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Abstract 

The classic visual-inertial odometry (VIO) method estimates a moving camera’s 
6-DOF pose relative to its starting point by fusing the camera’s ego-motion measured 
by a visual odometry (VO) and the motion measured by an inertial measurement unit 
(IMU). The VIO attempts to updates the estimates of the IMU’s biases at each step 
by using the VO’s output so as to improve the accuracy of IMU measurement. This 
approach works only if an accurate VO output can be identified and used. However, 
there is no reliable method that can be used to evaluate the accuracy of the VO. 

In this paper, a new VIO method is introduced for pose estimation of a robotic 
navigation aid (RNA) that uses a 3D time-of-flight camera for perception. The 
method, called plane-aided visual-inertial odometry (PAVIO), extracts planes from 
the 3D point cloud of the current camera view and track them onto the next camera 
view by using the IMU’s measurement. The tracking result is used to accept the VO 
output only if it is accurate. The accepted VO outputs, the information of the 
extracted planes, and the IMU’s measurements over time are used to create a factor 
graph. By optimizing the graph, the method improves the estimation accuracy of the 
IMU bias and reduces the camera’s pose error. Experimental results with the RNA 
validate the effectiveness of the proposed method. 

1 Introduction  
Visual impairment reduces a person’s independent mobility and severely deteriorates the 
quality of life. According to the World Health Organization, there are ~285 million people 
with visual impairment, of which 39 million are blind. The visually impaired community is 
growing due to the aging population. Therefore, there is a dire need to develop new 
mobility tools that may help visual impaired move around independently. A number of 
Robotic Navigation Aids (RNAs) [1], [2], [3], [4], [5], [6], [7], [8], have been introduced to 
guide the blind in indoor environments. Among these RANs, vision based systems are 
becoming more and more popular because the cameras, including monocular camera [2], 
stereo-cameras [3], [4], RGB-D cameras [5], [6] or 3D time-of-flight (TOF) cameras [7], 
[8], used in these RNAs can provide the needed information of the environments for 
navigation, including 6-DOF device pose (position and orientation) estimation and 3D 
object/obstacle detection. The pose information of an RNA can be used to build a 3D map 
for an unknown environment, locate the blind traveller in the environment, and guide the 
traveller to the destination.  
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The problem of camera pose estimation is also known as visual simultaneous 
localization and mapping (SLAM). The state-of-the-art visual SLAM algorithms [9], [10], 
[11], [12] have demonstrated their effectiveness in earlier research. However, they are 
effective only in a feature-rich environment. Their performances may be compromised 
when the operating environment is feature-sparse. To address this problem, two 
approaches have been taken in the literature.  

The first is to use the geometric features (e.g., planes, lines) of the operating 
environment to limit the pose estimation error as they are ubiquitous in a man-made 
environment. Plane features have been used in EKF-SLAM [13] and pose-graph SLAM 
[14], [15] to reduce pose error accumulated by visual odometry (VO). In [7], [16], floor 
plane and wall lines were extracted from the point cloud data of a 3D TOF camera and 
used to reduce pose error of an RNA for wayfinding in an unknown indoor environment. 
However, geometric features are often insufficient to provide a full correction to the 6-
DOF pose. For instance, at least three intersecting planes are needed to reduce the 6-DOF 
pose estimation error. However, only one or two planes are observable most of the time 
when using the RNA [7], [16] in the indoor environments.  

The second is to use an additional sensor, usually an inertial measurement unit (IMU) 
or a gyro. In the robotics community, the combination of a camera and an IMU has 
become standard equipment for SLAM. The SLAM method based on a Camera-IMU suite 
is termed visual inertial odometry (VIO). The state-of-the-art VIO [17], [18], [19] uses VO 
to periodically update the estimates of the IMU’s biases and integrate IMU’s 
measurements for pose estimation when VO malfunctions. A more efficient way to 
incorporate IMU data is to fuse IMU’s measurement with visual observation by 
incremental smoothing. However, VO may fail or produce large error in a feature-sparse 
environment. While VO failure may be detected, it is difficult to detect the latter with a 
monocular camera based VIO. The estimates of the IMU biases may become inaccurate in 
the former case and wrong in the latter case, resulting in a large pose estimation error. To 
overcome this problem, we propose a new method, called Plane-Aided VIO (PAVIO), for 
pose estimation of an RNA that uses a 3D TOF camera and an IMU for wayfinding. The 
method extracts plane features from the camera’s point cloud data and tracks these features 
over the camera’s data frames to associate plane features between the data frames. It then 
uses the plane correspondence information to reduce the pose estimation error by using a 
factor graph that integrates the pose changes estimated by VO and IMU and the 
information of the associated planes.  

2 Navigation system and notation  
As depicted in Fig. 1, the RNA uses a TOF camera (SwissRanger SR4000) for 3D 
perception and an IMU (VN 100 of VectorNav Technologies, LLC) for motion 
measurement. The SR4000 has a resolution of 176×144 pixels and a field-of-view of 
43.6×34.6. It produces imaging data, each of which consists of an intensity image and a 
depth image, at about 25 fps. The IMU measures the angular velocity and acceleration at 
200 Hz. In this paper, a new VIO method is developed to estimate the IMU’s Pose Change 
(PC) by incorporating the IMU’s measurement, PC estimated by the SR4000-based Visual 
Odometry (VO) [20], and geometry features (i.e., planes) extracted from the camera’s 
point cloud data. The VO estimates the PC between two keyframes. The first data frame of 
the camera is taken as the first keyframe. A subsequent keyframe is defined as one with a 
substantial translation (>0.1 meter) or rotation (>2°) from the previous keyframe. 
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Figure 1: RNA and coordinate systems 

Keyframe i contains intensity image i (called image i for simplicity) and depth image i. 
There are multiple IMU measurements between two keyframes. These inertial 
measurements are integrated to produce another Pose Change Estimate (PCE). The two 
PCEs together with the plane features are used to create a factor graph [21] for estimating 
the IMU’s pose in the world coordinate system. The use of the plane features helps to 
reduce pose estimation error. The proposed method is detailed in sections 3 and 4. 

The coordinate systems of the IMU and camera, 𝑋௦𝑌௦𝑍௦ and 𝑋௖𝑌௖𝑍௖, of the RNA are 
defined in Fig. 1. The world coordinate system 𝑋௪𝑌௪𝑌௪ is defined as the IMU’s coordinate 
system at the first keyframe. Throughout the 
paper, a matrix is represented by a bold capital 
letter and a vector a bold lowercase letter. The 
right superscript of a letter represents the 
coordinate system, in which the variable is 
expressed, while a left superscript indicates the 
type of variable. For example, the camera 
transformation matrix from keyframe 𝑖  to 
keyframe j is denoted by 𝐓𝐢𝐣

𝐜 . Similarly, the 
transformation matrix from 𝑋௪𝑌௪𝑌௪  to 𝑋௦𝑌௦𝑍௦ 
at keyframe i is denoted 𝐓𝐢

𝐰𝐬 . We use 
Riemannian geometry notation to describe a rigid body’s pose. Let the IMU’s pose at 
keyframe 𝑖  be denoted  𝝃𝒊

𝒘 = [(𝝎𝒊
𝒘)𝑻, (𝒕𝒊

𝒘)𝑻]𝑻 , where 𝝎𝒊
𝒘 ∈ ℝ𝟑  and 𝒕𝒊

𝒘 ∈ ℝ𝟑  are the 
IMU’s orientation and position in 𝑋௪𝑌௪𝑌௪, respectively. The relation between 𝝎𝒊

𝒘 and the 
rotation matrix 𝐑𝐢

𝐰𝐬 ∈ 𝑆𝑂(3)  is determined by the exponential/logarithm map [19]. 
Specifically, 𝐑𝐢

𝐰𝐬 = exp ((𝝎𝒊
𝒘)^)  and 𝝎𝒊

𝒘 = (log(𝐑𝐢
𝐰𝐬))˅ , where (𝝎𝒊

𝒘)^ ∈ 𝔰𝔬(3)  is the 
corresponding Lie algebra element of 𝝎𝒊

𝒘, the hat operator (⋅)^ maps a vector to a skew 
symmetric matrix in 𝔰𝔬(3) , and the vee operator (⋅)˅  is the inverse operation. The 

transformation matrix from 𝑋௦𝑌௦𝑍௦  to 𝑋௪𝑌௪𝑌௪  is 𝐓𝐢
𝐰𝐬 = ቂ

𝐑𝐢
𝐰𝐬 𝒕𝒊

𝒘

0 1
ቃ = ൤exp  (𝝎𝒊

𝒘)^ 𝒕𝒊
𝒘

0 1
൨ 

and the IMU pose 𝝃𝒊
𝒘 can be computed from 𝐓𝐢

𝐰𝐬 by 

 𝝃𝒋
𝒘 = ቈ

𝝎𝒋
𝒘

𝒕𝒋
𝒘 ቉ = ቈ

log (exp  ((𝝎𝒊
𝒘)^)exp ((𝝎𝒊𝒋

𝒔 )^))˅

𝐑𝐢
𝐰𝐬𝒕𝒊𝒋

𝒔 + 𝒕𝒊
𝒘 ቉   (1) 

Let 𝒙𝒊
𝒘 = [(𝝃𝒊

𝒘)𝑻, (𝒗𝒊
𝒘)𝑻]𝑻 denote the IMU’s state and 𝒃𝒊 = [(𝒃𝒊

𝝎)𝑻, (𝒃𝒊
𝒂)𝑻]𝑻 its calibration 

parameters, where 𝒗𝒊
𝒘 ∈ ℝ𝟑 is the IMU’s linear velocity, and 𝒃𝒊

𝝎 and 𝒃𝒊
𝒂 are the bias of the 

gyroscope and accelerometer, respectively. At keyframe i, a set of planes are detected and 
described in 𝑋௦𝑌௦𝑌௦ as 𝒍𝒊𝒌

𝒔 = [𝒏𝒊𝒌
𝒔 , 𝑑௜௞

௦ ]் for 𝑘 = 1, ⋯ , 𝐾, where 𝒏𝒊𝒌
𝒔  and 𝑑௜௞

௦  are the plane’s 
normal vector and the distance from the origin of 𝑋௦𝑌௦𝑌௦ to the plane, respectively. The 
plane’s representation in 𝑋௪𝑌௪𝑍௪ is given by: 

 𝒍𝒊𝒌
𝒘 = 𝒈(𝐓𝐢

𝐬𝐰, 𝒍𝒊𝒌
𝒔 ) = ൤

𝒏𝒊𝒌
𝒘

𝑑௜௞
௪ ൨ = ൤

(𝐑𝐢
𝐬𝐰)𝑻𝒏𝒊𝒌

𝒔

𝒕𝒊
𝒔𝒘𝒏𝒊𝒌

𝒔 + 𝑑௜௞
௦  

൨   (2) 

3 Factor graph formulation  
In this paper, we use a factor graph to model the SLAM problem. A factor graph [21], [22] 
is a bipartite graph consisting of nodes and edges. There are two types of nodes: variable 
nodes and factor nodes. A variable node represents the random variables to be estimated 
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Figure 2: Factor graph structure 

and a factor node the probabilistic properties of these variables. We denote the set of vari-
ables up to m keyframes by 𝛩௠ = {𝒳௠ , ℬ௠ , ℒ௠}, where 𝒳௠ = {𝒙𝒊

𝒘}, ℬ௠ = {𝒃𝒊} and ℒ௠ =
{𝒍𝒊

𝒘}  for 𝑖 = 1, ⋯ , 𝑚. The graph is denoted by 𝐺௠ = (ℱ௠, 𝛩௠ , ℰ௠), where variable node 
𝜽𝒊 ∈ 𝛩௠ represents an unknown random variable to be estimated; factor node 𝑓௜ ∈ ℱ௠ rep-

resents the variable’s probabilistic information; 
and edges 𝜀௜௝ ∈ ℰ௠  indicates the connec-
tion/relation between nodes 𝑓௜ and 𝜃௝. 𝐺௠ defines 
the factorization of a function given by:  

𝑓(𝛩௠) =  ∏ 𝑓௜(𝜽𝒊)௜       (3) 

Assuming a Gaussian measurement model, 𝑓௜, 
can be computed by:  

                     𝑓௜(𝜽𝒊) ∝ 𝑒𝑥𝑝(−
ଵ

ଶ
𝑟௜

ଶ)             (4) 

Here, 𝑟௜
ଶ = 𝒆𝒊

𝑻𝚺𝒊
ି𝟏𝒆𝒊  is the squared Mahalanobis 

distance. The residual error 𝒆𝒊  is computed by 
𝒆𝒊 = ℎ௜(𝜽𝒊) − 𝒛𝒊 , where ℎ௜(𝜽𝒊) is the estimated 

measurement; 𝒛𝒊 is the actual measurement; and 𝚺𝒊 is the covariance matrix. The solution 
to the SLAM problem is to find the optimum value 𝛩௠

∗  that maximizes 𝑓(𝛩௠) in (3): 

𝛩௠
∗ =  argmax

௵ೖ

∏ 𝑓௜(𝜽𝒊)௜    (5) 

This is equivalent to the nonlinear Least-Square (LS) solution: 

 𝛩௠
∗ =  argmax

௵೘

(− ∑ log 𝑓(𝛩௠)) = argmin
௵೘

(∑ 𝑟௜
ଶ௠

௜ୀଵ )   (6) 

In the factor graph, factor nodes 𝑓௜ consists of PC measurements of both VO and IMU and 
the biases of the IMU [19]. In this paper, we extend Forster’s VIO method [19] by adding 
plane features as landmarks to the factor graph to reduce pose estimation error. A factor 
graph example in our case is shown in Fig. 2. The LS problem is given by: 

         𝛩௠
∗ = argmin

௵ೖ

ቀ𝑟௢
ଶ   +  ∑ ൫ 𝒓𝒊𝒋

𝒄 ൯
ଶ

௜௝ + ∑ ( 𝒓𝒌𝒍
𝒔 )ଶ

௞௟ + ∑ ൫ 𝒓𝒑𝒒
𝒍 ൯

ଶ

௣௤ ቁ   (7) 

where 𝒓𝒐, 𝒓𝒊𝒋
𝒄 , 𝒓𝒌𝒍

𝒔   and 𝒓𝒑𝒒
𝒍   are the residual errors related to the factors of prior, VO, 

IMU and plane measurements, and 𝚺𝒑𝒒
𝒄 , 𝚺𝒑𝒒

𝒔  and  𝚺𝒑𝒒
𝒍  are the corresponding 

covariance matrices. Computation of 𝒓𝒐 and 𝒓𝒌𝒍
𝒔  for the IMU factors ℱூ  follows Forster’s 

VIO method [19]. The error functions and covariance matrices related to ℱை and ℱ௅  are 
detailed as follows.  

3.1 Visual odometry factor 𝓕𝑶 

VO estimates PC between keyframes i and j by extracting visual features from image i and 
tracking them onto image j. In this work, SIFT features [23] are used for VO. Note that we 
use the keypoints only. Given the PC 𝐓෡𝐢𝐣

𝒄 (calculated from the IMU measurements), a space 
correspondence search is employed to find the matched features between the two images 
and the RANSAC process [20] is used to find inliers, from which PCE is computed. 
Finally, the Bundle Adjustment (BA) method [12] is applied to the inliers to refine the 
PCE. We observed from our experiments that the PCE produced by BA could be 
inaccurate when the inlier number is low. Fig. 3 shows a case with 8 inliers. The point 
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Algorithm 1 The proposed VO: 
1:  reset [𝐓𝐢𝐣

𝐜, 𝚺𝐢𝐣
𝐜 ], L 

2:   = FeatureMatch(I୧, D୧, I୨, 𝐓෡𝐢𝐣
𝐜)  

3:  [𝐓෩𝐢𝐣
𝐜, N, S] = RANSAC_InliersDetection() 

4:  𝑙௜
௖ = PlaneDetection(D୧) 

5:  if  𝑙௜
௖ is not empty 

6:      𝑳 = PlaneAssociation(𝒍𝒊
𝒄, I୧, D୧, I୨, D୨, 𝐓෡𝐢𝐣

𝐜) 
7:  if  N < 12 
8:      return 1 
9: [𝐓𝐢𝐣

𝐜, 𝚺𝐢𝐣
𝐜 ] = BA(𝐓෩𝐢𝐣

𝐜, 𝑆) 
10: if  𝑳 is empty 
11:     return 𝟎 
12: E୰ = PlaneConsistencyCheck(𝑳, [𝐓𝐢𝐣

𝐜, 𝚺𝐢𝐣
𝐜 ]) 

13: if  E୰ <𝜒ଷ,଴.ଽ
ଶ   

14:      return 𝟎  
15: else   
16:      return 1  

 I୧, D୧: Image and Depth Image of keyframe i 
 I୨, D୨: Image and Depth Image of keyframe j 
 : matched SIFT features, S: a set of inliers  
 N: number of inliers 

 

 

Figure 3: Top: matched visual fea-
tures (8 inliers); Bottom: misalign-
ment of the wall surfaces due to 
PCE error. 

cloud data of the two keyframes are registered based 
on the estimated PC. The misalignment of the wall 
surfaces indicates an inaccurate PCE. In this work, 
we propose to use the associated planes between the 
two keyframes to verify the PCE accuracy of BA 
and thus determine rejection or acceptance of the 
PCE. The proposed VO method is illustrated in 
Algorithm 1. The method computes [𝐓𝐢𝐣

𝐜, 𝚺𝐢𝐣
𝐜 ] (PCE 

and the covariance matrix) and L (associated plane-
pairs) between key-frames i and j. If it returns with 0 
(success), [𝐓𝐢𝐣

𝐜, 𝚺𝐢𝐣
𝐜 ]  is used to construct the factor 

graph. Otherwise, L is used to add plane-nodes to 
the factor graph. The PlaneDetection function (in 
line 4) extracts planes from keyframe i by a 
RANSAC plane-fitting process if the 
PlaneAssociation  function does not find all 
associated planes in the previous step. 
Otherwise, it simply inherits the planes. It 
is noted that the algorithm returns 1 if the 
inlier number N is smaller than 12. This is 
because that the SR4000-based VO 
requires at least 12 matched points to 
compute an accurate PCE [13].  The rest 
of the algorithm is self-explanatory. Some 
technical details of plane factor, plan 
association and plane consistency check 
are given in the following sections. 

3.2 Plane factor 𝓕𝑳 

Let the kth plane detected at keyframe i 
(with pose 𝝃𝒊

𝒘 ) be denoted by 𝒍𝒊𝒌
𝒄 =

[𝒏𝒊𝒌
𝒄 , 𝑑௜௞

௖ ]்  in 𝑋௖𝑌௖𝑍௖ . In this work, the 
plane’s covariance matrix 𝚺𝐢𝐤

𝒄  is computed 
by the method in [24] and its variables 
and factors for graph construction are 
calculated according to [21]. The ele-
ments of 𝒏𝒊𝒌

𝒄  represent a point on the sur-
face of sphere 𝑆ଶ—a manifold consisting of all the unit vectors in ℝଷ: 𝑆ଶ = {𝒏 ∈ ℝଷ}, 
where 𝒏 = [𝑛௫, 𝑛௬ , 𝑛௭]𝑻 is a unit vector. Each point in the space of 𝑆ଶ corresponds to a 
normal vector of a plane. The tangent space 𝑇𝒏(𝑆ଶ) at a point 𝒏 of 𝑆ଶ is composed of 3D 
vectors 𝝋: 𝑇𝒏(𝑆ଶ) ≜ {𝝋 ∈ ℝଷ| 𝒏𝑻𝝋 = 0}. A basis 𝐁𝐧 = [𝒃𝟏|𝒃𝟐]  for 𝑇𝒏(𝑆ଶ) is computed 
by 𝒃𝟏 = 𝒃ᇱ/||𝒃ᇱ|| and 𝒃𝟐 = 𝒏×𝒃𝟏, where 𝒃ᇱ = 𝒏×𝒂. To ensure that 𝒂 is not parallel to 𝒏, 
we set 𝒂 to [1,0,0]், [0,1,0]் or [0,0,1]் if 𝑛௫, 𝑛௬ or 𝑛௭ dominates the other two elements. 
A vector 𝝋 in 𝑇𝒏(𝑆ଶ) is represented by 𝝋 = 𝐁𝐧𝝆, where 𝝆 ∈ ℝଶ is the 2D coordinate in 
the tangent plane with basis 𝐁𝐧. Using the local tangent space, 𝚺𝐢𝐤

𝒄  can be re-written as: 
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 𝐒𝐢𝐤
𝒄 = ൥

𝐁𝒏𝒊𝒌
𝒄

𝑻 𝚺𝒏𝒊𝒌
𝒄 𝐁𝒏𝒊𝒌

𝒄 𝟎𝟐×𝟏

𝟎𝟏×𝟐 𝜎ௗ೔ೖ
೎

ଶ
൩.   (8) 

The covariance of the plane factor (in 𝑋௦𝑌௦𝑍௦) is then computed by 𝚺𝒊𝒌
𝒍 = 𝐉𝐒𝐢𝐤

𝒄 𝐉𝑻. Here, 
the jacobian matrix 𝐉 can be derived from 𝒍𝒊𝒌

𝒔 = 𝒈(𝐓𝒄𝒔, 𝒍𝒊𝒌
𝒄 ) and is given by 

 𝐉 = ቈ
𝐁𝒏𝒊𝒌

𝒔
𝑻 (𝐑𝒄𝒔)𝑻𝐁𝒏𝒊𝒌

𝒄 𝐁𝒏𝒊𝒌
𝒄

𝑻 𝒕𝒄𝒔

𝟎𝟏×𝟐 1
቉.   (9) 

The predicted measurement of plane 𝒍𝒊𝒌
𝒔  is given by 𝒍መ𝒊𝒌

𝒔 = ൣ𝒏ෝ𝒊𝒌
𝒔 , 𝑑መ௜௞

௦ ൧
்

= 𝒈(𝐓𝐢
𝐰𝐬, 𝒍𝒊𝒌

𝒘 ). The 
error vector of the plane factor is calculated by  

 𝒆𝒊𝒌
𝒍 = [𝝆𝒊𝒌

𝑻 , 𝑑መ௜௞
௦ − 𝑑௜௞

௦ ]𝑻 ,   (10) 

where  𝝆𝒊𝒌 = 𝐁𝒏ෝ𝒊𝒌
𝒔

𝑻 ఏ

ୱ୧୬(ఏ)
(𝒏𝒊𝒌

𝒔 − 𝒏ෝ𝒊𝒌
𝒔 ∗ cos(𝜃)) with 𝜃 = cosିଵ((𝒏ෝ𝒊𝒌

𝒔 )𝑻𝒏𝒊𝒌
𝒔 ) [25] 

4 Plane association and consistency check  

4.1 Plane Association 

Assume 𝐓෡𝐢𝐣
𝐜 (i.e., the camera’s PC measured by the IMU) is close to the true value. 𝒍𝒊𝒌

𝒄  (the 

kth plane observed at keyframe i) can be tracked into keyframe j as 𝒍መ𝒋𝒌
𝒄 = ൣ𝒏ෝ𝒋𝒌

𝒄 , 𝑑መ௝௞
௖ ൧

்
=

𝒈(𝐓෡𝐢𝐣
𝐜, 𝒍𝒊𝒌

𝒄 ) to speed up the search for its associated plane 𝒍𝒋𝒌
𝒄  at keyframe j. The distances 

between all points of keyframe j and 𝒍መ𝒋𝒌
𝒄  are computed. Those points with a distance below 

2𝜎௜௞ are treated as data points on plane 𝒍መ𝒋𝒌
𝒄 .  (𝜎௜௞ is the plane fitting error of plane 𝒍𝒊𝒌

𝒄 .) 

Some of these data points are on plane 𝒍𝒋𝒌
𝒄  because plane 𝒍𝒋𝒌

𝒄  is in the neighbourhood of 𝒍መ𝒋𝒌
𝒄 . 

In this work, a RANSAC plane-fitting process is used to extract plane 𝒍𝒋𝒌
𝒄  from the data 

points. After the RANSAC process, 𝒍𝒋𝒌
𝒄  is extended by adding data points satisfying the 

distance criteria. Finally, the plane’s parameters are recomputed. If the number of data 
points of 𝒍𝒋𝒌

𝒄  is large enough, the pair ൛𝒍𝒊𝒌
𝒄 , 𝒍𝒋𝒌

𝒄 ൟ taken as a successful match.  

4.2 Plane consistency check (PCC) 

After plane association, a set of matched plane-pairs 𝑳 = ⋃ ൛𝒍𝒊𝒌
𝒄 , 𝒍𝒋𝒌

𝒄 ൟ𝒌  is obtained. PCC is to 
evaluate, based on the PCE of VO, how good the match between each plane-pair is. The 
evaluation result determines if the VO’s estimate should be accepted. Given the PCE 
{𝐓𝐢𝐣

𝐜, 𝚺𝐢𝐣
𝐜 } from VO, the prediction of plane 𝒍𝒊𝒌

𝒄  for keyframe j is 𝒍ሚ𝒋𝒌
𝒄 = 𝒈(𝐓𝐢𝐣

𝐜, 𝒍𝒊𝒌
𝒄 ). The good-

ness of match between 𝒍𝒋𝒌
𝒄  and 𝒍ሚ𝒋𝒌

𝒄  is evaluated by the angle between 𝒏෥𝒋𝒌
𝒄  and 𝒏𝒋𝒌

𝒄  and the 

value of ௗ = 𝑑ሚ௝௞
௖ − 𝑑௝௞

௖ . If the angle is larger than 5° or ௗ>0.1 m, the PCE is rejected. If 
the angle is less than 0.5° and ௗ<0.01 m, the PCE is accepted. For the rest, we compute 
the covariance of 𝒍ሚ𝒋𝒌

𝒄  by: 

 𝐒෨𝐣𝐤
𝒄 = ൬

డ𝒍ሚ𝒋𝒌
𝒄

డ𝝃෨𝒊𝒋
𝒄 ൰ 𝚺෩𝐢𝐣

𝐜 ൬
డ𝒍ሚ𝒋𝒌

𝒄

డ𝝃෨𝒊𝒋
𝒄 ൰

்

+ ൬
డ𝒍ሚ𝒋𝒌

𝒄

డ𝒍𝒊𝒌
𝒄 ൰ 𝐒𝐢𝐤

𝒄 ൬
డ𝒍ሚ𝒋𝒌

𝒄

డ𝒍𝒊𝒌
𝒄 ൰

்

   (11) 
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where 
డ𝒍ሚ𝒋𝒌

𝒄

డ𝝃෨𝒊𝒋
𝒄 = ቎

−𝐁𝒏෥𝒋𝒌
𝒄

𝑻 𝐑෩ 𝐢𝐣
𝐜 ൣ𝒏𝒋𝒌

𝒄 ൧
×

𝟎𝟐×𝟑

𝟎𝟏×𝟑 ൣ𝒏෥𝒋𝒌
𝒄 ൧

𝑻
቏  and 

డ𝒍ሚ𝒋𝒌
𝒄

డ𝒍𝒊𝒌
𝒄 = ቈ

𝐁𝒏෥𝒋𝒌
𝒄

𝑻 𝐑෩ 𝐢𝐣
𝐜 𝐁𝒏𝒊𝒌

𝒄 𝐁𝒏𝒊𝒌
𝒄

𝑻 𝒕෤𝒊𝒋
𝒄

𝟎𝟏×𝟐 1
቉ . [𝒏]× is the 

skew matrix of 𝒏. We use error 𝒓(𝒏෥𝒋𝒌
𝒄 , 𝒏𝒋𝒌

𝒄 ) = 𝐁𝒏෥𝒋𝒌
𝒄

𝑻 𝒏𝒋𝒌
𝒄  [21] to describe the difference be-

tween 𝒏෥𝒋𝒌
𝒄  and 𝒏𝒋𝒌

𝒄 . An error vector 𝒆𝒌  for the plane pair ൛𝒍𝒊𝒌
𝒄 , 𝒍𝒋𝒌

𝒄 ൟ is computed as 𝒆𝒌 =

ቈ
𝒓(𝒏෥𝒋𝒌

𝒄 , 𝒏𝒋𝒌
𝒄 )

𝑑ሚ௝௞
௖ − 𝑑௝௞

௖ ቉, and the covariance matrix of 𝒆𝒌 is given by: 

 𝚺𝒆𝒌
= ൬

డ𝒆𝒌

డ𝒍ሚ𝒋𝒌
𝒄 ൰ 𝐒෨𝐣𝐤

𝒄 ൬
డ𝒆𝒌

డ𝒍ሚ𝒋𝒌
𝒄 ൰

்

+ ൬
డ𝒆𝒌

డ𝒍𝒋𝒌
𝒄 ൰ 𝐒𝐣𝐤

𝒄 ൬
డ𝒆𝒌

డ𝒍𝒋𝒌
𝒄 ൰

்

   (12) 

where 
𝜕𝒆𝒌

𝜕�̃�𝒋𝒌
𝒄 =

⎣
⎢
⎢
⎢
⎡ൣ𝒏𝒋𝒌

𝒄 ൧
𝑻

൬
𝜕𝒃෤𝟏

𝜕𝒏෤𝒋𝒌
𝒄 ൰ 0

ൣ𝒏𝒋𝒌
𝒄 ൧

𝑻
൬

𝜕𝒃෤𝟐

𝜕𝒏෤𝒋𝒌
𝒄 ൰ 0

𝟎𝟏×𝟐 1⎦
⎥
⎥
⎥
⎤

, with 
𝜕𝒃෤𝟏

𝜕𝒏෤𝒋𝒌
𝒄 = 𝐉

𝒃′[−𝒂]×𝐁𝒏෤𝒋𝒌
𝒄 . 𝐁𝒏෤𝒋𝒌

𝒄 = [𝒃෤𝟏|𝒃෤𝟐], and 𝐉
𝒃′ =

𝟏

ฮ𝒃′ฮ
𝟑

𝟐

቎

𝑏𝑦
′2 + 𝑏𝑧

′2 −𝑏𝑥
′ 𝑏𝑦

′ −𝑏𝑥
′ 𝑏𝑧

′

−𝑏𝑥
′ 𝑏𝑦

′ 𝑏𝑧
′2 + 𝑏𝑥

′2 −𝑏𝑦
′ 𝑏𝑧

′

−𝑏𝑥
′ 𝑏𝑧

′ −𝑏𝑦
′ 𝑏𝑧

′ 𝑏𝑥
′2 + 𝑏𝑦

′2

቏  where 𝒃′ = [𝑏𝑥
′ , 𝑏𝑦

′ , 𝑏𝑧
′ ]

𝑻
= 𝒏෤ 𝒋𝒌

𝒄
×𝒂  (refer to 

section 3.2 on how to determine 𝒂 ). 
𝜕𝒃෤𝟐

𝜕𝒏෤𝒋𝒌
𝒄 = [−𝒃෤𝟏]×𝐁𝒏෤𝒋𝒌

𝒄 + ൣ𝒏෤ 𝒋𝒌
𝒄 ൧

×

𝜕𝒃෤𝟏

𝜕𝒏෤𝒋𝒌
𝒄  and 

𝜕𝒆𝒌

𝜕𝒍𝒋𝒌
𝒄 =

ቈ
𝐁𝒏෤𝒋𝒌

𝒄
𝑻

𝐁𝒏𝒋𝒌
𝒄 𝟎𝟐×𝟏

𝟎𝟏×𝟐 −1
቉. The squared Mahalanobis distance is computed by 𝑟𝑘

2 = 𝒆𝑘
𝑇𝚺𝒆𝒌

−1𝒆𝒌 . 

Er = 𝑚𝑎𝑥( 𝑟𝑘
2) is then used to evaluate the plane consistency. If Er < 𝜒

3,0.9
2 = 6.25, the 

PCE is accepted, and otherwise rejected. 

5 Experiments 
We used the RNA to collect data to validate the efficacy of the proposed SLAM method. 
Seven datasets were obtained from the human subject experiments in the environments 
with lobbies, hallways and/or stairways in two buildings on campus. These datasets were 
acquired from the sensors by using the on-board computer (up boards computer) and pro-
cessed offline by a desktop computer. When collecting the data, the subject swung the 
RNA and walked in a normal walking speed (average speed: 0.6 m/s) to imitate the way a 
blind person uses a white cane. In each of the experiments, the subject walked along a 
looped path and returned to the starting point. We use the End Point Error Norm (EPEN) 
of the trajectory as the performance metric. The EPENs (both absolute value and percent-
age of path-length) produced by PAVIO for the seven datasets are tabulated in Table I, 
where the results from the state-of-the-art VIO method [19] (using the inlier threshold 
N=12) are compared. The percentage values allow us to compute the statistical results 
(mean and standard deviation over the seven datasets) of the methods and compare their 
overall performances.  

From table 1, it can be seen that: (1) PAVIO outperforms VIO in most of the cases; (2) 
PAVIO has an overall much better performance (mean EPEN: 2.63%) in pose estimation 
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Figure 5: Accepted/rejected standard VO 
results of dataset 5 and 6 

than VIO (mean EPEN: 6.06%); (3) PAVIO has a more stable performance (standard devi-
ation of EPEN: 1.3%) than VIO (standard deviation: 8.22), meaning that it is more robust 
to the variation of operating environments. As shown in table 1, the VIO’s performance 
may be improved by adjusting the value of N. However, PAVIO still exhibits a better 
overall performance (in term of pose estimation accuracy and robustness) than VIO. Fig. 4 
shows the trajectories generated by these methods over the point cloud map built by 
PAVIO for each experiment. It can be seen that PAVIO’s trajectories are more accurate. 
Fig. 5 shows the percentage of times the 
standard VO’s results (step 9) are accept-
ed/rejected by PCC for datasets 5 and 6. As 
the environment of dataset 5 was less feature-
rich than that of dataset 6, PCC rejected 
standard VO’s results more often, resulting in 
a lower acceptance rate (and a higher rejec-
tion rate) of VO results.  

Dataset Carpet Path-length 
(meters) 

EPEN (meters, %) 
VIO (N=5) VIO (N=12) VIO (N=20) VIO (N=30) PAVIO 

1 Patterned 118 3.60, 3.05 3.60, 3.05 3.61, 3.05 3.29, 2.79 3.23, 2.74 
2 Patterned 128 2.26, 1.77 3.32, 2.59 2.09, 1.63 2.38, 1.86 1.97, 1.54 
3 Solid-colored 116 22.40, 19.31 4.51, 3.89 7.22, 6.22 7.41, 6.39 4.57, 3.94 
4 Solid-colored 70 16.77, 23.96 17.21, 24.59 4.56, 6.51 15.71, 22.44 3.31, 4.73 
5 Solid-colored 116 3.59, 3.09 4.26, 3.67 6.65, 5.73 5.25, 4.53 1.77, 1.53 
6 Patterned 115 1.11, 0.97 1.41, 1.23 1.33, 1.16 2.51, 2.18 1.57, 1.37 
7 Patterned 133 7.38, 5.55 4.56, 3.43 3.45, 2.59 5.91, 4.44 3.43, 2.58 
Average (mean / standard deviation) 8.24 / 9.35 6.06 / 8.22  3.84 / 2.26 6.38, 7.26 2.63, 1.3 

Table 1: Comparison for the Final End Position Errors 

6 Conclusion and Future Work 
We have presented a new SLAM method for pose estimation of a robotic navigation aid 
(RNA) that uses a 3D time-of-flight camera and an IMU for assistive navigation. The 
method, called plane-aided visual-inertial odometry (PAVIO), extracts planes from the 3D 
point data of the camera current frame and track them onto the next camera frame by using 
the IMU’s inertial measurements. The tracking result is used to evaluate the pose change 
estimation (PCE) of the visual odometry (VO) and accept the PCE only if it is accurate. 
The accepted VO outputs, the information of the extracted planes, and the IMU’s 
measurements over time are used to create a factor graph. By optimizing the graph, the 
method improves the estimation accuracy of the IMU bias and reduces the pose estimation 
error for the RNA. Experimental results with the RNA demonstrate that the proposed 
method outperforms the state-of-the-art VIO method in pose estimation in term of both 
accuracy and repeatability. The proposed method can be used to produce more accurate 3D 
map of the operating environment for object/obstacle detection and locate a visually 
impaired traveller in the environment for assistive navigation of the visually impaired. It 
can also be applied to autonomous navigation of mobile robots. 
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 (a) Dataset 1: Lobby and Hallway            (b) Dataset 2: Hallway A 

 
            (c) Dataset 3: Hallway B                            (d) Dataset 4: Lobby  

             
       (e)  Dataset 5: Hallway C      (f)  Dataset 6: Hallway D 

 
(g) Dataset 7: Hallway and Stairway 

Figure 4.  Trajectories and 3D Map of each experiment: the trajectories produced by 
VIO (N=5), VIO (N=12), VIO (N=20), VIO (N=20) and PAVIO are plotted in blue, 
red, purple, green, and yellow, respectively. The yellow dot shows the location where 
the snapshot was taken. 
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