SHLOMO, AVIDAN: BIM, BALL INTERSECTION MULTI TEMPLATE MATCHING 1

BIM: Ball Intersection Multi Template
Matching

Bat EI Shlomo Electrical Engineering

batelshlomo@mail.tau.ac.il Tel-Aviv University

Shai Avidan Electrical Engineering

avidan@eng.tau.ac.il Tel-Aviv University
Abstract

BIM is a multi-template matching algorithm. As opposed to traditional template
matching algorithms that match a single template to a single image, BIM attempts to
match multiple templates to a single image at once. A naive approach to multi-template
matching would be to run a standard template matching algorithm sequentially with each
of the templates and report the best result. Instead, each template processed by BIM
further restricts the search space of the following templates, thus speeding up the overall
process. In particular, we extend a recently introduced method for single template match-
ing under 2D affine transformation to work with multiple templates at once. As a result,
given a library of templates we can efficiently find the best 2D affine transformation for
each of them in a target image. Experiments on real data sets reveal speedups of between
10 and 17.

1 Introduction

A variety of computer vision problems rely on template matching as a core component. This
includes 3D reconstruction, object tracking and texture synthesis to name a few. Typically,
template matching algorithms attempt to match one template to one image. Here we consider
the case where we have multiple templates and one target image. Our goal now is to find a
match for each template and do it efficiently.

In some cases, we are given multiple templates and wish to match each and every one
to the query image. A naive approach is to run the base template matching algorithm with
each template separately. We show that we can take advantage of information gathered after
processing k templates to speed up the processing of template k+ 1.

Template matching algorithms usually work in a sliding window approach. This implies
a 2D translation model. But templates occur in an image in a variety of scales, rotations and
positions. Therefore, it is beneficial to consider a richer family of transformations, such as
2D affine transformations.

The space of 2D affine transformations is huge yet it was shown [8] that it is feasible to
sample this space efficiently in reasonable time. The key observation there is that the sam-
pling rate in transformation space depends on the smoothness of the image. A smooth image
implies a lower number of transformations to be evaluated, and vice-versa. The algorithm,
termed FAST-Match, is further accelerated with a branch-and-bound scheme. The advantage
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of this approach is that it is now possible to report a guaranteed approximation to the globally
optimal transformation.

Our algorithm treats templates as points in some high dimensional space and consists
of two steps. In a pre-processing step we compute all pair-wise distances between the tem-
plates. Then, at run time, we run FAST-Match a few times with different reference templates.
The distance between a template and the query region serves as the radius of a ball in high
dimensional space. The intersection of these balls quickly shrinks, leading to a reduction in
the number of potential template matches.

We make two additional extensions to FAST-Match. First, we use each additional tem-
plate to tighten the thresholds of the Branch-and-Bound scheme reducing even further the
number of transformations that should be evaluated. Second, we extend FAST-Match to
work with deep features, where each pixel is now represented with the response to layers
of a deep convolutional network. The problem with this representation is that run time now
increase linearly with the dimension of the deep features. We circumvent this added cost by
using a fast and efficient quantization step.

We test our approach on a number of real world datesets and observe consistent speed
up of between 10 and 17, compared to sequential application of the base template matching
algorithm.

2 Background

Template Matching has been studied extensively and a full review is beyond the scope of this
paper. See [16] for a recent survey of template matching algorithms under 2D translation
model.

Traditionally, template matching methods match a single template to a single query im-
age. However, in recent years a different approach emerged that matches many templates to
a target image. The approach, termed Approximately Nearest Neighbor Fields (ANNF), tries
to match each patch in the source image to a corresponding patch in the target image. The
key insight of such methods is that information from one template (i.e., patch) is propagated
to nearby patches. However, the propagation is based on proximity in the image plane and
not on similarity in appearance space.

A seminal work on the topic of ANNF is that of PatchMatch [2] and its extension, that
supports rotations and scales, Generalized PatchMatch [3]. These methods leverage the fact
that multiple templates are matched at once to propagate information between templates.
An alternative solution, based on KD-trees, was proposed by He and Sun [7] and later by
Olonetsky and Avidan [15]. These methods store all patches of the target image in a KD-
tree. Template matching is thus reduced to sequential querying of the KD-tree. Significant
speedup is achieved by propagating information from nearby templates. Again, the propa-
gation is based on proximity in the image plane and not on similarity in appearance space.
A limitation of all these methods is that they do not generalize well when the transformation
space increases, say to the space of 2D affine transformations.

An alternative approach to ANNF is key-point matching. These techniques reduce im-
ages and templates to a collection of key-points where each key-point is described by a
descriptor. Matching keypoints boils down to matching their descriptors. Examples include
SIFT [9] and its affine version ASIFT [13], Harris-Affine [12], and MSER [5]. To handle
large number of descriptors, Muja and Lowe developed FLANN [14], a fast approximate
nearest neighbor library. Other fast ANN methods include the work of Arya ef al. [1] and
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Silpa-Anan and Hartley [17] that both use kd-trees. These methods work very well in prac-
tice but suffer from two important limitations. First, they mainly support 2D translation
models and it is not trivial to extend them to support rich geometric transformations such as
2D affine transformations. Second, they mainly focus on single template matching (i.e., a
single query retrieval). That is, the result of one template match does not affect the perfor-
mance of the next template match.

This paper focus on multi template matching without assuming that the templates are
chosen to be image key-points, (i.e. we can consider templates from smooth areas of an
image) nor does it assumes that the templates are located nearby in the image plane. On top
of that, our approach can inherently deal with complex geometric transformations, such as
2D affine transformation.

BIM builds upon and extends FAST-Match (Korman et al. [8]). FAST-Match is a fast al-
gorithm for approximate template matching under 2D affine transformations that minimizes
the Sum-of-Absolute-Differences (SAD) error measure. It samples the space of 2D affine
transformations with density that depends on the smoothness of the image. The algorithm is
further accelerated in two ways: first, it approximates the SAD error by randomly examin-
ing only a small number of pixels. Second, FAST-Match uses a branch-and-bound scheme.
This way the algorithm samples promising regions densely while pruning other regions of
transformation space.

FAST-Match was compared to alternatives such as optic-flow and feature point methods
and found to be superior. In particular, optic-flow methods, such as Lucas-Kanade [10] can
handle 2D affine transformations but require a good initial guess. Interest point based meth-
ods such as SIFT [9], or its extension ASIFT [13] do not require an initial guess but require
that the template has enough interest points that can be reliably described and matched.

Another method that inspired our work is that of RIANN, or Ring Intersection Approxi-
mate Nearest Neighbor Search [4]. RIANN is an algorithm for approximate nearest neighbor
field estimation in video. It deals with multi-template matching and it uses ring intersection,
which inspired our Ball Intersection scheme. However, RIANN relies on the temporal co-
herency of video for its high efficiency. We do not make this assumption. We, on the other
hand, give an analytical solution to trim to the number of potential template matches. In
addition, RIANN assumes that all query patches in the target image have a good match to
the set of templates. We do not make this assumption.

3 Algorithm

The BIM algorithm consists of a pre-processing step in which it computes all pair-wise
template distances. Then, BIM selects a small set of reference templates and given the query
image, it runs standard FAST-Match on each of the templates separately. BIM relies on
reference templates information to quickly reject the vast majority of transformations for the
remaining templates, as we describe next. BIM assumes that all patches are points in some
high dimensional appearance space and that the distance measure used supports the triangle
inequality.

3.1 Formulation

Let T = {t;: 1 <i < N} be a set of templates. For simplicity, we assume all templates are
of the same size. Let d; = d(t;, p;;) denote the L; distance, in appearance space, between
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Figure 1: BIM search area illustration: Left image - triangle inequality including a non-
reference template #;, its match ¢ and a reference template #;. Middle image - example of
area intersection by two templates. #;, fp, reference templates that creates rings areas for
a non-reference template f3. The transformations candidates are ones in the dashed area.
Right image - example of expanding search area when it is empty. In this example, two area
expansions are needed to reach candidates.

template #; and its closest match in the image, denoted p;,. The task of finding best matched
template can be written as follows:

Lmatch = argmin(di)a I<i<N (D
li

Observe we only look for a single template with a single transformation that minimize
Eq 1. We will later show that the approach can be extended to find the best transformation
for each template with very little additional computational cost.

By convention, let the first £ (we use k = 3) templates denote the reference set. A non-
reference template 7; (j > k) will become 1,4, if its match, denoted as ¢, has a smaller error
in terms of a defined distance error function. We efficiently perform the evaluation using the
following observations. The first observation is that #; is a better template than #; only if a
patch g exists such that

dj=d(tj,q) <d; (2)

Assume we have such a match ¢, can we say something about d(#;,q)? The triangle
inequality can be used to derive a connection between distances from the non-reference
template #; and the reference template #; as follows

d(ti,t;) —d(tj,q) < d(t,q) <d(t;,t;) +d(t},q) (3)

Figure 1 shows an illustration of the triangle inequality. Merging Eq 2 into Eq 3 outputs
the search area of ¢ using distance from a reference template

d(thq) € [d(tiatj)_di7d(ti7tj)+di] (4)

This is the crux of the algorithm. Only transformations that lie within the range defined
by Eq 4 from template #; will be considered as candidates of template ¢;. The ranges form
a search area for each non-reference template. Figure | shows a 2D visualization using a
Euclidean distance measure (in practice we use the L; distance). If d; < d(t;,¢;) then the area
of candidates defines an annulus with radius d(#;,;) around #; and with width 2d;. Otherwise,
it defines a circle with radius d(z;,¢ j) + d; around ;.
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In case of multiple reference templates, the search area becomes the intersection of mul-
tiple balls. BIM - ball intersection match, stands for the intersection area under L, ball
distance metric.

Extending the algorithm to find the best transformation for each template is simple. If a
non-reference template has at least one candidate in the ball intersection area, then we are
done. In case the intersection area is empty, we expand the ring width until at least one
candidate enters it. Figure | illustrates template pruning using two reference templates and
the extension needed for acquiring a match per template.

3.2 Implementation

There are a number of implementation issues that should be addressed.

First, how to choose the reference templates? One approach is to randomly select k
templates. However this approach introduce randomness into the process and makes the
algorithm less consistent in terms of speedup gains. Instead, we do the following. Given
the set of templates, we compute the leading k principal components and find, for each
component the closest template, in terms of dot-product. This generates a reference set of
templates that spans the space of templates as best as possible.

Another subtle issue is that FAST-Match takes a branch-and-bound approach. As a result,
the set of transformations evaluated per template differs. Therefore, we can not use the
bound of Eq 4. To overcome this, we only use the first level of the branch-and-bound which
is shared by all templates. Once we obtain a reduced set of transformations per template,
using Eq 4 we proceed with the usual FAST-Match algorithm.

We can further prune candidate templates by taking ring width as the minimal match
distance found by previous templates. The requirement of valid candidates then becomes:

d@iaQ) S [d(tiatj) _dminvd(thtj) +dmin]7 dpin = min([dlv ~~7dj71D (5)
In addition, we make use of previous templates in Fast-Match thresholds settings. Fast-
Match algorithm defines a threshold for deciding which transformations are considered in
next level of branch-and-bound scheme. This threshold makes sure the desired match will
be reached. The suggested threshold in [8] for template 7; is d} +0(01), where 0 is a user
specified parameter that determines how tight the approximation should be. We replace it

with the "shared threshold"
sharedThrj = m(m : {dil} +20(8y), (6)

i=1..(j—1

where dl.1 is best distance in level 1 in terms of SAD error of template #; and J; is Fast-Match
accuracy parameter in first level. We call it shared threshold because it is shared by all
templates. We prove that using the new threshold guarantees that the correct transformation

will not be missed when shifting to the next level. See supplementary for proof. Algorithm
1 specifies the final BIM algorithm steps.

4 Experiments

4.1 Speedup Evaluation

The first experiment compares BIM to sequential FAST-Match and a variant of FAST-Match
that is combined with KD-trees. Sequential FAST-Match runs FAST-Match separately on
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Algorithm 1 BIM Multi Template Matching

Input: Grayscale image I , Fast-Match accuracy parameter 6, set of templates 7', number of total and
reference templates N, N, respectively

Output: f,,,., best matching template, p,,.c, matching patch in I, p - array of all templates
matching patches in /

d(ti,tj) = SAD(t;,t)), Vt;,t; € T
min =
: A = Fast-Match transformation net, depends on &
: fori=1:N,.r do
Py di = FastMatch(t;,1,A)
dmin = MIN(dminudi)
: forj=N.s+1:Ndo
Npe
patches;, = ﬂf [¢ € A that fulfill (5) with ]

N RN

®

9:  while patche;,j is empty do
10: Extend search areas by €
11: Repeat line 8
12: py,,d; = FastMatch(tj,1,Alpatches;;])
13: dyin = MIN(dm,'mdj)
14: match = MIN INDEX (d,;i)
15: Return tyarchs Pmatchs P

each template and reports the one with best score. The second variant stores the templates in
a KD-Tree. At run time each query image patch is compared only to the k-nearest neighbors
templates found by searching the tree. We use k = 4 as it performs well in our experiments.
Since KD-Tree suffers from the curse of dimensionality, we perform dimensionality reduc-
tion to the templates and query patches using PCA.

We evaluate the speedup of BIM on 40 image pairs from the Zurich building dataset
[6]. Each image pair consists of an image from which the templates are extracted and a
query image in which we search for templates matches. We choose 100 templates from the
templates image and seek the best matched template and its corresponding transformation to
the query image.

Table 1 shows the results of the different approaches. For fair comparison, we ignore plat-
form and implementation differences, and report the total number of affine transformations
that was measured in total for 100 templates. We follow this measure in other experiments as
well. We also measure the standard deviation of the number of transformations per template
and find it to be low. This suggests that speed up is consistent across different templates. We
present the speedup relative to sequential FAST-Match, which is the baseline approach. It is
clear that BIM uses the smallest number of transformations out of the three approaches and
is more stable than KD-Tree approach (i.e., it has a lower standard deviation).

4.2 Handling Deep Features

We now extend BIM to work with deep features. In particular, we represent our data using
VGG [18] deep features. We take a concatenation of response to layers conv2_1 (64 fea-
tures) and conv3_4 upsampled by 4 using bi-linear interpolation (256 features). The dimen-


Citation
Citation
{H.protect unhbox voidb@x penalty @M  {}Shao and Zubudzurich} 2003

Citation
Citation
{Simonyan and Zisserman} 2014


SHLOMO, AVIDAN: BIM, BALL INTERSECTION MULTI TEMPLATE MATCHING 7

Figure 2: BIM example results on KITTI dataset: Upper image - templates cropped from
different images in KITTI dataset (please zoom in to see templates). Four BIM results of
affine matches are presented. BIM template and its match in query image are shown with
same color. See section 4.3 for more details.

sion of features per pixel is 320 which makes it computationally expensive to work with. To
solve this issue, we cluster deep features as follows. We take the features from a sparse grid
of pixels (stride = 10), and compute and store the 8 leading principal components. We then
project all pixel features onto this space giving us an 8D vector per pixel. We take the sign of
each component, giving us a binary 8D vector per pixel. This 8D binary vector defines the
cluster membership of every pixel. Each index cluster is set to be the average deep feature
of all pixels with the same index. BIM will measure pixel distances using a pre computed
256 x 256 cluster-distance matrix. We show in figure 4 example of clustered deep features
images using 3 and 8 principal components. 8 components image looks informative. We
tested BIM with 3,8, 10 components and got an accuracy of 18%,88%,90%, respectively.
Since going above 256 does not seem to contribute significantly to accuracy, we use 256 in-
dexes in our experiments. In our experiments, clustering the features using standard k-means
takes roughly 30 seconds. The proposed approach takes roughly 0.1 seconds.

4.3 Multi Affine Template Matching

KITTI dataset [11] contains real-world sequences taken from a driving platform. The dataset
consists of scene image-pairs. Matching between images in each pair can be challenging due
to different materials and lighting condition, non-lambertian surfaces and areas with large
displacements. We use fifty scenes to test BIM as follows: We form the set of templates T’

Method Transformations No. (10°) \ STD (10°) \ Speedup ‘
Naive FAST-Match 456.75 161.503 -
KD-Tree PCA 66.098 61.487 6.910
BIM 26.553 14.117 17.201

Table 1: BIM speedup experiment on Zurich bulidings datset. BIM is compared to FAST-
Match and KD-Tree. BIM performs better is terms of speed up and is more stable than
KD-Tree.
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Figure 3: BIM Multi Template Matching on Zurich building dataset: Top row - source im-
ages with templates selected using the k-center algorithm (yellow rectangles). Middle and
Bottom rows - images pairs with BIM matches (left - templates image, right - query image).
We show only matches that pass left-right consistency check.

by choosing a single template from I; (k),k € [1,50], where I (k) is the first image in each
pair and get |T'| = 50. Each template is generated by choosing a parallelogram in I; (k) and
warping it to a unit square.

The other image, I>(k), in each pair serves as the query image. We run BIM (T, (k)) and
get the best template and its location in the query, for all queries (50 runs). Figure 2 shows
template set 7 and examples of query images with BIM result template matches. Results
show that BIM copes well with affine transformations.

We work with clustered deep features as described in section 4.2. Unlike gray scale
representation, clustering of deep features produces prototypes (i.e., cluster centers) that
are far from each other, hence the distance to the nearest neighbor of each index is larger
than one would like. We apply a stretching function of x> (where x is the original distance
between prototypes) to increase the difference between closest and farthest cluster for each
index and repeat the experiment. We evaluated different sizes of ring width and found that
for deep features a ring width of 2 x (0.2 x d;) produces the same accuracy as 2 x d; with
better speedup so we use it with this representation. We also test BIM with gray scale

Figure 4: Deep features quantization with different clusters number: Left - 8 clusters, Middle
- 256 clusters, Right - gray scale image. We use 256 clusters in BIM algorithm. See text for
accuracy tests of different clusters number.
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Method Transformations No. (10°) ‘ STD (10°) ‘ Speedup | Accuracy(%) ‘
Naive FAST-Match 75.992 1.2178 - 84

BIM Deep 18.745 4222 4.054 88

BIM Deep Stretched 7.2003 1.012 10.554 84

BIM GL 12.889 1.263 5.8957 40 (top-5)

Table 2: BIM speedup experiment on KITTI dataset: BIM accelerates FAST-Match while
keeping accuracy. BIM templates order affects area filtering and hence BIM std is larger
than iterative FAST-Match (see text for details).

representation.

KITTTI speedup results are reported in table 2. BIM best speedup for KITTI is achieved
using stretched deep representation and reaches 10.5 with the same accuracy as the sequen-
tial (or Naive) FAST-Match. Accuracy is defined as the percentage of queries with correct
template match as tested visually. Gray scale representation leads to poor results in accuracy.
Deep features without stretching maintain the accuracy but do not have the same speedup as
the stretched version. The algorithm was implemented in an unoptimized combination of
Matlab and C code. Average time for the pre-processing step is 0.056 seconds. The average
time for a reference template with 3.3 million transformations is roughly 16.5 seconds. The
average time for a non-reference template is about 0.9 seconds.

4.4 Suggested Application: BIM Image to Image Matching

We suggest using BIM for image matching and show example results on Zurich buildings
dataset. In each image scene pair we use one image /; to extract the templates and the other
image I, as the query image. We choose templates from /; using the k-centers algorithm.
We do not choose areas with low variance to avoid sky-like areas. We then use BIM multi
matching to find matches to all templates in /5. Since there are areas without a proper match
due to the different view points between images and BIM returns a match for each template,
we use left-right consistency check to eliminate bad matched templates i.e. we perform
BIM from target match patches in I, and image /;.If a match is found close to the original
template, we declare it a good match, else we drop it. Figure 3 shows some examples. Notice
that there are a few miss matches that still exist.

5 Conclusions

Template Matching usually occurs in the inner most loop of computer vision applications.
Hence, accelerating it has clear and immediate impact on their performance. We proposed a
method to accelerate template matching in the case of multi-template-matching.

Our algorithm treats templates as points in a high dimensional space and uses triangle
inequality to quickly prune the number of templates that must be evaluated in each location.
The proposed algorithm can deal with templates undergoing 2D affine transformation and
works with different pixel representations including gray scale values, as well as deep fea-
tures. Experiments on real data sets show a speedup of between 10 to 17, compared to a
naive, sequential, algorithm of template matching.
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