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Abstract

Most current state-of-the-art methods for unconstrained face recognition use deep
convolutional neural networks. Recently, it has been proposed to augment the typically
used softmax cross-entropy loss by adding a center loss trying to minimize the distance
between the face images and their class centers. In this work we further extend the center
(intra-class) loss with an inter-class loss reminiscent of the popular early face recognition
approach Fisherfaces. To this end we add a term that directly optimizes the distances of
the class centers appearing in a batch in dependence of the input images. We evaluate
the new loss on two popular databases for unconstrained face recognition, the Labeled
Faces in the Wild and the Youtube Faces database. In both cases the new loss achieves
competitive results.

1 Introduction

The field of face recognition has seen a significant boost in performance since the emer-
gence of deep learning techniques in the area [10, 13, 15, 17]. Today, many state-of-the-art
approaches use Convolutional Neural Networks (CNNs) in one way or another. In the con-
text of the specific task of face verification, where two face images are given and it has to be
determined whether they belong to the same identity or not, a popular approach is to train
a deep model that maps the face images into an embedding space [5, 12, 13, 16, 17]. This
space is then used to compute the similarity of the given images. Specifically, in [17] the au-
thors propose the center loss that aims to minimize the distances between the image features
(network output) and their class centers in the embedding space. The model is trained using
backpropagation and a global center is maintained for each class by updating the centers
after each iteration using only the features in the current batch of the training procedure.

In this paper we aim to extend the intra-class loss provided by the center loss with an
inter-class loss that simultaneously maximizes the distances between the classes. To make
this possible, we first create a direct functional dependence between the features of a batch
and their centers within the same iteration (Section 3.1). This step is necessary to formulate
an inter-class loss based on only the global centers, while still obtaining a gradient that
directly influences all network parameters. Next we add the inter-class loss (Section 3.2) and
evaluate the proposed method on two popular benchmark databases for unconstrained face
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recognition, the Labeled Faces in the Wild (LFW) [7] and the Youtube Faces (YTF) [18]
databases (Section 4).

The proposed approach is inspired by the popular early face recognition method Fish-
erfaces [1], where the inter-class scatter matrix is maximized, while the intra-class scatter
matrix is minimized. Therefore, we call our method deep Fisher faces.

1.1 Related work

There has been a lot of activity regarding loss functions for face recognition and verification.
Using an inter-class term in the loss has been proposed before, e.g. in the range loss [21] and
in [3]. In the latter the authors explore a way to directly translate the Linear Discriminant
Analysis (LDA) [4] into a training criterion for deep neural networks. However, in contrast
to this we intend to directly extend the center loss as proposed [17], which means defining
the inter-class term in dependence of the global centers defined by the center-loss and the
input of the current batch.

Other loss functions include the contrastive loss [5] and the triplet loss [13], both aim to
minimize distances of features of the same class while maximizing distances of features of
different classes. This type of loss can be used either stand-alone[13], jointly with a softmax
cross-entropy loss [14], or to finetune a baseline model [11] (e.g. trained with softmax cross-
entropy).

Recently, also extensions of the softmax cross-entropy loss have been proposed by adding
an L2 constraint [12, 16]. As the authors demonstrate, these losses can also be used jointly
with other loss functions such as the the center loss or the loss used in this work.

2 Recap: The Center Loss

First we give a quick review of the center loss [17]. The aim of this loss is to minimize
the distance of the face images to their class centers. This means the intra-class distance is
minimized. Let m be the batch-size and ¢ the current iteration. The authors of [17] define
the center loss for the output of the underlying network x} with labels y! as (notation differs
slightly from [17])

1 & 12
ro—
L= EZHxi_Cy( 2 (H
i=1 !

where c;’ !'is the center of class y after being updated using batch r — 1. A model is trained
using this loss with the standard backpropagation algorithm which uses the following gradi-
ent
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The centers are updated with a specific learning rate ¢ using the rule
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with

A== (4)

The function (y = y/) returns 1 if y equals y’ and O otherwise and the learning rate « is
set independently of the learning rate used for backpropagation. The updates of the centers
are done after each iteration. Formula (3) can be seen as the formula to iteratively compute
a mean, with the addition of the weight . According to [17] the weight is necessary to
prevent too much fluctuation in the updates due to the batch processing, since each batch
only contains a small sample of the training set.

3 Deep Fisher faces

Inspired by the Fisherfaces [1] we want to augment the intra-class term of the center loss
with an inter-class term that maximizes the distances between different classes. This can be
achieved by including

Y lley—cylls (5)
)

!

where y and y/ are two different classes. However, for this term (Formula (5)) to be able to
directly contribute to the training of the parameters of the underlying model using a gradient-
based method such as backpropagation, the term needs to be somehow dependent on the
model output x} of the current iteration . Such a dependency is not given in Formula (1),
since the centers are updated only after the loss is evaluated. During the computation of the
loss, the centers c;_l are used, which have been computed in the previous iteration. For this
reason we first modify the center loss by doing the updates of the centers first.

3.1 Modified center loss

Updating the centers first before the loss is evaluated simply means changing c; ,fl to Ci;t, in
Formula (1) leading to t

1 m
Line = EZ}H)&_C%”% (6)
i=

However, this change creates a functional dependence between the centers used in the loss
at iteration # and x}. This has to be considered during backpropagation. The new gradient is
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now given by

dLye dcy,
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This leads to an interesting result if we assume 0 < o < 1, which is typically the case (e.g.
we set o« to 0.5 in our experiments, see Section 4). Apart from the updated centers, the
difference between Formula (2) and Formula (9) is a weighting factor that is defined by
how often a class is seen in the batch. Classes that are seen more often get a higher weight
compared to classes seen less often.

3.2 Adding the inter-class loss

While the minimization of the center loss in Formula (1) is bounded by zero, the maxi-
mization of Formula (5) is not bounded. This could lead to a learning behavior where the
inter-class distances increase with little regard to the intra-class distances. Therefore, we
bound the optimization of the inter-class distance with a margin turning the maximization
into a minimization, as it is done in the range loss [21], contrastive loss [5] or triplet loss
[13]. This leads to the following loss function

1 m 1
L=z Yli—cylits 3 max(m—ic,—c,l50) (10
i=1 (et
—

Intra-class loss Linc Inter-class loss L,
where the set Y’ contains all pairs of classes seen in batch 7. Depending on the batch-size,
the set ¥’ can become relatively large. E.g., for a batch-size of 128 we have in the worst case
8128 pairs. To save computation time, a random subset can be used instead.

The gradient of the inter-class loss L, is given by

i, 5 o m < ||}, — 13 (a1
ox; Ay | o (3l —¢i,l13)  otherwise
where
8 1 a(Ct *Ct,) 1 y:yi
w (ZHC;_C;/%) = Z m > s 1 , — (12)
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Using the center loss (c.f. Formula (1)) alone can lead to a state where the model maps all
data-points to the same feature vector in the embedding space, as this would be an optimal
solution (i.e. the center loss would be zero). For this reason the authors train the center loss
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Figure 1: Learned embedding space on MNIST.

jointly with a softmax cross-entropy loss. In the case of the deep Fisher faces the loss is
high when the centers are very close, the gradients however are close to zero (see Formula
(12)) making it difficult for the training algorithm to leave this state. Therefore, we also
use the joint training with the softmax cross-entropy loss (Lcg) to achieve a stable learning
procedure. As the center loss in [17] we weight the new loss with the hyper-parameter A
leading to the following over all loss function:

Lie=Lcg+ ALy (13)

Similar to [21] it would be possible to introduce another hyper-parameter to weight the con-
tribution of the inter-class part in Ly. However, in order to avoid the addition of another
hyper-parameter we decided against this.

3.3 Example embeddings on MNIST

Before we evaluate the new loss on the face verification tasks, we illustrate the effect of the
inter-class loss using the MNIST dataset [9]. Similar to [12, 17] we use a simple CNN with
a bottleneck layer of size 2 as embedding layer to be able to visualize the embedding space
without any additional methods. We train a baseline model with softmax cross-entropy and
then finetune this model with the center loss and the deep Fisher faces with different margins.
Apart from the margins, we use the same hyper-parameters for all models. Note that the plots
are only meant to illustrate the effect of the different losses and we did not put an emphasis
on recognition performance.

Figure 1 shows the embedding for the baseline model and the model finetuned by adding
the center loss. By using the center loss the intra-class variance is reduced, but also the
centers are closer in the embedding space (the range of the plot is reduced significantly).
In contrast to this result the embeddings trained with deep Fisher faces (see Figure 2) show
a relatively small intra-class variance, but with a higher inter-class variance. The higher
margin also leads to a higher inter-class variance.
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Figure 2: Learned embedding space on MNIST with deep Fisher faces.

4 Experimental evaluation

The evaluation on LFW [7] and YTF [18] is done with the same models that are not finetuned
to the target database. We use the same model structure for all experiments. The model is
a CNN based on the wide resnets introduced in [20]. The details are given in Table | using
notation similar to [20] (e.g. convl 7 x 7,16 describes a convolutional layer with kernel 7 x 7
and 16 feature maps). The blocks in groupl to group4 contain one dropout-layer in between.
Overall, the model consists of roughly 17M learnable parameters. We use torch7 [2] to
implement the deep Fisher faces and run the training and evaluation procedures described in
the following sections.

4.1 Training

To train all our models we use the CASIA WebFace [19] database, which contains about 0.5
million images for a little over 10,000 identities. We start by training a baseline model using
only the softmax cross-entropy loss. With this baseline model as a constant starting point we
then finetune the model with the center loss and the deep Fisher faces, respectively (in both
cases trained jointly with softmax cross-entropy). The face images were center cropped to
224 x 224 RGB images. As in [17] we normalize the images by subtracting the value 127.5
from all pixels followed by a division by the value 128. To add more variation to the training
data each image is flipped horizontally with a probability of 50%.

The training is done using the standard backpropagation with momentum set to 0.9 [8].
For regularization, the weight decay is set to 5 x 10~* and the dropout ratio is set to 0.3. The
weight initialization for the baseline model is done as in [6] and all biases are set to zero. We
use a batch-size of 32 and an initial learning rate of 1 x 1072, which is gradually reduced.

For the two finetuned models we increase the batch-size to 128. We start with a learning
rate of 1 x 1073 and use constant values for A and « throughout the experiments. The values
are A =0.003 and o = 0.5, the same as used in [17]. For the deep Fisher faces we sub-
sample 128 pairs in each iteration and use a margin m is set to a value slightly above the
average inter-class distance at the beginning of the finetuning.

The training runs on smaller GPUs with only 4GB memory.
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Table 1: The wide resnet [20] model used in this paper. Each block consists of one or several
convolutional layers in the resnet architecture. Each convolutional layer is followed by batch
normalization and a ReLU activation function. The table shows the kernel-sizes and number
of feature maps. For an input of 224 x 224 the model returns a 512-dimensional feature
vector.

Name Block type
convl 7x7,16
max-pool 3x3
aroupl (3 x 3, 64>
3x3,64
aroup? <3 x 3, 128)
3x3,128
3% 3,256
group3 (3 y 3,256) X2
3x3,512
group4 <3 y 37512) X2
avg-pool Tx7

4.2 Labeled Faces in the Wild

The Labeled Faces in the Wild (LFW) [7] is a very popular benchmark for unconstrained
face verification. It consists of 13233 images for 5749 identities in total. The images have
been collected in unconstrained conditions as long as they were detectable by a face detector.
This leads to a database with a wide range of variations, such as lighting, facial expression or
pose. The evaluation is done using 10-fold cross validation with fixed splits provided by the
database authors. Each split consists of 600 pairs, where half of them are positive pairs (same
identity) and the other half are negative pairs (different identities). The database authors
define several protocols that differ by what type of training data can be used. As most deep
learning methods we use the unrestricted, labeled outside data protocol. We use the original
center-cropped images as model input and receive a 512 dimensional feature representation
as output. We do this for the original image and a horizontally flipped version and use the
mean of the two resulting feature vectors as final representation. We do not perform any
facial landmark detection or face alignment during the evaluation. The similarity scores are
determined using the Euclidean distance.

The results are given in Table 2. We report the accuracy for our baseline model trained
with softmax cross-entropy alone, the model finetuned by adding the center loss and the deep
Fisher faces with the same fixed hyper-parameters. It is a bit surprising that the center loss
achieves almost the same result as the baseline. We also tried other hyper-parameters for the
center loss (different A, & or longer training), but the results were always around 98%, with
98.1% as best. However, using the deep Fisher faces we gain a small improvement arriving
at 98.4% accuracy. Note that this is achieved with a relatively small training set and very
little preprocessing (e.g. no 2D alignment).

The comparison to the state-of-the-art methods shows that our results are competitive.
We only include the results most relevant to our work, since there are too many to include
them all. The gap to the best performing methods could be explained with our limited amount
of data and lack of 2D alignment. Additionally, the deep Fisher faces could also be combined
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Table 2: Results on LFW.

Method Training images | 2D alignment | Acc. [%]
VGG-Face [11] 2.6M yes 99.0
FaceNet [13] 200M no 98.9
FaceNet [13] 200M yes 99.6
L2-constrained softmax [12] 3.7M yes 99.8
Range loss [21] 1.5M yes 99.5
Center loss [17] 0.7M yes 99.3
Baseline 0.5M no 97.9
Center loss 0.5M no 98.0
Deep Fisher faces 0.5M no 98.4

with the L2 softmax loss presented in [12], or an additional triplet embedding layer could be
learned as it is done for VGG-Face [11] to boost performance further.

4.3 YouTube Faces

Similar to the LFW [7] database the YouTube Faces (YTF) [18] database is a popular bench-
mark for unconstrained face verification. However, instead of single still images, full videos
are compared. In total there are 3425 videos for 1595 identities. On average, the videos
consist of 181.3 frames. Again, the evaluation is done using a 10-fold cross validation where
the splits are given with the database. Each split contains 250 pairs where the identity of
both videos is the same and 250 pairs with different identities. We use the given bounding
box data to crop the images, but expand the bounding box by a factor of 1.1. Again, we do
not use facial landmarks or face alignment.

To compare two face videos it is a common approach to use the scores of a face or facial
landmark detector to find the best frames in a video, which are then used for evaluation.
However, since we do not have such scores available, we instead use the softmax operator as
proposed in [10] in the context of template matching. Given two sets of images P = x, ...,x,
and Q = x1, ..., x4, the similarity s(P,Q) can be defined similar to [10]

0

1
s(PO) =17 X sp(P.0) (14)
B=-10

where

Z s(_xp7xq)eﬁs(xl7’xq)
P _ PEPEQ 1
sg(P,Q) Y By 15)

pePgeQ

In [10] the two sets of images are given as templates (collection of still images and
videos). Here we just have two videos to compare, so the sets are given by the frames.
To save some computational complexity we random sample 128 frames per video. Another
notable difference to [10] is that we use the Euclidean distance as similarity measure s(x,x,)
between two images (consistent with the LFW evaluation) and therefore select 8 to be in the
range of [—10,...,0].
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Table 3: Results on YTF.

Method Training images | 2D alignment | Acc. [%]
VGG-Face [11] 2.6M yes 91.6
VGG-Face + Embedding learning [11] 2.6M yes 973
FaceNet [13] 200M yes 95.1
L2-constrained softmax [12] 3.7M yes 96.1
Range loss [21] 1.5M yes 93.7
Center loss [17] 0.7M yes 94.9
Baseline 0.5M no 90.4
Center loss 0.5M no 90.9
Deep Fisher faces 0.5M no 91.5

The results are given in Table 3. Again, with 91.5% the deep Fisher faces achieve a
slightly better result than our center loss baseline.

5 Conclusion

In this paper we presented a novel loss function that extend the center loss [17] by an inter-
class term. By this modification we obtain a loss that simultaneously maximizes inter-class
distances while minimizing intra-class distances. The new loss is easy to implement and
leads to an improved performance on both, LFW and YTF compared to our baseline center
loss. It would be interesting to study the deep Fisher faces in combination with a normaliza-
tion layer as it is used in the L2-constrained softmax loss [12]. Since the evaluation is done
using normalized features it could be helpful to optimize the distances between the image
features of a class to their centers as well as the distances between the centers directly in the
normalized embedding space.
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