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Abstract

We propose a novel sparse feature representation for the faster RCNN framework
and apply it for object detection from wearable cameras. Two main ideas, sparse con-
volution and sparse ROI pooling, are developed to reduce model complexity as well as
computational cost. Sparse convolution approximates a full kernel by skipping weights
in the kernel while sparse ROI pooling performs feature dimensionality reduction on the
ROI pooling layer by skipping odd-indexed or even-indexed features. We demonstrate
the effectiveness of our approach on two challenging body camera datasets including
realistic police-generated clips. Our approach achieves a significant reduction of model
size by a factor of over 10× as well as a computational speedup of about 2×, yet without
compromising much detection accuracy compared to a VGG16-based baseline detector.

1 Introduction
There is a growing interest in the use of wearable cameras by major urban police departments
throughout the U.S. A body camera, typically attached to an officer’s shoulders or glasses,
can faithfully record the activities of the officer from his own perspective. It thus provides a
more transparent relationship between police and public. Moreover, body cameras generate
tremendous data, which enable useful video analytics applications such as automatic redac-
tion and suspect search [1] for improving policing and public safety. For those applications
to be effective, one of the fundamental technologies needed is object detection, to find either
faces or individuals for further visual analysis.

Over the past few years, CNN-based approaches [2, 5, 13, 16, 17, 18] have been paramount
for generic object detection. Among them, region-based CNNs (RCNNs) [2, 5, 18], espe-
cially faster RCNN [18], have significantly advanced this field, achieving state-of-the-art
performance on challenging datasets such as PASCAL VOC [4] and COCO [14]. Nonethe-
less, to yield competitive performance on large-scale datasets, RCNNs rely on deep CNN
models with substantial complexities such as VGG16 [19] and ResNet152 [8]. These mod-
els require a lot of memory to run and are inefficient in computation. This greatly limits their
applications to body-worn cameras. In addition, CNN-based models have not been much
evaluated in surveillance settings. Hence, it is not clear whether or not their performance
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Figure 1: A sparse representation for the faster RCNN detection framework. Two main
ideas, sparse convolution and sparse ROI pooling, are proposed to reduce model complexity
as well as computational cost. Sparse convolution uses manually-designed sparse kernels to
approximate the full kernels in a model while sparse ROI pooling skips features at consec-
utive locations in ROI pooling for dimensionality reduction. Illustrated is an example of a
3×3 full kernel and its corresponding sparse versions, which spatially complement to each
other.

is still satisfactory under the challenges posed by body cameras such as severe motion blur,
heavy occlusions and camera distortion et al. [1]

Inspired by recent works on model compression through kernel sparsity learning [6, 20],
we develop a novel sparse feature representation under the faster RCNN framework and
apply it for object detection on wearable cameras. Our essential idea is to reduce param-
eter redundancy at different layers in a detection model by using different techniques. For
convolutional layers, we exploit two manually-designed sparse kernels to approximate full
convolutions directly. We specifically make the sparse kernels spatially complementary, with
non-zero weights either at the even or odd indices of a full kernel. The two kernels alternate
in sequence to substitute the full kernels in a CNN model, as illustrated in Fig. 1. Our ap-
proach uses deterministic sparse kernels that allows for training a model from scratch. This
distinguishes itself from previous works such as [6, 20] that depend on pre-trained models.

Features from the ROI pooling layer are high dimensional. We propose sparse ROI
pooling to reduce their dimensionality. Similar to the sparse convolution described above,
sparse ROI pooling simply skips either the odd-indexed or the even-indexed features to avoid
pooling a same neuron response on the output feature maps. This halves the number of
parameters at the first fully connected (FC) layers, yet without compromising the capability
of feature representation. Finally, we show that significantly reduced FC layers with low
capacity are sufficient to provide good recognition capabilities for face and person objects
from body cameras.

To sum up, our main contributions are:
• a sparse feature representation that enables VGG-based faster RCNN to achieve a) a

10× reduction of model parameters and b) a computational speedup by a factor of
nearly 2×

• a comprehensive performance evaluation of object detection with faster RCNN on
body camera data

• demonstration that significantly reduced FC layers with low capacity do not compro-
mise recognition capabilities of faster RCNN on body camera data
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2 Related Works

In recent years, there has been significant progress made in object detection using CNNs [2,
5, 13, 16, 17, 18]. These models demonstrate impressive results on large-scale datasets, and
some of them such as SSD [16] and YOLO [17] are even able to run in real time. However,
most of them use very deep CNNs with substantial complexities as feature extractors. While
newly proposed network architectures such as SqueezeNet [11] and MobileNet [9] make it
possible to build efficient and small-size detectors on top of them, the performance of such
detectors is still not satisfactory [10].

On the other hand, how to compress CNNs has been a hot research topic given the fact
that these models are overly parameterized. For example, low-rank approximation is one
of the main ideas for model compression [3, 12]. Kernel sparsity learning has gained a
lot of attention [6, 15, 20, 21] recently. These approaches perform kernel approximation
by sparse representations, either through pruning small weights [6] or learning to sparsify
kernels by group regularization [15, 20, 21]. Nevertheless, there are very few attempts that
apply compressed CNN models for object detection, which is our primary focus of this
work.

3 Our Approach

3.1 Sparse CNNs

While approaches based on kernel sparsification [15, 20, 21] have demonstrated significant
reductions in model size as well as computational cost, one of the limitations in these ap-
proaches is that sparsity penalties often lead to irregular patterns in kernels. This makes the
computational gain in practice either too small or highly dependent on dedicated software or
hardware handlings [7, 15]. In addition, sparsity learning needs a pre-trained model to start
with and fine tuning is required afterwards.

To overcome the limitations aforementioned in sparsity learning, we manually design two
sparse kernels to approximate full convolutions in CNN models. The two kernels, denoted
by Weven and Wodd respectively, are mathematically expressed by,

Weveni, j,c,n = 0, if ( j× k+ i) mod 2 6= 0

Woddi, j,c,n = 0, if ( j× k+ i) mod 2 6= 1

and ( j 6= bk/2c and i 6= bk/2c),
(1)

where (i, j) specifies the spatial location of a cell in a kernel, k is the kernel size, c is
the channel index and n denotes the kernel index. We keep the center point nonzero for
both Wodd and Weven as our analysis suggests that this location, which often carries a large
weight in the kernel, is of significant importance for feature representation. Figure 2 shows
the sparse patterns for 3× 3 and 5× 5 kernels, respectively. When the kernel size is 3× 3,
Weven becomes a × shape and Wodd is a + shape.

Note that Wodd and Weven complement to each other as a join of them in the spatial
domain gives rise to a full coverage of the receptive field of the kernel. We hope that such a
design can compensate for some local details that are missing in sparse convolution but crit-
ical for object detection. In addition, our sparse kernels are based on deterministic patterns,
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(a) Sparse kernel (Weven) (b) Sparse kernel (Wodd)

Figure 2: Examples of our proposed sparse kernels in the case of 3×3 and 5×5 (Weven and
Wodd). White color indicates skipped weights. For a 3×3 kernel, Weven is a ’×’ shape, and
Wodd a ’+’ shape.

Figure 3: Sparse ROI pooling. ROI pooling leads to sparse and redundant features, especially
at horizontally or vertically consecutive locations (highlighted by red boxes). Sparse ROI
pooling skips either the odd-indexed or even-indexed features for dimensionality reduction.
By doing so, it halves the number of parameters at FC6 without compromising the capability
of feature representation.

meaning that there is no need to use an index table to store their patterns in memory. There-
fore, as opposed to other techniques such as [6, 20], our approach provides more consistent
empirical running time with regards to the theoretical FLOPs analysis.

3.2 Sparse ROI Pooling

ROI pooling in faster RCNN converts a CNN feature map inside a region proposal by max-
pooling into a smaller feature map with a fixed spatial extent (e.g. 7×7 in VGG16). The
pooled features are subsequently connected to the first fully connected layer (i.e. FC6).
FC6 is overly parameterized, which is largely attributes to the high dimensionality of the
ROI features. For example, in the case of VGG16, there is a total of 25,088 ROI features,
yielding 103 million parameters at FC6 that accounts for 70% of the total model size. It is
thus highly desirable to perform dimensionality reduction on the ROI features for a compact
detector.

Indeed, ROI features are not only sparse but redundant. In ROI pooling, a region proposal
is first projected to the feature map, downsampled by a significant factor α (e.g. α = 16 in
VGG16). If an either side of the projected bounding box is smaller than the pooling size,
then a same neuron activation is pulled multiple times for consecutive locations in the output,
either in the horizontal or vertical direction. In our case, persons and faces are often small
(see their size distributions in Fig. 5), thus resulting in many identical features from ROI
pooling, as shown by the example in Fig. 3.

Motivated by this observation, we propose sparse ROI pooling, an idea similar to sparse
convolution, to reduce the dimension of the ROI features. To avoid pooling identical features
at consecutive locations, sparse ROI pooling simply takes either the odd-indexed or even-
indexed features, but not both, as the output of the ROI pooling layer. We would like to point
out that this idea is principally different from using a smaller pooling size, which results in
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a) b) c)

d) e) f)

Figure 4: Two evaluation datasets recorded by GoPro and Indigo cameras respectively. The
set GoPro are self-collected data while Indigo are realistic police-generated clips. GoPro:
a) a farmers market b) an urban side walk and c) a metro train station; Indigo: d) an arrest
scene e) a domestic violence scene and f) a traffic stop.

a coarser feature representation that likely hurts detection accuracy. Despite its simplicity,
sparse ROI pooling halves the number of parameters at FC6, yet still performing similarly
to the baseline models, as shown later in our experiments.

3.3 Reduced Fully Connected Layers

FC layers in a CNN account for most of the model parameters. It has been shown that FC
layers present high parameter redundancy and this redundancy can be significantly pruned
with sophisticated techniques such as low-rank factorization with only a minimal increase of
error rate for classification [3, 12].

We apply a simple technique here to reduce the capacity of a network in the FC layers.
We experimented with different numbers of neurons in the FC layers, and found that although
FC layers are necessary for faster RCNN to achieve good performance, the number of their
neurons can be significantly reduced without leading to much accuracy loss in person and
face detection on body camera data.

4 Experimental Results

4.1 Datasets

Test Dataset. Two body-worn camera datasets were used to evaluate our proposed approach.
The first set GoPro was recorded using a GoPro Hero4 camera with ultra HD resolution
1920×1080 at 29 FPS, This dataset includes three crowded scenes: an indoor farmers mar-
ket, a metro train station and an urban sidewalk. The second set Indigo has six realistic police
clips captured with Indigo Vision HD 1280×720 at 30 FPS, including two traffic stops, an
interview scene, a domestic violence scene and an arrest scene in a parking lot. GoPro con-
tains a lot of high-level activity and presents significant challenges for object detection such
as crowdedness, heavy occlusions and frequent background changes. There are also many
small and profile faces in GoPro, as shown in Fig. 5. The second set, although mostly involv-
ing one or two persons in the view, captures many difficult objects like blurred or partially
visible faces/persons. Figure 4 shows a few sample images from each dataset.

We annotated persons and faces at one frame every other second for the GoPro data and
at every 5th frame for the Indigo data. This leads to a total of 1,089 GoPro images and 5,049
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ref. (VGG16) sc+×123 sc+×345 sc+×12345 sc+×12345† sc+12345

Top-5 Acc. (%) 90.01 89.09 88.78 88.70 88.90 88.22
Top-1 Acc. (%) 71.29 69.46 69.29 68.62 69.20 68.03

FLOPs ↓ − 1.37× 1.44× 1.79× 1.56× 1.79×
Params (Conv.) ↓ − 1.06× 1.77× 1.80× 1.66× 1.80×
Params (Total) ↓ − 1.01× 1.05× 1.05× 1.04× 1.05×

†: Keep the first convolution of each layer intact.
Bold numbers indicate the best performance of all the sparse models.

Table 1: Classification performance of different sparse VGG16 models on ImageNet. A
model is denoted by scxy where x ∈ {+×,+} indicates how sparse kernels are applied and
y specifies which conv. layers are sparsified. sc+× means the two complementary sparse
kernels alternate while sc+ indicates only the sparse kernel ‘+’ is used.

Indigo images. A person or face is marked as difficult if it’s heavily occluded or too small
for the annotator to discern. Difficult objects are excluded in our evaluation.

Training Dataset. GoPro and Indigo are used for evaluation purpose only in our ex-
periments. We annotated the VOC2007 and VOC2012 datasets [4] separately for training.
For each annotated person in the datasets, we labeled 5 additional body parts including face,
head, head-shoulders, torso and legs. We used all the training and validation images in both
datasets for training our detectors.

4.2 Experimental Setup
The primary focus of our work is how to make a faster RCNN detector compact and efficient.
Although most of the experiments and analysis in this section are based on VGG16, our
approach is applicable to any CNN under the faster RCNN framework.

We trained all the sparse CNN models from scratch using the identical hyper-parameters
of a baseline network such as momentum and weight decay, initial learning rate, batch size,
etc. The learning rate is reduced by 10 each time the validation error reaches a plateau. We
augmented data by flipping horizontally and pre-processed data with mean subtraction.

We adopted the multiple-phase training scheme for faster RCNN, and fine tuned all the
detectors under the default settings. The only exception is that we added two more scales
(i.e. 32 and 64) in RPN in order to better detect small objects like face.

In what follows, we conduct extensive experiments to evaluate our approach on both the
classification and detection tasks using the ImageNet dataset and our own body camera data.

4.3 Performance Evaluation of Classification
We first look at the classification performance of our proposed sparse convolution method
on ImageNet. To better understand how the sparsity of a model affects its performance, we
explored different combinations of the two sparse kernels (see Section 3.1 for details) based
on the VGG16 network structure. This includes three nets with sparse convolution applied
to the first three conv. layers (sc+×123), the last three conv. layers (sc+×345) and all the
conv. layers (sc+×12345) in VGG16 1. We also tested another model (sc+×12345), which

1VGG16 has 5 conv. layers, each of which contains 2 ∼ 3 convolutions. When we say that sparse convolution
is applied to a conv. layer, it means all the full kernels in that layer is substituted by sparse kernels.
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data detection ref. (VGG16) sc+×123 sc+×345 sc+×12345 sc+×12345† sc+12345

GoPro person 77.36 71.41 73.77 72.56 74.91 74.69
face 54.18 53.21 52.21 51.91 55.30 52.92

Indigo person 57.60 55.69 56.29 53.98 55.43 54.87
face 81.11 81.16 81.83 82.72 81.47 83.54

†: Keep the first convolution of each layer intact.
Bold numbers indicate the best performance of all the sparse models.

Table 2: Detection Performance (in AP) of sparse-VGG16-based faster-RCNNs. Please refer
to Table 1 for the naming convention for the models.

is similar to sc+×12345, but keeps the first convolution of each layer intact. In all of these
models, we alternate the two sparse kernels, Wodd (i.e. +) and Weven (i.e. ×), to replace the
convolutions in VGG16.

Table 1 lists the top-1 and top-5 accuracies as well as the reductions in model parameters
and FLOPs of different sparse models. First of all, all the sparse models are observed to
perform comparably to the referenced model, suggesting that sparse convolution provides
strong approximation of the VGG16 model. With full convolutions kept at the higher layers,
sc+×123 achieves the best top-1 and top-5 classification results, but it only gains moderate
savings in model size and computation. On the other hand, sparsifying all the convolu-
tional layers seems to hurt classification performance, as indicated by the 2.5% point loss
in the top-1 accuracy of sc+×12345. However, by increasing only 8% more parameters,
sc+×12345 yields better accuracy than sc+×12345.

To validate the effectiveness of complementary kernels, we trained a model solely based
on Wodd (sc+12345). As expected, compared with the other models in Table 1, sc+12345 is
inferior, especially on the top-1 accuracy.

4.4 Performance Evaluation of Detection

Below we analyze the contribution to detection performance of each component in our pro-
posed sparse feature representation. The performance is measured by the widely accepted
metric for object detection, i.e. Average Precision (AP). We focus on face and person only
in our evaluation.

Sparse Convolution. We first compared the performance of different sparse VGG16
models discussed above when they are used as feature extractors for faster RCNN. At this
stage, the ROI pooling layer and FC layers remain the same as those of the baseline detector.
The results are provided in Table 2.

From Table 2, it’s noted that the sparse models behave differently on the detection task
from classification. For example, sc+×123 is the best performed classifier; however it pro-
duces less competitive results on the GoPro dataset, seeing a drop of almost 6% point in
person detection. Among all the detectors, sc+×12345 is the only one that performs con-
sistently well on both datasets, achieving comparable results on person detection and even
slightly better face results than the referenced detector.

The face performance on the GoPro data and the person performance on the Indigo data
are beyond satisfactory. This is largely due to the limitations of faster RCNN, which is not
robust in handling small objects (e.g. faces on GoPro) and heavily occluded or partial objects
(e.g. persons on Indigo).
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a) Face b) Person

Figure 5: Size distributions of Face and Person on the GoPro data by width of a bounding
box. Bin size: a) 56 pixels and b) 112 pixels.
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Figure 6: Detection performance v.s. model size based on the GoPro data. Sparse ROI
pooling is applied. Here fck denotes a model which has the number of neurons at each FC
layer reduced to 4096/k. Note that k = ∞ is a special case where no FC layer is used in a
detector.

Sparse ROI Pooling. We implemented sparse ROI pooling based on sc+×12345 due
to its superiority to other models on detection. Sparse ROI pooling can skip either the odd-
indexed (sp1) or even-indexed sp2 features. Table 3 provides the slightly better results from
sp2 only, indicated here by sc+×-sp2-fc1.

Based on Table 3, it can be observed that sparse ROI pooling demonstrates clear advan-
tages over the regular max-pooling (sc+×). It does face detection better than sc+× on both
datasets while performing similarly on person detection. The results are justifiable, since the
majority of the GoPro faces are less than 100 pixels in width (see Fig. 5 for details). With
a close look at the results at each scene in the GoPro data, the performance improvement
of sparse ROI pooling mostly comes from grandcentral1 and NYC2, on which small faces
dominate.

In addition to improving accuracy on small objects, sparse ROI pooling alone leads to
about a 10% computational saving over the baseline (sc+×) (from 1.39 to 1.53) and a 40%
reduction in model size.

Effects of reduced FC layers. Low-capacity FC layers are highly desired for making a
small-size detector. We experimented with different numbers of neurons in the FC layers
and analyzed their effects on detection accuracy. Let N f c be the number of neurons at a FC
layer. For convenience, we assume that N f c is configured to be the same for each FC layer.
A model is denoted by fck if N f c is reduced by a factor of k, i.e. N f c = 4096/k.

Figure 6 shows that the detection accuracy is not very sensitive to N f c till k = 32 for
person and k = 8 for face, where there are an accuracy drop more than 1% point. We chose
k= 32 as the sweet spot for the capacity of FC layers, and provided more results in Table 3 for



Q. FAN ET AL.: A SPARSE DEEP FEATURE REPRESENTATION 9

data detection ref. (VGG16) sc+× sc+×-sp2-fc1 sc+×-sp2-fc32 sc+×-sp2-fc∞

GoPro person 77.36 74.91 74.97 73.92 71.86
face 54.18 55.30 56.05 54.52 50.02

Indigo person 57.60 55.43 54.86 54.29 51.78
face 81.11 81.47 82.16 81.13 80.23

Model Size (MB) 522 500 (1.04×) 308 (1.70×) 49 (10.58×) 45 (11.67×)
FLOPs ↓ − 1.39× 1.53× 1.78× 1.79×

Bold numbers indicate the best performance of all the sparse models.

Table 3: Detection performance of sparse-VGG16-based faster RCNNs using sparse ROI
pooling and reduced FC layers. Here for clarity, sc+× is a short name for sc+×12345. sp2
represents the case that the odd-indexed features are skipped in ROI pooling. fck indicates
that the number of neurons at each FC layer is reduced to 4096/k. k = ∞ is a special case
where no FC layers are used in a detector.

data detection ref. (AlexNet) Song [6] SSL1 [20] SSL2 [20] sc+× sc+×-sp2-fc8 sc+×-sp2-fc32

GoPro person 65.28 61.04 57.74 63.70 65.09 64.29 63.58
face 44.30 41.35 38.37 42.79 41.96 43.61 41.79

Indigo person 52.84 48.30 48.56 52.95 52.59 51.43 51.71
face 73.93 75.21 76.23 75.00 75.58 73.80 74.89

Model Size ↓ − 8.86×∗ 2.28×∗ 1.91× 1.02× 12.70× 18.60×
FLOPs ↓ − −† −† −† 1.18× 3.49× 4.11×

∗: An additional table to record locations of zeros is not included.
†: FLOPs is not measurable since those sparse models need specialized implementations.
Bold numbers indicate the best performance of all the sparse models.

Table 4: Comparisons of our proposed detectors with other approaches. The baseline detec-
tor is based on AlexNet. Please refer to Table 3 for the naming convention for the detectors.

analysis. The gain from the reduced FC layers is substantially rewarding. When combined
with sparse ROI pooling, sc+×-sp2-fc32 is only 49MB, 10× smaller than the baseline model
(500MB). In addition, the detector achieves a speedup by a factor of 1.8×.

Now one question arises: are the FC layers actually needed for object detection? To
answer this question, we completely remove the FC layers, and connect the ROI pooling
layer directly to the classification layer in faster RCNN. By doing so, the classifier becomes
a linear regressor, denoted by sc+×-sp2-fc∞ in Table 3. As shown in Table 3, the linear
regressor is notably less powerful than fc32, suggesting that the FC layers are critical for
robust detection, though a large capacity may not be needed.

4.5 Performance Comparisons With Other Approaches

We compared our approaches with two recently developed techniques of sparse representa-
tion. The first one [6] reduces the size of a model by directly pruning small weights while
the second one [20] learns to sparsify groups of weights by structural regularization. Both
of them achieve high model compression rates without losing much accuracy on the Ima-
geNet classification task. Here AlexNet was used as the baseline for comparison as only this
model is publicly available from these approaches. We trained faster RCNN with the sparse
AlexNet models from [6], [20] and our own approach, similar to what’s done in Section 4.4.
Nonetheless, we disabled updating of any zero weight when fine tuning the models from [6]
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data VGG16sc+×-sp2-fc32 YOLO SSD

GoPro 75.21 61.22 73.24
Indigo 54.29 55.77 59.26

Model Size (MB) 49 194 104

Table 5: Performance comparisons with YOLO and SSD.

and [20] in order to maintain their original sparsity.
Table 4 provides the results of different faster RCNN detectors based on the sparse

AlexNet models. Our approach is better than both Song et al. [6] and SSL1 [20] on the
GoPro data. While performing slightly worse than SSL2 on the Indigo data, our detector
is 6 ∼ 9 times smaller than SSL2, and should run more efficiently as well. Overall, our ap-
proach demonstrates clear advantages over [6] and [20] in terms of model size and efficiency.

We further compared our approach with two real-time object detectors, YOLO [17] and
SSD [16], on pedestrian detection. To make the comparisons fair, we used their best models
trained with the union of VOC2007 and VOC2012 trainval, the same training set for our
model. As shown in Table 5, our approach achieves better GoPro results than YOLO and
SSD, but worse on Indigo. However, our model is 2× smaller than SSD and 5× smaller than
YOLO.

5 Conclusion

We have presented a novel sparse feature representation for faster RCNN and applied it for
object detection on wearable cameras. We demonstrate the effectiveness of our approach
on person and face detection using two challenging body camera datasets collected at vari-
ous scenarios. Our approach reduces a VGG16-based faster RCNN detector by a factor of
over 10× while still performing comparably against the baseline detector. In addition, our
detector achieves a computational speedup by nearly 2×.
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