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Abstract

Traditional visual odometry approaches often rely on estimating the world in the form
a 3D cloud of points from key frames, which are then projected onto other frames to
determine their absolute poses. The resulting trajectory is obtained from the integration
of these incremental estimates. In this process, both in the initial world reconstruction as
well as in the subsequent PnP projection, a rotation matrix and a translation vector are the
unknowns that are solved via a numerical process. We observe that the involvement of all
these variables in the numerical process is unnecessary, costing both computational time
and accuracy. Rather, the relative pose of pairs of frames can be independently estimated
from a set of common features, up to scale, with high accuracy. This scale parameter
is a free parameter for each pair of frames, whose estimation is the only obstacle in the
integration of these local estimates. This paper presents an approach for relating this
free parameter for each neighboring pair of frames and therefore integrating the entire
estimation process, leaving only a single global scale variable. The odometry results
are more accurate and the computational efficiency is significantly improved due to the
analytic solution of the relative pose as well as relative scale.

1 Introduction
Odometry, the procedure for the construction of the trajectory of a moving platform from
sensor has become an increasingly important problem, mainly due to an increasing range
of applications, e.g. robotics [14], autonomous driving cars [6], drones or unmanned aerial
vehicles(AUV) [7], and personal navigation. In recent years, visual odoemtry (VO), the pro-
cedure for the construction of the trajectory of a moving platform from videos captured by
one or more camera mounted on moving platform has become more popular, when compared
to alternatives such as radar and GPS-based odometry, mainly because it is more affordable
and applies to a longer range of environments.
The key problem in visual odometry is to estimate the pose of a moving platform, namely 3
parameters for rotation and 3 parameters for translation, from correspondences between pairs
in input image sequences. Specifically, after computing the correspondences, the pose pa-
rameters of each image was estimated by solving an optimization problem, associated with
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an outlier rejection scheme such as RANSAC. Such methods have reached an impressive
level of performance in benchmarks. However, (i) the optimization process can sometimes
suffers numerical issue which prevent it from reaching the global minimum, and (ii) the cost
of RANSAC, or alternative scheme, is relatively high.
This paper proposes a novel scheme when the computation of the magnitude of the transla-
tion vector T , scale λ , is separated from the computation of the rotation matrix R and the
direction of the translation vector T̂ = T

|T | . The latter five parameters are solved analytically
while the former single parameter of scale is computed using RANSAC. This procedure
avoids an explicit reconstruction of 3D points thus avoiding both triangulation errors and the
computation time necessary for it. The analytic computation of (R, T̂ ) and the 1D RANSAC
computation of λ results in a significant improvement in computation time as well as a sig-
nificant improvement in robustness.
The rest of the paper organized as follows: in Section 2, related literature is presented. In
Section 3, the proposed method is described. Finally, in Section 4, experiments are described
and results are presented.

2 Related Works
The main problem of visual odometry is to estimate the relative pose of a moving camera
from frames of a video sequence. Nister [17] use the "five-point algorithm" to solve the rel-
ative rotation and translation, up to a scale, among two consecutive frames. Note that scale
remains ambiguous because scale cannot be computed from correspondences, since both the
embedding spaces and the distance to camera can be scaled leading to same correspondence
(metric ambiguity). Scale ambiguity has been traditionally resolved through sensor-based
estimation of depth at feature points, typically either through calibrated stereo pairs [14] or
RGB-D cameras [9]. Once depth is available, feature points in each image become a cloud of
3D points which can be put in correspondence with another cloud of 3D points from another
image, thus estimating the scale, or the magnitude of the translation vector [5]. Alternatively,
the cloud of 3D points reconstructed from one image can be projected onto a second image,
and the pose is varied to minimize the reprojection error among corresponding points [3]; or
with RANSAC-based outlier rejection [10].
The computation of pose from a pair of frames can be erroneous. Further more, pose esti-
mation error from a pair of frames can propagate to subsequent frames. A set of methods
aimed at using a large number of frames to robustly estimate pose, typically through bundle
adjustment, which then gives global pose and global 3D reconstruction. This has been suc-
cessfully employed by SLAM systems [2, 11, 15], which compute both the trajectory as well
as the 3D world. An analogous system that is solely focused on the trajectory [18] combines
feature tracking, pose estimation and local bundle adjustment which reached state-of-the-art
performance.
Bundle adjustment is a powerful tool in preventing drift in pose estimation. its computa-
tional cost is relatively high. An alternative approach to regularizing pose estimation among
frames is the use of a motion model which typically uses one parameter [8, 19, 20] or two
parameters [22] to estimate the pose among consequent frames. This type of approach is
appropriate for cars which satisfy this motion model.
The idea of decoupling scales was also inspired by the works in network localization area. [21]
uses the composition of rigid motions and the graph cycle basis to calculate the global scale
within a sensor network given the bearing vector between sensor pairs only. [1] deploy the
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similar idea onto Structure from Motion problem for computing the over all scale given only
the rotation matrix and the direction of translation vector among camera pairs. Our approach
has two main differences comparing to these works. (i) In our application, rigid motion can
only be reliably estimated locally between adjacent frames but face extreme challenges in
estimating pose between more distant frames as the number of correspondence drops ex-
ponentially. Thus the composition of rigid motion is not always possible. (ii) Our scale
estimation procedure links together the observation space and the parameter space, i.e., un-
like the bearing-only problem, our method make use of the image correspondence as clue of
scale estimation.

Figure 1: The traditional approach begins with a reconstruction of the 3D world in the form
of an unorganized cloud of points by matching features from two initial keyframes, I1 and I2.
The reconstructed 3D world is then used to determine poses of non-keyframes and keyframes
by first tracking features and determining the pose using PnP. The reconstruction is incre-
mentally enriched and adjusted with each new frames.

3 Our Approach: Dissecting Scale
Let the relative pose of two cameras generating two views, Ii and I j, be denoted by the
rotation matrix Ri, j and by the translation vector Ti, j = λi, jT̂i, j, where λi, j is the magnitude of
Ti, j and T̂i, j is the unit vector representing the direction of Ti, j. This means that the expression
of a 3D point Γ in the coordinate frame of camera i, Γi, is related to its expression in the
coordinate frame of camera j, Γ j, as

Γ j = Ri, jΓi +λi, jT̂i, j. (1)

It is a standard exercise in multiview reconstructions the Essential Matrix can be computed
from a sufficient number of corresponding features in the two images. The Essential Matrix
then gives Ri, j and T̂i, j, leaving it as a free parameter. This implies a family of reconstructions
which can scale linearly as determined by the parameter λi, j, commonly referred as the met-
ric ambiguity in multiview reconstruction. A standard approach to visual odometry selects a
number of keyframes, say every other five frames, and computes the relative pose of adjacent
keyframes as described above, Figure 1. For example, for keyframes I1 and I2, the relative
pose is computed from corresponding features, in the form of (R1,2, T̂1,2), This reconstruc-
tion also gives a 3D cloud of points, which is necessary to compute the relative pose in the
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intervening frames, as the yellow arrows shown in Figure 1. Specifically, once the 3D cloud
of points is computed from keyframes I1 and I2, features are tracked in the frames between
I2 and I3 and the correspondence between tracked features and their 3D reconstruction is
used in a standard PnP pose estimation [13] to give (R2,3, λ2,3T̂2,3), with no additional scale
ambiguity beyond the assumed initial scale λ1,2. The pose of each new frame is determined
using numerical optimization to solve for (R2,3, λ2,3T̂2,3), (R3,4, λ3,4T̂3,4), etc.
We observe that the optimization to solve from these six unknowns can be decomposed
into estimating (Rn,n+1,T̂n,n+1) and estimating λn,n+1. The first step is straight forward since
(Rn,n+1,T̂n,n+1) can be computed directly from "five-points algorithm" [16]. What remains
is the estimation of a single scale λn,n+1. This approach has two distinct advantages. First,
the estimation of (Rn,n+1,T̂n,n+1) should improve when we estimate it from the large num-
ber of matched features between the two keyframes (A2, A3), typically, 2000 features, as
opposed to those matched features of (A1, A2) which can be tracked to A3, say 500 fea-
tures. This improvement is demonstrated in Figure 3. Second, the independent estimation of
(Rn,n+1,T̂n,n+1) leaves a single variable λn,n+1 between frames An and An+1, i.e., λ1,2, λ2,3,
λ3,4, etc. We now show below that the scale between each adjacent frames can be related to
that of a previous adjacent pair of frames using only a single tracked features.

Figure 2: The proposed approach determines the relative pose of each pair of adjacent
keyframes from matching features, giving (Rn,n+1, T̂n,n+1) but leaving a free scale variable
λn,n+1 for each pair of frames. In this paper we show how to calculate scale for adjacent
pairs of frames. We show that scale-independent estimation of (Rn,n+1, T̂n,n+1) from the full
set of features improves robustness.

Proposition 1. (Linking metric ambiguity between adjacent pairs): Consider three frames
I1, I2 and I3, and three corresponding image points γ1, γ2 and γ3, one per frame, all arising
from a single 3D point Γ. Let a pair of images Ii and I j be related by relative pose Ri, j,
λi, jT̂i, j as in Equation 1, i, j ∈ {1,2,3}, Figure 2. When (Ri, j, T̂i, j) are available but the scale
of translation λi, j is unknown, the ratio of scales satisfies

λ2,3

λ1,2
=

[(eT
1 T̂2,1)− (eT

3 T̂2,1)(eT
1 γ1)][(eT

3 R2,3γ2)(eT
1 γ3)− (eT

1 R2,3γ2)]

[(eT
1 T̂2,3)− (eT

3 T̂2,3)(eT
1 γ3)][(eT

3 R2,1γ2)(eT
1 γ1)− (eT

1 R2,1γ2)]
, (2)

where eT
1 = [1,0,0], eT

2 = [0,1,0] and eT
3 = [0,0,1].

Proof. Let Γ1 = ρ1γ1 and Γ2 = ρ2γ2, where ρ1 and ρ2 are depths of point Γ in cameras 1 and
2, respectively. Then the inner product of coordinate vectors eT

1 , eT
2 and eT

3 with Equation 1
gives three equations for the three unknowns ρ1, ρ2 and λ1,2:

ρ2(eT
1 γ2) = ρ1(eT

1 R1,2γ1)+λ1,2(eT
1 T̂1,2)

ρ2(eT
2 γ2) = ρ1(eT

2 R1,2γ1)+λ1,2(eT
2 T̂1,2)

ρ2(eT
3 γ2) = ρ1(eT

3 R1,2γ1)+λ1,2(eT
3 T̂1,2).

(3)
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Figure 3: Direct pose estimation between two frames based on direct matching of features is
more accurate than pose estimation based on tracking those features matched from a previous
frame. We use the ground truth scale in comparing PnP to direct estimation to illustrate the
improvement in isolation. This is shown for two distinct tracks.

Since eT
3 γ2 = 1, the last equation relates ρ2 to ρ1

ρ2 = (eT
3 R1,2γ1)ρ1 +(eT

3 T̂1,2)λ1,2. (4)

Substituting this into the first equation of Equations 3 we have:

ρ1 =

[
(eT

1 T̂1,2)− (eT
3 T̂1,2)(eT

1 γ2)

(eT
3 R1,2γ1)(eT

1 γ2)− (eT
1 R1,2γ1)

]
λ1,2 (5)

ρ2 =

[
(eT

1 T̂2,1)− (eT
3 T̂2,1)(eT

1 γ1)

(eT
3 R2,1γ2)(eT

1 γ1)− (eT
1 R2,1γ2)

]
λ1,2, (6)

which gives ρ1 and ρ2 in terms of λ1,2. Thus for two images, I1 and I2, depth ρ1 and ρ2 can
be computed in terms of λ1,2. Similarly, for two images I2 and I3, depth ρ2 and ρ3 can be
computed in terms of λ2,3. This gives two expressions for ρ2, one in terms of λ1,2 and one in
terms of λ2,3, i.e.,  ρ2 = λ2,1

(eT
1 T̂2,1)−(eT

3 T̂2,1)(eT
1 γ1)

(eT
3 R2,1γ2)(eT

1 γ1)−(eT
1 R2,1γ2)

ρ2 = λ2,3
(eT

1 T̂2,3)−(eT
3 T̂2,3)(eT

1 γ3)

(eT
3 R2,3γ2)(eT

1 γ3)−(eT
1 R2,3γ2)

.
(7)

Then the ratio between two scales is computed as

λ23

λ12
=

[(eT
1 T̂2,1)− (eT

3 T̂2,1)(eT
1 γ1)][(eT

3 R2,3γ2)(eT
1 γ3)− (eT

1 R2,3γ2)]

[(eT
1 T̂2,3)− (eT

3 T̂2,3)(eT
1 γ3)][(eT

3 R2,1γ2)(eT
1 γ1)− (eT

1 R2,1γ2)]
. (8)

The proposition states that for a given triplet of images I1, I2 and I3, any triplet of corre-
spondences γ1, γ2 and γ3 gives λ2,3

λ1,2
. Theoretically, any other triplet of corresponding features,
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say γ̄1, γ̄2 and γ̄3 should give the same value. Practically, however, there is a distribution of
estimates over this space of feature triplets, as demonstrated in Figure 4. One might be
able to compute an optimal estimate among the pool of scale ratios. However, there is no
foundations for minimizing error in the parameter space. Rather, the meaningful error is the
observation space, i.e., given a scale ratio, the extent of reprojection error when a pair of
correspondence is reprojected onto a third under this scale ratio. Our goal is to find an op-
timal scale ratio λ2,3/λ1,2 that minimizes the trinocular reprojection error. Specially, given
triplets (γ1,γ2,γ3), this scale ratio λ2,3/λ1,2 gives γ̄3 as trinocular reprojection of γ1 and γ2
and the error is ||γ3− γ̄3||. An efficient optimization for λ2,3/λ1,2 is based on a highly effi-
cient one-parameter RANSAC where any given triplet suggests a value for λ2,3/λ1,2 and the
extent of inlier, where ||γ3− γ̄3|| < ε , where ε is a distance threshold typically ε = 1 pixel.
Figure 5 demonstrates the performance of this algorithms in determining the relative scale
with respect to ground-truth.

(a) (b)

Figure 4: The distribution of λn,n+1
λn−1,n

for all features in the triple of image (In−1, In, In+1) shown
in full in (a) and magnified in (b). Observe that while the distribution is narrow, there is a
range of possible values. Also note there are some outliers which can easily be identified.
Disregarding these outliers we can examine the rest of the distribution.

Figure 5: The comparing between ground truth relative scale λn,n+1
λn−1,n

and estimated relative
scale with our method. In this figure, our method can estimate correct relative scale between
keyframes. There are several wrong estimations, which will propagate.

Trinocular Reprojection Error: The traditional approach to trinocular reprojection is to
first recover the 3D point by triangulation from two views and reproject onto a third view,
and measure the reprojection error, e.g., Figure 6, where two points γ1 and γ2 triangulate
to give Γ and the reprojection of Γ into a third view gives γ̄3. The distance between γ3
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and γ̄3 is the trinocular reprojection error. The difficulty in this approach is that rays from
two corresponding points γ1 and γ2 rarely meet in 3D due to calibrations and discretization
errors. As such Γ is typically taken as the a point minimizing the distance from these non-
intersecting rays.
Alternatively, γ̄3 can be obtained by intersecting the two epipolar lines in the third view, one
arising from γ1 and γ2 in the third view.

γ̄3 =

(
ξ

η

)
=

 (a2b1−a1b2)(ā3b̄1−ā1b̄3)−(a3b1−a1b3)(ā2b̄1−ā1b̄2)

(a2b3−a3b2)(ā3b̄1−ā1b̄3)−(a3b1−a1b3)((ā2b̄3−ā2b̄3)
(ā2b̄1−ā1b̄2)−(ā2b̄3−ā3b̄2)

(ā3b̄1−ā1b̄3)

(a2b1−a1b2)(ā3b̄1−ā1b̄3)−(a3b1−a1b3)(ā2b̄1−ā1b̄2)

(a2b3−a3b2)(ā3b̄1−ā1b̄3)−(a3b1−a1b3)((ā2b̄3−ā2b̄3)

 (9)

where ai = eT
i R1,3γ1, bi = eT

i T1,3, āi = eT
i R2,3γ2 and b̄i = eT

i T2,3, as derived supplementary
material. This avoids an unnecessary compromise in accuracy as a result of approximation
in the 3D reconstruction and the subsequent projection.

Figure 6: (a) The 3D reprojection error is typically computed by first triangulating points
and then reprojecting into another view. (b) Alternatively, the point can be directly estimated
without triangulation, effectively as the intersection of epipolar lines.

Monocular Visual Odometry: Our approach is that all (Rn,n+1, T̂n,n+1) between adja-
cent keyframes are computed without involving the scale λn,n+1. In a addition, the previous

proposition and 1-D RANSAC approach gives the ratio λn,n+1
λn−1,n

for all adjacent keyframe pairs.
What remains is to compute each scale λn,n+1. One approach is to assume a single unknown,
say λ = λ1,2, compute all λn,n+1 in terms of λ in cascade and then resort to techniques for
determining this global scale λ , for example estimating the ground plane and known camera
height [12]. However, observe that any error in any stage of this sequential process propa-
gates errors, compounding the error in each subsequent stage.
Stereo Visual Odometry: Alternatively, when stereo imaging is available, instead of a sin-
gle frame Ii we have a pair of frames from the left and right cameras, denoted by (I−i , I+i ).
Observe that the stereo camera is typically calibrated so that the relative pose is known, with
a rotation matrix identity, R = I and absolute translation |T | = b. Thus, taking a triplet of
cameras, namely, (I−1 , I−2 , I+1 ), allows for computing the ratio of scales λ1,2/b which is in
turn gives λ2. This local computes of scale avoids a global, cascaded scale determination,
thus preventing propagation and compounding of errors. Observe that this can be done in a
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"forward" manner, Figure 7(b) or in a "backward" manner, Figure 7(c), allowing for a reg-
ularization of local scale based on two distinct and independent set of images. In addition,
the continuity of absolute scale can be gauged by measuring relative scale in a sequential
fashion, Figure 7(d). The overall method for doing stereo odometry is shown in Algorithm
1.

(a) (b) (c) (d)

Figure 7: (a) Stereo visual odometry provides absolute scale and prevents propagation of
scale errors. (b), (c) different ways of establishing absolute scale. (d) regularization of
absolute scale.

Input:Correspondence between a calibrated stereo keyframe I+i and I−i with baseline
b and between frame I−1 and subsequent frame I−2 .

Output:Relative Pose R1,2 λ1,2T̂1,2 and rmax.
Parameters:Max number of iterations Nmax = 50, ε = 1.
Initialization: Apply the five point algorithm to I−1 and I−2 to calculate R1,2 and T̂1,2;
rmax = 0, N = 0.

while N ≯ Nmax do
Randomly select a triplet of points correspondence on I−1 , I−2 , I+1 , i.e., γ

−
1 ∈ I−1 ,

γ
−
2 ∈ I−2 , and γ

+
1 ∈ I+1 ;

Calculate scale λ12
b using Equation 2 and find λ1,2;

Calculate inlier ratio r of points with |γ−2 − γ̄
−
2 |< ε over all points for R1,2 and

λ1,2T̂1,2;
rmax := max(rmax,r);
N := N +1;

end
Algorithm 1: Stereo Odometry Method.

4 Experiments & Results
Dataset and Experiments: Evaluation was performed on the KITTI benchmark [4], where
dataset are captured at 10Hz by driving around the city, organized in ten tracks covering
scenes from urban areas, rural areas, and highways. Our method is evaluated on tracks 00-
10 with the exception of 01, which does not contain sufficient features to track. Odometry
results for track 00 and track 07 are reported here, while the odometry results for the remain
tracks are reported in the supplementary materials.
Results and Discussion: KITTI benchmark contains accurate ground truth of both rotation
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(a)

(b)

(c)

(d)

(e)

(f)
Figure 8: The result of KITTI00. (a) Output path. (b) Comparison of rotation error. (c)
Comparison of translation error. The result of KITTI07. (d) Output path. (e) Comparison of
rotation error. (f) Comparison of translation error.

and translation frame by frame, This allowing for a detailed comparison of results from the
standard PnP approach and ours. We have avoided bundle adjustment or other refinement
approach for the comparison.
The computed trajectories for track 00 and track 07 are shown for the PnP approach and our
approach in comparison to ground-truth, in Figure 8(a) and (d). Observe that the trajectories
computed from our approach is closer to ground truth throughout the path, especially near
the end. We has also plotted rotation error and translation error for track 00 in Figure 8(b)
and (c), respectively, and the same for track 07 in Figure 8(e) and (f), respectively. It is clear
that there is a significant improvement in each for our method as compared to classical PnP.
In addition to improving the accuracy of the trajectory computation, our method also im-
proves in the computational requirements. Since our method and classical PnP method share
the same feature correspondence method, we compare the pose estimation computation time.
For the PnP method, the average running time is 0.65s per pair of keyframe, as compared to
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0.38s for our method, a 41% improvement.
Estimating speed: The scale λn,n+1 is effectively the distance between two keyframes,
which when normalized by the time difference between them gives the speed of the vehi-
cle. We compare speed using the PnP method and ours against ground truth and also plot the
distribution of error. These results clearly indicate that our approach estimates scale more
accurately, Figure 9. Further details on other tracks can be found in supplementary materials.
As an overview of the result on other tracks, Figure 10 plots the average translation, rotation,
and speed error on all tracks we have experimented on.

Figure 9: A comparison of scale/speed estimation of the PnP-based algorithm (left column)
and ours (middle column) against the ground truth. The distribution of errors are plotted in
the right column. Rows corresponds to tracks 00 and 07 of KITTI.

Figure 10: All tracks we experimented on. Left: Average translation Error. Middle: Average
Rotation Error. Right: Average Speed Error.

5 Conclusions
In this paper, we have shown that the key problem in visual odometry is to estimate the rela-
tive scale between two frames. The rotation matrix and unit translation vector can be easily
solved with existing techniques. This paper proposed a closed form solution to estimate the
relative scale ratio between three views. The experimental result on KITTI benchmark shows
that our method is effective and efficient.



YUAN ET.AL.: DISSECTING SCALE FROM POSE ESTIMATION IN VISUAL ODOMETRY 11

References
[1] Federica Arrigoni, Andrea Fusiello, and Beatrice Rossi. On computing the translations

norm in the epipolar graph. In 3D Vision (3DV), 2015 International Conference on,
pages 300–308. IEEE, 2015.

[2] Alessandro Chiuso, Paolo Favaro, Hailin Jin, and Stefano Soatto. 3-d motion and
structure from 2-d motion causally integrated over time: Implementation. Computer
Vision, ECCV 2000, pages 734–750, 2000.

[3] Andreas Geiger, Julius Ziegler, and Christoph Stiller. Stereoscan: Dense 3d reconstruc-
tion in real-time. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 963–968.
Ieee, 2011.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driv-
ing? the kitti vision benchmark suite. In Computer Vision and Pattern Recognition
(CVPR), 2012 IEEE Conference on, pages 3354–3361. IEEE, 2012.

[5] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.
Cambridge university press, 2003.

[6] Gim Hee Lee, Friedrich Faundorfer, and Marc Pollefeys. Motion estimation for self-
driving cars with a generalized camera. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2746–2753, 2013.

[7] Albert S Huang, Abraham Bachrach, Peter Henry, Michael Krainin, Daniel Maturana,
Dieter Fox, and Nicholas Roy. Visual odometry and mapping for autonomous flight
using an rgb-d camera. In Robotics Research, pages 235–252. Springer, 2017.

[8] Yanhua Jiang, Huiyan Chen, Guangming Xiong, and Davide Scaramuzza. Icp stereo
visual odometry for wheeled vehicles based on a 1dof motion prior. In Robotics and
Automation (ICRA), 2014 IEEE International Conference on, pages 585–592. IEEE,
2014.

[9] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Robust odometry estimation for rgb-
d cameras. In Robotics and Automation (ICRA), 2013 IEEE International Conference
on, pages 3748–3754. IEEE, 2013.

[10] Bernd Kitt, Andreas Geiger, and Henning Lategahn. Visual odometry based on stereo
image sequences with ransac-based outlier rejection scheme. In Intelligent Vehicles
Symposium (IV), 2010 IEEE, pages 486–492. IEEE, 2010.

[11] Georg Klein and David Murray. Parallel tracking and mapping for small ar workspaces.
In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International
Symposium on, pages 225–234. IEEE, 2007.

[12] Bhoram Lee, Kostas Daniilidis, and Daniel D Lee. Online self-supervised monocular
visual odometry for ground vehicles. In Robotics and Automation (ICRA), 2015 IEEE
International Conference on, pages 5232–5238. IEEE, 2015.

[13] Vincent Lepetit, Francesc Moreno-Noguer, and Pascal Fua. Epnp: An accurate o (n)
solution to the pnp problem. International journal of computer vision, 81(2):155–166,
2009.



12 YUAN ET.AL.: DISSECTING SCALE FROM POSE ESTIMATION IN VISUAL ODOMETRY

[14] Mark Maimone, Yang Cheng, and Larry Matthies. Two years of visual odometry on
the mars exploration rovers. Journal of Field Robotics, 24(3):169–186, 2007.

[15] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: a ver-
satile and accurate monocular slam system. IEEE Transactions on Robotics, 31(5):
1147–1163, 2015.

[16] David Nistér. An efficient solution to the five-point relative pose problem. IEEE trans-
actions on pattern analysis and machine intelligence, 26(6):756–770, 2004.

[17] David Nistér, Oleg Naroditsky, and James Bergen. Visual odometry. In Computer Vi-
sion and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Com-
puter Society Conference on, volume 1, pages I–I. Ieee, 2004.

[18] Mikael Persson, Tommaso Piccini, Michael Felsberg, and Rudolf Mester. Robust stereo
visual odometry from monocular techniques. In Intelligent Vehicles Symposium (IV),
2015 IEEE, pages 686–691. IEEE, 2015.

[19] Davide Scaramuzza, Friedrich Fraundorfer, and Roland Siegwart. Real-time monocular
visual odometry for on-road vehicles with 1-point ransac. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pages 4293–4299. Ieee, 2009.

[20] Davide Scaramuzza, Andrea Censi, and Kostas Daniilidis. Exploiting motion priors
in visual odometry for vehicle-mounted cameras with non-holonomic constraints. In
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on,
pages 4469–4476. IEEE, 2011.

[21] Roberto Tron, Luca Carlone, Frank Dellaert, and Kostas Daniilidis. Rigid components
identification and rigidity control in bearing-only localization using the graph cycle
basis. In American Control Conference (ACC), 2015, pages 3911–3918. IEEE, 2015.

[22] Menglong Zhu, Srikumar Ramalingam, Yuichi Taguchi, and Tyler Garaas. Monocular
visual odometry and dense 3d reconstruction for on-road vehicles. In Computer Vision–
ECCV 2012. Workshops and Demonstrations, pages 596–606. Springer, 2012.


