but not least, convolutional neural networks have also been used to either train diag-
nostic feature descriptors, which are then used in graph based optimization of the previous
approaches stated above, or to train an end-to-end network outputting a flow field [7, 16, 27].

3 The Subpixel Flow Approach

Given two images /; and >, our goal is to find a geometric transformation that maps a point
p = (x,y) in I to a point p = T(p) in L. Alternatively, we can write 7 (p) = p + w(p),
where w(p) is called a flow vector and is comprised of a horizontal and a vertical component
(w(p) = (u(p),v(p))). Flow vectors have to be specified everywhere, since the geometric
transformation is nonparametric. We consider the following objective function:

E (u,v) =/w(;lcz(p+W(p),k)—C1 (p,k)|2> ap+o [y (IVu(p)P+[9v(p)) dp
(1

where y (.) is a robust function and C(.) and C,(.) are densely extracted, normalized (zero
mean, unit variance) Geometric Blur descriptors treated as multi-channel images indexed
by k. Geometric Blur descriptors have been compared using normalized cross-correlation
as the similarity function [4]. It can be easily shown that normalized cross-correlation of
any two descriptors is proportional to the mean of the sum of squared differences between
the normalized descriptors, hence being the choice used in Eq. 1. The total energy is the
weighted sum of the data term, responsible for local descriptor matching, and smoothness
term which penalizes the total variation of the flow field under a piecewise smooth flow field
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assumption. We choose v (xz) = /x? + €2 with € = 0.001, which results in a differentiable,
convex approximation of the L' norm. The objective function in Eq. 1 can be minimized
using iterative reweighted least squares.

Bidirectional flow consistency: Minimizing the above objective function does not nec-
essarily yield symmetric flow fields when the roles of images are interchanged, namely
when finding a geometric transformation mapping points from I, to I;. Specifically, if
p € I; is mapped to p = p+ wy (p) € I, for the (I},I,) alignment, and p is mapped to
p =p+ wy(p) for the (I,];) alignment, we may not have p = p. Equivalently, it may
not be that wy (p) + w2 (p+ wq (p)) = 0. Except for the many points in one of the images
mapping to one point in the other image, the one-to-one correspondence between the points
in images is desired, so that forward and backward flows remain consistent. We extend the
above objective function to simultaneously consider flow fields from both directions and
introduce a consistency term as follows:

E(uy,vi,uz,v2) :/W <ZC2 (p1+w1(p1) k) —Cy (plak)2> dpy +a/w(\Vu1 (p1)|* +|Vvi (p1)|2) dpy+
k

[v <Zc. (P24 W2 (p2) k)~ C (P2J<)2> vz [ v (|Vua (02) P+ V92 (p2) ) lpa+
k

B [0 (1w (pr)+wa b1+ w (1)) ) dpr + B [ 6 (Iwa (p2) + w1 (b2 wa (b)) dpa.
@

First two terms correspond to variational formulation of the forward flow, introduced in Eq. 1,
similarly the next two terms are responsible for the variational formulation of the backward
flow, and the last two terms are responsible for establishing symmetry between forward and
backward flow fields. We chose L? norm in order to measure bidirectional consistency, i.e.
¢ (x*) =x*. As the flow vectors and consistency errors are unknown at the same time, it is
not straightforward to minimize the objective function in Eq. 2. Let us represent the objective
function in Eq. 2 as a sum of two energy functions, one focused on forward, and one focused
on backward flow

E(ui,vi,u2,v2) = Ey (u1,vi,u2,v2) +Es (u1,vi,u2,v2) 3)
where
Ey (u1,v1,u2,72) =/W<Z|Cz(m £ (p1).0)~C <p1,k>2> dpi-+a [y ([Vin (po)P + Vv (1)) dpr+
b k

B/‘P (|W1 (p1) + w2 (p1+W1 (Pl))|2) dp; “4)

Ej (u1,vi,uz,v2) :/‘I’ <Z|C1 (P2+w2(p2) k) —C; (Pzak)2> dP2+OC/W(\VM2 (p2)* + |V, (Pz)lz) dp2+
k
/3./‘1’ (|W2 (P2) + w1 (P2 + W2 (pz))|2) dp. ()

This partitions the objective function into forward and backward flow field computations.
Note that Eq. 4 and Eq. 5 are coupled due to the flow consistency terms. Similar to the
work of [1], we adopt a coordinate descent approach to iteratively minimize it as follows.

The initial flow fields, w;(© = (u(lo),v(lo)) and w0 = (ugo),vgo)), are first obtained by
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minimizing Eq. | separately for forward and backward directions. Denoting ¢ as the iteration
index, the flow fields are then updated as:

B ) < ) 5 )
(9
where E; and E, are similarly minimized using iterative reweighted least squares. Please
refer to the supplementary material for the full derivation and the algorithm.
Finally, we use the gPb edge detector [2] output to extract Geometric Blur [4] descriptors
and use a coarse to fine optimization scheme on a Gaussian pyramid with downsampling rate
of 0.5 similar to the work of [6] .

4 Experimental Results

In the following experiments, we used oo = 0.05, B = 0.5 for the coarsest scale in pyra-
mid, and o = 0.2, B = 0.25 for the finer scales. The Taniai dataset [24], consisting of three
groups FG3DCar, JODS, and PASCAL, which contains many instances of different object
categories such as bikes, planes, horses etc. is used. We crop the images to their foreground
bounding boxes. The algorithm performance, as measured in [24], is obtained as follows:
First, the images are resized so that the larger dimension becomes of size 100 pixels. The
flow error magnitude, ||Wi —Wgri||,, { = 1,2 is calculated at every pixel and the average
number of foreground pixels achieving flow error less than a varying threshold 7 is plotted
with respect to 7. The average area under this curve is obtained as a summary of matching
accuracy. The matching accuracy when 7' = 5 pixels is also reported. We have experimented
with two different versions of our algorithm. One, neglecting the flow consistency and ob-
taining forward and backward flow independently, named unidirectional flow (the solution
to Eq. 1), and the other using bidirectional flow consistency detailed in the previous subsec-
tion, named bidirectional flow (the solution to Eq. 2). In addition to using Geometric Blur
(GB) descriptors, we have also conducted a preliminary experiment on using deep learning
features where GB descriptors are replaced by AlexNet [17] convl (96 channels) features
trained for the task of object classification. We evaluated our algorithm by comparing it to
SIFT flow [18], SSF [21], DSP [15], and PatchMatch [3].

Fig. 2 shows the mean flow accuracy plots when varying thresholds are used, and Table |
summarizes the matching accuracies of the algorithms. As can be seen in Fig. 2 and Table 1,
our algorithm, when used with GB descriptors, performs better than other competing meth-
ods on JODS, and PASCAL subsets but not on FG3DCar. As the authors state in their paper,
the ground truth flows have been obtained by marking some sparse keypoint correspondences
and applying natural neighbor interpolation [23] to densify it. Visual inspection of the sparse
correspondences and densified flow maps of FG3DCar reveals some poor flow maps, one of
them shown in Fig. 3. Notice that the plates and front wheels of cars being some of the areas
where misalignment occurs. Warped images using the densified flow fields do not adhere to
the foreground object boundaries correctly. Compared to unidirectional flow, bidirectional
flow, in general, achieves slightly better performances hence we opted for using bidirectional
flow version of our algorithm in obtaining the rest of the quantitative and qualitative results.
Interestingly, when handcrafted GB descriptors are replaced by conv! features, a drop in per-
formance is seen. This might be due to the fact that these features are extracted with a stride
of 4 pixels, sacrificing spatial resolution and hence precise localization which is crucial for
correspondence. Hypercolumns [11], where outputs from multiple layers are stacked to cap-
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FGaDCar Jobs PASCAL

—— SIFT flow
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Figure 2: Average flow accuracies with varying error thresholds on Taniai dataset [24].
Note that the performances of the competing algorithms are different than the results re-
ported in [24] as we crop the images to their foreground bounding boxes. Zoom in for better
readability.

. AUC Match accuracy (T'=5 pixels)
Methods Descriptors - a3ncar —JODS  PASCAL | FG3DCar  JODS PASCAL
SIFT flow [18] SIFT 80.27 66.96 74.41 85.48 65.82 75.28
PatchMatch [3] SIFT 25.13 25.44 19.39 20.81 21.43 15.98
SSF [21] SIFT 73.02 55.19 67.04 75.54 51.13 67.29
DSP [15] SIFT 70.80 63.84 70.53 69.49 58.18 70.37
Our Method
unidirectional flow GB 72.09 70.16 74.96 72.13 69.13 76.62
bidirectional flow GB 72.15 70.36 74.83 72.40 69.92 76.31
bidirectional flow convl 65.88 61.62 67.69 60.03 53.32 64.76

Table 1: Area under curve (AUC), and matching accuracy values at 7 = 5 pixels on
Taniai dataset [24]. Our algorithm with GB descriptors performs better than other compet-
ing methods on JODS, and PASCAL subsets. Compared to unidirectional flow, in general,
bidirectional flow achieves slightly better performances. Note that the performances of the
competing algorithms are different than the results reported in [24] as we crop the images to
their foreground bounding boxes.

ture both low level features and higher level semantics could also be used in our algorithm.
We leave this as a future work.

Figs. 4, 5, 6, and 7 demonstrate qualitative results from the FG3DCar, JODS and the
PASCAL subsets using bidirectional flow with GB descriptors. Notice the continuity of
textures and how the images are smoothly warped, owing to subpixel flow fields.

5 Conclusion

In this paper we formulated the dense semantic correspondence problem in continuous space
leading to subpixel flow fields. In addition to the data and smoothness terms, we incorporated
bidirectional flow consistency terms to the variational objective function in order to promote
correspondence symmetry. We tested our algorithm on a recently established dataset and
showed promising results in this direction both qualitatively and quantitatively. We believe
that such a subpixel formulation is very flexible, and given the differentiability of a cost term,
the objective function can be easily extended to include complex constraints unlike graph
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(a) (b) ()

Figure 3: A demonstration of a ground truth flow error in FG3DCar dataset. (a) Two
images with corresponding keypoints annotated as indicated by matching colors. The dense
correspondence is then interpolated from these sparse correspondences. (b) Each image is
warped into the other using the ground truth dense correspondence. Observe the misalign-
ment around the front wheels and the front grill. (c) The blend of warped image and original
image in each case highlights the misalignment further. This clearly shows that a veridi-
cal alignment is punished at these misalignments of the ground truth, which are specifically
worse for the FG3DCar dataset. Zoom in for better visibility.

Figure 4: A qualitative result from the FG3DCar dataset using bidirectional flow with
GB descriptors. The first row shows the source and target images and their blend before reg-
istration. The second row shows the warped ground truth result followed by results of SIFT
flow [18], PatchMatch [3], SSF [21], DSP [15] and our method. The third row shows the
ground truth blend of source and warped target images followed by results of SIFT flow [18],
PatchMatch [3], SSF [21], DSP [15] and our method. The results are clearly better for our
method. Zoom in for better visibility.
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Figure 5: A qualitative result from the JODS dataset using bidirectional flow with GB
descriptors. The first row shows the source and target images and their blend before regis-
tration. The second row shows the warped ground truth result followed by results of SIFT
flow [18], PatchMatch [3], SSF [21], DSP [15] and our method. The third row shows the
ground truth blend of source and warped target images followed by results of SIFT flow [18],
PatchMatch [3], SSF [21], DSP [15] and our method. The results are clearly better for our
method. Zoom in for better visibility.

Figure 6: A qualitative result from the JODS dataset using bidirectional flow with GB
descriptors. The first row shows the source and target images and their blend before regis-
tration. The second row shows the warped ground truth result followed by results of SIFT
flow [18], PatchMatch [3], SSF [21], DSP [15] and our method. The third row shows the
ground truth blend of source and warped target images followed by results of SIFT flow [18],
PatchMatch [3], SSF [21], DSP [15] and our method. The results are clearly better for our
method. Zoom in for better visibility.
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Figure 7: A qualitative result from the PASCAL dataset using bidirectional flow with
GB descriptors. The first row shows the source and target images and their blend before reg-
istration. The second row shows the warped ground truth result followed by results of SIFT
flow [18], PatchMatch [3], SSF [21], DSP [15] and our method. The third row shows the
ground truth blend of source and warped target images followed by results of SIFT flow [18],
PatchMatch [3], SSF [21], DSP [15] and our method. The results are clearly better for our
method. Zoom in for better visibility.

based techniques where efficient minimizers exist only for simple higher order interactions.
Although we made use of a classic feature descriptor, Geometric Flow [4], and conducted
preliminary experiments using deep learning features, the method presented here is of a
generic one and any descriptor that can be efficiently linearized can be used. We believe
such a formulation can benefit from the recent advances in CNN features, and leave this
direction as a future work.
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