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Abstract
Variational approaches form an inherent part of most state-of-the-art pipeline ap-

proaches for optical flow computation. As the final step of the pipeline, the aim is to
refine an initial flow field typically obtained by inpainting non-dense matches in order
to provide highly accurate results. In this paper, we take advantage of recent improve-
ments in variational optical flow estimation to construct an advanced variational model
for this final refinement step. By combining an illumination aware data term with an or-
der adaptive smoothness term, we obtain a highly flexible model that is able to cope well
with a broad variety of different scenarios. Moreover, we propose the use of an addi-
tional reduced coarse-to-fine scheme instead of an exclusive initialisation scheme, which
not only allows to refine the initialisation but also allows to correct larger erroneous
displacements. Experiments on recent optical flow benchmarks show the advantages of
the advanced variational refinement and the reduced coarse to fine scheme. The pro-
posed order-adaptive method not only allows to significantly improve results compared
to pipeline approaches based on traditional first-order refinement techniques, it also al-
lows to outperform recent pure variational methods with full coarse-to-fine schemes.

1 Introduction
The estimation of motion information from image sequences is a key problem in computer
vision and constitutes an important component for many high-level applications. Thereby,
one is typically interested in determining the displacement vector field between two consec-
utive frames of an image sequence, the so-called optical flow. To solve this task, various
techniques have been proposed in the literature. Among these, variational methods have a
long and successful tradition, since they allow for both a transparent modelling as well as
dense and accurate results [15]. They are based on the minimisation of an energy functional
that comprises a data term and a smoothness term. While the data term imposes constancy
assumptions on certain image features, the smoothness term regularises the often non-unique
solution of the data term by imposing spatial regularity.

To make the optimisation feasible, variational methods often perform a linearisation of
the highly non-convex data term. This, however, makes the estimation of large motion dif-
ficult, since the linearisation is typically only valid for small displacements. The standard
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choice to overcome this shortcoming is the so-called warping strategy [5], which includes a
coarse-to-fine estimation scheme. While this improves the estimation of large displacements,
it does not resolve the problem for small objects, since they disappear on coarser scales. To
cope with these large displacements of small objects, researchers proposed the integration of
point correspondences, obtained via a preceding descriptor matching step [4, 29, 34] or ob-
tained as an intermediate step to improve the initialisation at each coarse-to-fine level by ad-
ditional candidate matches [32, 36]. Another approach is to replace the coarse-to-fine scheme
by a suitable initialisation, obtained via a sparse-to-dense interpolation of point correspon-
dences [28]. In fact, the latter approach is used in most state-of-the art large displacement
optical flow pipelines and is often referred to as variational refinement [1, 8, 11, 16, 23].

Since the variational refinement plays an essential role in many recent approaches, it
is surprising that most of those methods rely on rather simple models for refinement. In
particular, the refinement typically cannot keep up with the adaptivity and robustness of
the preceding pipeline that consists of descriptor matching, filtering, and inpainting. Most
prominent example is the widely used refinement model of the EpicFlow pipeline [34] that
essentially combines a classical gradient constancy assumption with a simple isotropic first
order smoothness term. In the last years, however, there has been significant progress in the
modelling of variational methods. This progress includes more advanced data terms with
a higher degree of invariance [9, 18, 24, 27], the joint estimation of motion and illumina-
tion changes [10], higher-order regularisers [3, 21, 26], as well as anisotropic [21, 37] and
non-local smoothness terms [26, 35]. All those developments address important real-world
problems such as varying illumination, the estimation of motion induced by a moving cam-
era, or the sharp separation of motion boundaries. Hence, it is quite surprising that there
have been no attempts in the literature so far to develop variational methods for optical flow
refinement that consider these advanced concepts.

Contributions. In this work, we propose a novel model for variational refinement that com-
bines robustness under varying illumination with the adaptive estimation of higher-order
motion fields. While an illumination-aware data term is able to cope with locally affine il-
lumination changes, an anisotropic order-adaptive smoothness term is able to produce solu-
tions with gradual transitions where necessary while preserving sharp motion discontinuities
at the same time. Moreover, we suggest a reduced coarse-to-fine scheme that is able to ben-
efit from a good initialisation within the pipeline approach while still being able to correct
errors in the intermediate results. The benefits of our method become explicit in the experi-
mental evaluation. The experiments not only show improvements compared to conventional
refinement schemes and pure variational methods, they also demonstrate good results on all
major benchmarks such as KITTI 2012 [12], KITTI 2015 [22] and MPI Sintel [6].

Related Work. Conceptually closest related to our overall approach is the EpicFlow pipeline
by Weinzaepfel et al. [34] as well as several follow-up works based on this pipeline. While
most of these works focus on improving the matching step [1, 8, 11, 16, 23], there have
hardly been any attempts to improve the sparse-to-dense inpainting [17] and, to the best of
our knowledge, no attempts to improve the refinement step. Recent works based on discrete
optimisation also make use of variational refinement [8, 23]. While these approaches do not
necessarily suffer from the large displacement problem, they typically do not provide sub-
pixel precise flow fields. Hence, they seek to gain additional precision by variational refine-
ment. From a variational viewpoint, closest related to our work are the works of Demetz et
al. [10] and Maurer et al. [20], which are based on traditional coarse-to-fine schemes. These
methods, however, have difficulties to deal with fine structures and large displacements.
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2 Pipeline for Large Displacement Optical Flow

Most state-of-the-art methods for large displacement optical flow use a pipeline approach as
presented in [28]. Figure 1 illustrates the four main steps of the pipeline: matching, outlier
filtering, inpainting and variational refinement. In the following we will detail on each of
these four steps as they also form the basis of our algorithm.

Matching. The goal of the first step in the pipeline is the generation of input matches.
Generally all kinds of different algorithms can be used, but as a matter of course the matches
should be rather dense, so that a reasonable initialisation may be obtained. In our work we
consider three different approaches to obtain input matches, whereof all are tailored to the
problem of optical flow estimation. Our first choice is the Deep Matching approach [34],
which creates matches by computing similarities of non-rigid patches. It is the favoured
choice in the work [28]. Our second choice is the recent CPM method [16] – a coarse-to-
fine variant of Patchmatch [2] – which basically is an approximate nearest neighbour field
algorithm with an implicit regularisation. To measure the similarities of matches the CPM
algorithm makes use of SIFT features [19]. Our last choice is DiscreteFlow [23]. In contrast
to the other two approaches it contains explicit regularisation. To obtain the matches it first
extracts a set of suitable proposals and optimises a cost function via dynamic programming.
Like the other approaches it makes use of robust feature descriptors, in this case DAISY [31].

Outlier Filtering. The computed matches from the first step typically contain a certain
amount of outliers, which occur for example due to occluded or low textured image regions.
Since such erroneous matches can deteriorate the estimation substantially, it is common
to perform some sort of outlier filtering such as bidirectional consistency checking and/or
removal of small isolated segments. In practice, this second step does not eliminate all
outliers, but considerably reduces their amount. In our approach we stick to the filtering
steps as proposed by the respective matching approaches [16, 23, 34].

Inpainting. After removing outliers, the resulting flow field is typically non-dense. How-
ever, since the last step of the pipeline – the variational refinement – requires a dense flow
field for initialisation, the missing locations have to be inpainted. For this purpose we use the
locally-weighted affine estimation as presented in [28]. The algorithm is based on a weighted
least-squares fit, where the weights are determined using a geodesic distance based on the
image edges which are assumed to be a superset of the motion boundaries.

Variational Refinement. The final step refines the inpainted flow field using a variational
method. Typically, this step aims at obtaining sub-pixel precision while it additionally intro-
duces some kind of regularisation. In our case, we make use of two variational models that
will be explained in the following sections: the commonly used EpicFlow model [28] that
serves as baseline in our evaluation and our novel order-adaptive illumination-aware model.

(1) matching (2) outlier filtering (3) inpainting (4) variational refinement

Figure 1: Illustration of the commonly used pipeline for large displacement optical flow by
the example of a sequence from the MPI Sintel benchmark [6].
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3 The EpicFlow Model
Let us start by discussing the commonly used EpicFlow refinement model [28]. To this
end, let f (x),g(x) : Ω→ R2 denote two consecutive frames of an image sequence, where
x = (x,y)> denotes a position within the rectangular image domain Ω ⊂ R2. Furthermore,
let w = (u,v)> : Ω→ R2 denote the optical flow. Then the EpicFlow model computes the
refined flow as a minimiser of an energy functional of the form

Eepic(w) =
∫

Ω

Depic(w)+α ·Repic(w) dx , (1)

where Depic and Repic denote the data term and smoothness term, respectively, and α is the
regularisation parameter that steers the relative impact of both terms.

Data Term. The data term Depic comprises a brightness constancy assumption and a gradient
constancy assumption with an additional constraint normalisation as proposed in [37]. After
linearisation, the data term reads

Depic(w) = Ψd

(
θ · ( fxu+ fyv+ f −g)2

)
+λ ·Ψd

(
θx · ( fxxu+ fxyv+ fx−gx)

2 +θy · ( fyxu+ fyyv+ fy−gy)
2
)
. (2)

Here, subscripts of f and g denote partial derivatives, λ is a weighting parameter that bal-
ances the two constancy assumptions, Ψd(s2) =

√
s2 + ε2 with small ε > 0 is a robust pe-

naliser that implements the regularised absolute value function, and θ , θx, θy are normalisa-
tion factors defined as

θ =
1

|∇ f |2 +ζ 2 , θx =
1

|∇ fx|2 +ζ 2 , θy =
1

|∇ fy|2 +ζ 2 , (3)

where ∇ = (∂x,∂y)
> is the spatial gradient and the parameter ζ not only avoids a division by

zero, but also reduces the influence of small gradients, e.g. noise in flat regions. While this
data term works quite well in practice, it comes with the drawback that the gradient constancy
assumption only allows to handle additive illumination changes but not multiplicative ones –
in contrast to the descriptors of the initial matching process; see e.g. SIFT [19], DAISY [31].

Smoothness Term. In case of the smoothness term Repic the EpicFlow model uses a first
order flow-driven regulariser with image based weighting similar to [33], given by

Repic(w) = g(|∇ f )|) ·Ψs

(
|∇u|2 + |∇v|2

)
with g(|∇ f |) = exp(−κ · |∇ f |) , (4)

where the robust penaliser function Ψs(s2) = Ψd(s2) allows to preserve motion disconti-
nuities and the spatially adaptive weight g tries to align these discontinuities with image
boundaries, i.e. it reduces the impact of the smoothness term at image edges depending on
the parameter κ . This smoothness term has two major drawbacks: On the one hand, since
it uses first order regularisation that prefers piecewise constant flow fields, it has problems
with estimating highly non-fronto-parallel motion, e.g. affine motion that is typically present
in ego motion scenes. On the other and, it does not make use of directional information to
refine motion boundaries, which typically gives a less distinct separation of objects in the
flow field compared to smoothness terms based on anisotropic regularisation.
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4 Order-Adaptive Illumination-Aware Refinement
Based on the drawbacks of the EpicFlow model, we propose a novel order-adaptive and
illumination-aware refinement model that combines recent concepts of variational optical
flow estimation to eliminate these shortcomings. To this end, we consider the data term in
[10], that explicitly models local illumination changes in terms of a set of coefficient fields
c = (c1, . . . ,cN)

> : Ω→ RN , and the recent anisotropic order-adaptive regulariser in [20],
that locally selects between first and second order regularisation using a spatially varying
weighting function o : Ω→ [0,1]. Our novel energy has the following form

Eoir(w,c,o) =
∫

Ω

Dillum(w,c)+α ·Roar(w,o)+β ·Rillum(c)+ γ ·Soar (o) dx , (5)

where the additional terms Rillum and Soar are a regulariser for the illumination coefficients
c and a selection term for the order weighting function o, respectively. Let us now detail on
the different components of the energy.

Data Term. As in the EpicFlow model the data term consists of a brightness and gradient
constancy assumption. To account for more general illumination changes, however, we addi-
tionally make use of a parametrised brightness transfer function Φ(g,c) in both assumptions.
The resulting illumination-aware data term reads

Dillum(w,c) = Ψc

(
θ · ( fxu+ fyv+ f −Φ(g,c))2

)
+λ ·Ψc

(
θx · ( fxxu+ fxyv+ fx−∂xΦ(g,c))2 +θy · ( fyxu+ fyyv+ fy−∂yΦ(g,c))2

)
, (6)

where Ψc(s2) = 2ε2
√

1+ s2/ε2 is the robust Charbonnier penaliser [7] with contrast param-
eter ε > 0. While the general parametrised brightness transfer function [10, 13] is given by

Φ(g,c) = φ̄(g)+
N

∑
i=1

ci ·φi(g) , (7)

where φi(g) : R→ R denote the N basis functions and φ̄(g) : R→ R is the mean brightness
transfer function, we choose Φ(g,c) to be the normalised affine function, i.e.

φ̄(g) = g , φ1(g) =
g
n1

, φ2(g) =
1
n2

, (8)

where n1 and n2 are normalisation factors such that ‖φi(g)‖2=1. This choice of the bright-
ness transfer function often constitutes a good trade-off between complexity and quality [21].

Smoothness Term (Illumination). In case of the smoothness term for the illumination
coefficients we follow [10] and use a joint anisotropic first order regulariser which reads

Rillum(c) =
2

∑
m=1

Ψm

(
N

∑
n=1

(
r>m∇cn

)2
)

. (9)

It not only allows to adapt the regularisation locally to the underlying image structure in
terms of two spatially varying directions r1 and r2 – these directions are obtained as eigen-
vectors of the regularisation tensor; see [10, 37]. It also allows to treat both directions dif-
ferently which is reflected in the use of two separate penaliser functions Ψ1(s2) and Ψ2(s2)
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– in our case, we choose Ψ1(s2) = ε2 log
(
1+ s2/ε2

)
to be the Perona-Malik penaliser [25]

and Ψ2(s2) = Ψc(s2) to be the Charbonnier penaliser, both with contrast parameter ε > 0.

Smoothness Term (Flow). In case of the order-adaptive regulariser we choose the non-local
selection scheme from [20], which has shown to perform equally well in scenes with fronto-
parallel and affine motion. It is based on a combination of first and second order smoothness
terms with locally varying weights. Its general form is given by

Roar (w,o) = inf
a,b

{
ō ·S1 (w)+(1− ō) · (S2 (w,a,b)+T )+δ ·S3 (a,b)

}
, (10)

where S1 is a first order regulariser and S2 and S3 form the coupling and smoothness term
of a second order regulariser, respectively. In order to avoid over-fitting the data by only
selecting the less restrictive second order regulariser, an activation cost T is introduced in
the coupling term. Moreover, the selection process is rendered more robust by integrating
the order weights o within a rectangular shaped neighbourhood N (x) via

ō(x) =
1

|N (x)|

∫
N (x)

o(y)dy , (11)

where |N (x)| is the size of the neighbourhood.
Let us now detail on the employed first and second order smoothness terms. While the

first order smoothness term is given by the anisotropic model [37]

S1(w) =
2

∑
m=1

Ψm

((
r>m∇u

)2
+
(

r>m∇v
)2
)
, (12)

the second order coupling approach is given by [14, 21]

S2(w,a,b) =
2

∑
m=1

Ψm

((
r>m (∇u−a)

)2
+
(

r>m (∇v−b)
)2
)
, (13)

which couples the flow gradients to the auxiliary functions a and b and

S3(a,b) =
2

∑
m=1

Ψm

(
2

∑
l=1

(
r>l J arm

)2
+
(

r>l J brm

)2
)

, (14)

that enforces smoothness on these auxiliary functions via penalising their Jacobians J a and
J b. In this context, the weight δ determines the amount of smoothness and both the direc-
tions r1, r2 and the penaliser functions Ψ1, Ψ2 are defined as before.

Selection Term. Finally, the selection term Soar is given by

Soar (o) = ln(1−o)−o · ln
(

1
o
−1
)
, (15)

which leads to an order adaptive selection via a sigmoid function based on the local energies
of S1 and S2. A detailed derivation of this selection term can be found in [20].
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5 Minimisation
To minimise the energy functional (5) the well-known warping strategy is used, which is
based on an incremental formulation of the unknowns with two nested fixed point iterations
[5]. Thereby, the outer fixed point iteration is typically embedded in a coarse-to-fine scheme
with downsampling factor η to avoid getting trapped in local minima of the energy. In our ap-
proach, however, in contrast to many pure variational methods [5, 10, 20, 26], we do not esti-
mate the optical flow from scratch which would require to start at a very coarse resolution. In-
stead, we aim at refining the initial flow field provided by the preceding inpainting step such
that we can benefit from a typically rather good initialisation. In this context, however, we
also do not follow the other extreme, i.e. recent optic flow approaches that refine the initial
flow field only at the finest resolution (η=1), to obtain sub-pixel precision [1, 8, 16, 23, 28].
Considering the problem that depending on the matching strategy, the initial matches can
be off by several pixels – in particular if matching approaches operate with reduced image
resolution, e.g. [8] – we propose a reduced coarse-to-fine scheme that starts the refinement
at an intermediate level and hence still allows for sufficient corrections compared to a single
scale refinement. For additional details we refer the reader to the supplementary material.

6 Evaluation
Evaluation Setup. The matching as well as the inpainting is performed using the publicly
available code, provided by the respective authors. Thereby, all required parameters are set
to the provided default values. In case of our proposed model we set most parameters fixed
λ = 5, ζ = 10−2, ε = 10−2, T = 10−5, γ = 10−5 and only optimise the three remaining
parameters α , β , δ using downhill simplex on the provided training data [30]. In order to
avoid a bias towards a specific matching approach (DeepMatching, CPM, DiscreteFlow), we
compute an individual set of these three parameters for each of the three approaches.

Order-Adaptive Refinement. In our first experiment we demonstrate the benefit of our
order-adaptive refinement strategy compared to the first-order refinement of the EpicFlow
model in case of highly non-fronto-parallel motion. Therefore, we depicted the results for a
sequence of the KITTI 2012 benchmark [12] in Figure 2. Taking a look at the second row,
which shows the inpainted CPM matches before variational refinement, one can see in the
bad pixel (BP) visualisation that the affine inpatining did a good job at the bottom boundary,
e.g. red framed region. When applying the refinement with the first order EpicFlow model
afterwards this inpainted region deteriorates, but small displacements located at the image
centre improve. In contrast, our order-adaptive refinement strategy (fourth row) improves
both the inpainted areas as well as the small displacements located at the image centre. This
finding is also reflected in the computed error measures of the entire KITTI 2012 bench-
mark for the CPM matches; see Table 1. While the BP error increases after the EpicFlow
refinement from 10.99% to 14.58%, it decreases to 9.68% with our novel refinement.

Reduced Coarse-to-fine Scheme. In our second experiment we investigate the proposed
reduced coarse-to-fine scheme. Using 10 resolution levels, we thereby compare three differ-
ent settings which correspond to different initial scales: η = 1.0 (no coarse-to-fine, i.e. full
resolution), η = 0.95 (0.63×full resolution) and η = 0.90 (0.39×full resolution). The out-
come is listed in Table 1. Here one can see, that in case of the KITTI benchmarks the results
benefit quite a lot from the reduced coarse-to-fine scheme. In contrast, one cannot observe
such an improvement for the MPI Sintel benchmark, but the results do not deteriorate either.
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Figure 2: Training sequence #28 of the KITTI 2012 benchmark [12]. Best viewed electron-
ically. First row: Reference image, CPM matches. From left to right: BP visualisation
and flow field. Second row: Inpainted CPM matches (BP: 7.86%). Third row: EpicFlow
refinement (BP: 10.80%). Fourth row: Proposed refinement (BP: 7.03%).

KITTI 2012 KITTI 2015 Sintel
noc occ noc occ clean

AEE BP (%) AEE BP (%) AEE BP (%) AEE BP (%) AEE

no refinement
Deepmatches 1.86 11.39 3.52 18.92 5.12 24.74 9.37 31.96 2.68
DiscreteFlow 1.36 7.25 3.06 16.02 3.14 15.31 6.67 24.37 2.21
CPM 1.43 6.23 2.99 10.99 3.66 16.43 7.77 23.36 2.19

EpicFlow model
Deepmatches 1.42 7.64 3.24 16.24 4.71 20.06 9.18 28.38 2.27
DiscreteFlow 1.17 5.70 2.97 14.89 2.94 13.62 6.68 23.14 1.94
CPM 1.25 5.37 3.00 14.58 3.43 14.58 7.78 22.86 2.00

our model (η = 1.00)
Deepmatches 1.32 7.65 2.83 12.82 4.59 19.60 8.82 26.14 2.26
DiscreteFlow 1.08 5.80 2.54 11.09 2.83 13.03 6.29 20.08 1.91
CPM 1.20 5.66 2.92 10.19 3.85 14.11 8.88 20.57 1.99

our model (η = 0.95)
Deepmatches 1.20 6.28 2.61 10.91 4.45 17.69 8.45 23.89 2.24
DiscreteFlow 1.02 5.05 2.39 9.77 2.79 12.43 5.99 18.56 1.91
CPM 1.14 5.20 2.79 9.83 3.25 13.39 7.43 19.43 2.01

our model (η = 0.90)
Deepmatches 1.16 5.67 2.52 10.06 4.32 16.25 8.25 22.33 2.23
DiscreteFlow 1.01 4.87 2.34 9.29 2.77 12.16 5.89 18.10 1.94
CPM 1.14 5.18 2.78 9.68 3.24 13.25 7.36 19.21 2.04

Table 1: Results for the KITTI 2012 [12], the KITTI 2015 [22] and the MPI Sintel [6]
training datasets. The listed error measures are the average endpoint error (AEE) and the
percentage of erroneous pixels (BP) with a threshold of 3px.
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KITTI 2012 Out-Noc Out-All Avg-Noc Avg-All

ImpPB+SPCI 4.65 % 13.47 % 1.1 px 2.9 px
FlowNet2 4.82 % 8.80 % 1.0 px 1.8 px
FlowFieldCNN 4.89 % 13.01 % 1.2 px 3.0 px
RicFlow [17] 4.96 % 13.04 % 1.3 px 3.2 px
FlowFields+ 5.06 % 13.14 % 1.2 px 3.0 px
DF+OIR 5.17 % 10.43 % 1.1 px 2.9 px
PatchBatch [11] 5.29 % 14.17 % 1.3 px 3.3 px
SODA-Flow [21] 5.57 % 10.71 % 1.3 px 2.8 px
OAR-Flow [20] 5.69 % 10.72 % 1.4 px 2.8 px
DDF 5.73 % 14.18 % 1.4 px 3.4 px
PH-Flow 5.76 % 10.57 % 1.3 px 2.9 px
FlowFields [1] 5.77 % 14.01 % 1.4 px 3.5 px
CPM-Flow [16] 5.79 % 13.70 % 1.3 px 3.2 px
NLTGV-SC [26] 5.93 % 11.96 % 1.6 px 3.8 px
DDS-DF 6.03 % 13.08 % 1.6 px 4.2 px
TGV2ADCSIFT 6.20 % 15.15 % 1.5 px 4.5 px
S2F-IF 6.20 % 15.68 % 1.4 px 3.5 px
DiscreteFlow [23] 6.23 % 16.63 % 1.3 px 3.6 px
BTF-ILLUM [10] 6.52 % 11.03 % 1.5 px 2.8 px

EpicFlow [28] 7.88 % 17.08 % 1.5 px 3.8 px

KITTI 2015 Fl-bg Fl-fg Fl-all

FlowNet2 10.75 % 8.75 % 10.41 %
DCFlow 13.10 % 23.70 % 14.86 %
SOF 14.63 % 22.83 % 15.99 %
DF+OIR 15.11 % 23.45 % 16.50 %
ImpPB+SPCI 17.25 % 20.44 % 17.78 %
FlowFieldCNN 18.33 % 20.42 % 18.68 %
RicFlow [17] 18.73 % 19.09 % 18.79 %
FlowFields+ 19.51 % 21.26 % 19.80 %
PatchBatch [11] 19.98 % 26.50 % 21.07 %
DDF 20.36 % 25.19 % 21.17 %
SODA-Flow [21] 20.01 % 29.14 % 21.53 %
DiscreteFlow [23] 21.53 % 21.76 % 21.57 %
OAR-Flow [20] 20.62 % 27.67 % 21.79 %
CPM-Flow [16] 22.32 % 22.81 % 22.40 %
FullFlow [8] 23.09 % 24.79 % 23.37 %
SPM-BP 24.06 % 24.97 % 24.21 %
EpicFlow [28] 25.81 % 28.69 % 26.29 %
DeepFlow [34] 27.96 % 31.06 % 28.48 %
HS 39.90 % 51.39 % 41.81 %
DB-TV-L1 47.52 % 48.27 % 47.64 %

Table 2: Results for the KITTI 2012 [12] and KITTI 2015 [22] test datasets. Top non-
anonymous pure optical flow methods, excluding methods that rely on additional informa-
tion, such as stereo images, extra time-frames, semantic information or assume an underlying
epipolar geometry, and related methods.

Comparison to the Literature. Finally, we evaluate our new order-adaptive variational
refinement strategy on the withhold test datasets of the KITTI 2012 benchmark [12], the
KITTI 2015 benchmark [22] and the MPI Sintel benchmark [6], by uploading the computed
flow field to the online evaluation servers. We submitted the best performing setting, i.e. the
combination of DiscreteFlow (DiscreteFlow matches + filtering + inpainting) with our order-
adaptive refinement strategy. For a convenient overview we provide the results in Table 2
and Table 3, where we only listed non-anonymous pure optical flow methods that do not rely
on additional information, such as stereo images, extra time-frames, semantic information
or assume an underlying epipolar geometry. Moreover, we added results from EpicFlow
[28] and OAR-Flow [20], if not already present in the list of the top results, since these
methods rely on the standard pipeline and the order adaptive regularisation, respectively.
As one can see, our variational refinement not only improves the results compared to the
original DiscreteFlow approach (DiscreteFlow matches + filtering + inpainting + EpicFlow
refinement) and the standard EpicFlow pipeline (DeepMatches + filtering + inpainting +
EpicFlow refinement), it also outperforms recent pure variational methods with full coarse-
to-fine schemes such as SODA-Flow (second order regularisation), OAR-Flow (adaptive
order regularisation), and BTF-Illum (illumination-aware data term). Moreover, with Rank
6 (KITTI 2012), Rank 4 (KITTI 2015) and Ranks 3 and 10 (MPI Sintel) in the above Tables,
the novel refinement approach offers a favourable performance in all benchmarks. This
demonstrates that combining good initial matches with a sophisticated variational refinement
allows to further improve the results by combining the advantages of both techniques.

Runtimes. For a colour image pair of size 1242×375 (KITTI 2015 [22]) our C/C++ imple-
mentation of the variational refinement step running on a single core with 3.40 GHz (Intel
Core i7-2600 CPU) requires about 35 s (η = 0.90), 50 s (η = 0.95) and 70 s (η = 1.00). The
previous pipeline steps sum up to 12 s (CPM), 80 s (Deepmatches) and 120 s (DiscreteFlow).
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MPI Sintel clean all matched unmatched

FlowFields+ 3.102 0.820 21.718
CPM2 3.253 0.980 21.812
DiscreteFlow+OIR 3.331 0.942 22.817
S2F-IF 3.500 0.988 23.986
SPM-BPv2 3.515 1.020 23.865
DCFlow 3.537 1.103 23.394
RicFlow [17] 3.550 1.264 22.220
CPM-Flow [16] 3.557 1.189 22.889
DiscreteFlow [23] 3.567 1.108 23.626
FullFlow [8] 3.601 1.296 22.424
PatchBatch+Inter 3.624 1.324 22.397
FlowFields [1] 3.748 1.056 25.700
FlowFieldsCNN 3.778 0.996 26.469
DeepDiscreteFlow 3.863 1.296 24.820
FlowNet2 3.959 1.468 24.294
EpicFlow [28] 4.115 1.360 26.595

OAR-Flow [20] 6.227 2.760 34.455

MPI Sintel final all matched unmatched

DCFlow 5.119 2.283 28.228
FlowFieldsCNN 5.363 2.303 30.313
S2F-IF 5.417 2.549 28.795
RicFlow [17] 5.620 2.765 28.907
FlowFields+ 5.707 2.684 30.356
DeepDiscreteFlow 5.728 2.623 31.042
FlowNet2-ft-sintel 5.739 2.752 30.108
FlowFields [1] 5.810 2.621 31.799
SPM-BPv2 5.812 2.754 30.743
DiscreteFlow+OIR 5.862 2.864 30.303
FullFlow [8] 5.895 2.838 30.793
CPM-Flow [16] 5.960 2.990 30.177
FlowNet2 6.016 2.977 30.807
GlobalPatchCollider 6.040 2.938 31.309
DiscreteFlow [23] 6.077 2.937 31.685

EpicFlow [28] 6.285 3.060 32.564
OAR-Flow [20] 8.179 4.578 37.525

Table 3: Results for the MPI Sintel [6] test datasets in terms of the average enpoint error
(AEE). Top non-anonymous optical flow methods and related methods.

Limitations. Our approach not only enables an accurate refinement of flow fields but also
is capable of correcting errors. Naturally, this error correction capability is limited when it
comes to erroneous flow vectors of small objects that undergo a large displacement. Such
errors cannot be corrected if no correct matches are captured during the matching phase.
Another limiting scenario can be observed at motion boundaries between foreground objects
and homogeneous background regions. In this case it can appear that, despite the edge
enhancing and edge preserving penaliser functions, the smoothness term over-smooths the
edge. Additional segmentation information may help in this context.

7 Conclusion and Outlook
In this paper we proposed a novel variational refinement strategy for optical flow estima-
tion. By combining an illumination-aware data term, that can keep up with many feature
descriptors regarding their robustness, with an order-adaptive smoothness term, that locally
selects between first and second order regularisation, we introduced recent concepts from the
field of variational optical estimation into pipeline approaches that rely on variational refine-
ment. In order to benefit from a good initialisation while still being able to correct errors, we
also proposed a reduced coarse-to-fine scheme that start the computation at an intermediate
level. Consistently good results on recent optical flow benchmarks showed that our novel
variational refinement strategy not only allows to improve results compared to traditional
refinement schemes, but also that it allows to outperform pure variational methods.

Acknowledgements. We thank the German Research Foundation (DFG) for financial sup-
port within project B04 of SFB/Transregio 161.
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