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Abstract
Training a deep neural network usually requires sufficient annotated samples. The

scarcity of supervision samples in practice thus becomes the major bottleneck on perfor-
mance of the network. In this work, we propose a principled method to circumvent this
difficulty through marginalizing all the possible transformations over samples, termed
as marginalized Convolutional Neural Network (mCNN). mCNN implicitly considers
infinitely many transformed copies of the training data in every training epoch and there-
fore is able to learn representations invariant for transformation in an end-to-end way.
We prove that such marginalization can be understood as a classic CNN with a spe-
cial form of regularization and thus is efficient for implementation and not restricted to
the CNN module used. Experimental results on the MNIST and affNIST digit num-
ber datasets demonstrate that mCNN can match or outperform the original CNN with
much fewer training samples. Besides, mCNN also performs well for face recognition
on the recently released large-scale MS-Cele-1M dataset and outperforms state-of-the-
arts. Moreover, compared with the traditional CNNs which use data augmentation to
improve their performance, the computational cost of mCNN is reduced by a factor of
26.

1 Introduction
Deep learning methods, and in particular Convolutional Neural Network (CNNs) [14], have
achieved very good performance on various computer vision tasks, from generic object
recognition [13, 15, 23] to object detection [3, 5, 19] and face recognition [6, 12, 21]. The
performance gain roots in the multiple layered model and a large amount of available train-
ing data. The layered architecture enables the model to extract high level visual patterns
for describing the visual properties of images and a large number of training data provide
supervision for optimizing the huge number of inherent parameters.

CNNs are powerful for learning comprehensive image representations. However, it is no-
toriously known that the representation is sensitive to the input image transformations, such
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Figure 1: (a) Illustration of the motivation for learning invariant presentations. There are various
image transformations (shown in the upper panel) which may change the output representations from
CNN significantly and damage the classification performance. The proposed mCNN (shown in the
bottom panel) can produce invariant representations and correct classification results for images with
transformations. (b) Lie derivative: locally linear approximation to the image transformation manifold
in the image space. Here x denotes the original image. Tα1 and Tα2 denote the transformation with two
different parameters α1 and α2. LT,x denotes the derivative of the transformation w.r.t. the image x.

as translation, scaling, rotation, etc. Therefore, the performance of CNN will dramatically
drop when applied to testing samples with unseen transformations.

To remedy this issue, a popular approach is to do data augmentation, i.e., generating
some synthetic samples by performing explicit transformations over the available training
images. However, doing such augmentation significantly increases the size of the training
set as well as the training time cost. Also, the ad hoc data augmentation cannot cover every
possible transformation over the images.

In this work, we aim to develop a particular CNN model that is “robust” or explicitly
“invariant” to the image transformations. The proposed model can learn invariant represen-
tations and correct classification results without explicit and expensive data augmentation.
To better show the motivation of this work, we consider an example shown in Figure 1 (a).
There are multiple images of the same single object with various transformations. Tradi-
tional CNN may fail in recognizing the transformed object correctly if it does not see such
transformation in the training stage. Szegedy et al. [22] also confirm the intriguing property
of CNN, which further verifies that the representation of CNN is quite fragile to specific
noise or transformation on the images.

Towards training a CNN invariant to data transformation, we propose to explicitly con-
sider minimizing the loss over the training images undergoing all the possible transforma-
tions (which could be infinitely many). This cannot be achieved by hand-crafted data aug-
mentation but is possible through performing marginalization over the transformation pa-
rameters when training the CNNs. In this way, the inherent sensitiveness of the output repre-
sentations w.r.t. the image transformations can be significantly alleviated. We call the model
trained by such a new approach the marginalized Convolutional Neural Network (mCNN).

A similar idea was also investigated by LeCun et al. in their tangent vector work [20].
However, in that work, they mostly developed the regularization based on their intuition.
In this work, we focus on how to obtain the transformation invariant representation from
CNN with a more rigorous theoretical motivation. Moreover, we find that the transforma-
tion invariance property actually depends on the sample properties. The proposed mCNN
will focus on certain samples difficult to classify, which are quite similar to the support vec-
tor samples in Support Vector Machine (SVM), though they are motivated from different
viewpoints.

Experimental results on the MNIST and affNIST digit number datasets demonstrate that
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mCNN can match or outperform the original CNN with much fewer training samples. Be-
sides, we also conduct experiments on the recently released challenging large-scale MS-
Cele-1M public dataset, demonstrating mCNN can generalize well to the face recognition
task with superiority over other state-of-the-art methods. Moreover, compared with the tra-
ditional CNNs which use data augmentation to improve their performance, the computational
cost of our scheme is only 3.85%.

2 Related Work
Recently, deep learning algorithms with invariant features have emerged as promising tools
for classification and related applications [1, 2, 8, 9, 16, 18]. Here the term “invariant" is
used in a loose manner: a learning system is invariant if, given an object, the predicted label
remains unchanged for all possible variations of images of the class. Learning deep invari-
ant representations is a challenging issue for deep learning and classification tasks, through
which a more complex and intelligent network can be constructed with the robustness against
variability in the high-dimensional input data.

There are two major types of deep invariant representation learning methods: (1) data
augmentation, i.e., applying finite predefined transformations on the original image dataset
and then training the whole network using these augmented data; (2) embedded invariant fea-
ture representations, i.e., adding transformations and their regulations directly on the internal
equations of the network.

Data augmentation augments the training dataset with transformed versions of the origi-
nal images. This is a well-known approach which works directly at the image level to enforce
robustness of a learning system to variations of the input. In contrast to embedded invariant
feature representations, this strategy is more intuitive and easier to implement. To develop a
more adaptive data augmentation scheme, Image Transformation Pursuit (ITP) was proposed
in [17] which selects a set of transformations from a pre-defined set through optimizing the
training loss. However, given a large set of possible transformations, selecting a compact
subset is still challenging and computationally expensive. In addition, not all the transfor-
mations are equally informative and adding uninformative transformations increases training
time without gain in performance. Therefore, defining the proper transformation set itself is
also challenging.

Embedded invariant feature representation methods try to learn invariant feature repre-
sentations by embedding the invariance into structures of the learning system. For instance,
Simard et al. [20] proposed a tangent vector network, whose development is purely based
on their intuition. Szegedy et al. discussed the intriguing properties of neural networks
in [22], and found that some subtle corruptions of the images may manipulate the output
significantly. Thus they propose to harness adversarial samples to improve performance of
a CNN. Our method attempts to alleviate such an undesired intriguing property through the
extra invariance regularization.

It is worth mentioning that most previous works only perform transformations on the
training dataset or enforce a particular regularizing function based on an ambiguous intuition.
Our approach can obtain the transformation invariant representations and provide correct
classification results without explicitly doing data augmentation.

3 Formulation of mCNN Loss
In this section we elaborate on the proposed marginalized CNN (mCNN). We start with a
local approximation to linear transformation and then explain how to marginalize the joint
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distribution of classification loss and transformations. Finally we discuss the architecture of
the mCNN.

3.1 Approximation to Local Transformation
Throughout the paper, we use T to denote the (affine) transformation imposed on a sample
x. A transformation is specified by its parameter α , and we use Tα(x) to denote the mapped
sample after transformation. A transformation of magnitude ε can be approximated locally
by its Lie derivatives as Tα(x) = x+ εLT,x [20], where we endow a normal distribution with
the magnitude ε ∼ N (0,σ2). LT,x is also known as the tangent vector [20], which can be
computed in advance. Figure 1 (b) shows the first order approximation to the tangent plane
of manifold Tα(x) at x, where

LT,x =
∂Tα (x)

∂α

∣∣∣∣
α=0

=

[
∂Tα (x)

∂α1
, . . . ,

∂Tα (x)
∂αm

]
α=0

.

3.2 Loss Function
In this work, the provided n training images are collectively denoted as X = {x1, . . . ,xn}.
We define a family of transformations {Tα |α ∈ A} parameterized by vectors α ∈ A, where
A is the set of all possible parameter vectors. The details of the considered transformations
are provided in Section 4. Suppose we virtually impose m different transformations on the
images, denoted as Tα1 , . . . ,Tαm . The classification loss to minimize over the whole dataset
is then

L(x) = 1
mn

n

∑
i=1

m

∑
j=1

`(yi,gw(Tα j (xi))). (1)

Here the function `(·, ·) accounts for the loss caused by misclassification. Let gw(·)
denote the CNN parameterized by w.

Let zi = gw(Tα(xi)) be the learned representation of sample xi, and assume α is from
a uniform distribution over the set A. Then according to the law of large number, taking
m→ ∞, the resulted loss function becomes the expectation w.r.t. the parameter α:

lim
m→∞

1
mn

n

∑
i=1

m

∑
j=1

`(yi,zi) =
1
n

n

∑
i=1

Eα`(yi,zi). (2)

Hence, the loss function to minimize w.r.t. the CNN (parameterized by w) becomes

L(X) =
1
n

n

∑
i=1

Eα [`(yi,zi)] . (3)

Regarding the loss function, a common choice in practice is the multinomial negative log
likelihood of the network output:

`(yi,zi) =−〈yi, logh(zi)〉, (4)

where zi usually goes through a softmax function h(·) for normalization purpose. In partic-
ular, the function h(·) is defines as

h(z),
exp(z)
‖exp(z)‖1

. (5)

Note that z can be a vector and exp(·) operates in a element-wise manner. Therefore, the loss
function becomes

L(X) =
1
n

n

∑
i=1

Eα [−〈yi,zi)〉]+Eα log‖exp(zi)‖1

=
1
n

n

∑
i=1

Eα [−〈yi,zi)〉]+ log‖exp{Eα zi)}‖1 +
1
n

n

∑
i=1

Eα log‖exp(zi)‖1− log‖exp{Eα zi)}‖1.
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Figure 2: Illustration of the architecture of our proposed mCNN for learning deep invariant repre-
sentations with classification task on MNIST and AffNIST digit number datasets as an example. Here
the green box represents the Lie derivative layer, blue boxes represent the convolutional layers, yellow
boxes represent the ave-pooling layers, and red circles represent the network outputs. Best viewed in
color.

First order approximation to gw(·|α) If the activation function gw(·|α) is locally linear
w.r.t. α for a small value of α , we can approximate gw(·|α) at the point of α = 0 by its first
order Taylor expansion (recall zi = gw(xi)):

zi ≈ gw(xi)+∇α zi|α=0α.

Therefore,
Eα zi ≈ gw(xi)+∇α zh|α=0Eα

(A1)
= gw(xi).

Then, the loss function can be written as

L(X) =
1
n

n

∑
i=1
−〈yi,zi〉+ log‖exp(zi)‖1 +

1
n

n

∑
i=1

Eα log‖exp{zi}‖1− log‖exp(zi)‖1.

It can be seen that the first two terms correspond to the loss function for the non-
transformed images, and the rest two terms form a regularization on the CNN to augment its
invariance. The expectation is hard to optimize directly. We adopt the following approxima-
tions to simplify the regularization term.

We approximate the loss Eα log‖exp{zi}‖1 by its second order Taylor expansion at α =
0. Here we assume Eα = 0 which is a mild requirement on the distribution of α . Then the
first order term in the expansion term is zero.

Eα log‖exp{zi}‖1 ≈ log‖exp{gw(T0(xi))}‖1 +
1
2

Tr
[
Σα ∇

2
α=0 log‖exp{zi}‖1

]
= log‖exp{zi}‖1 +

1
2

σ
2
α Tr

[
∇

2
α=0 log‖exp{zi}‖1

]
,

where Σα is the covariance matrix of the parameter α: Σα = Eαα>. We assume that the
element in the α , i.e., each type of transformation, is independent. Thus the covariance
matrix is a diagonal one. If we further assume that the variance of each element is equal to
σ2

α , then we can pull the covariance matrix out of the trace in the second order term as σ2
α .

Thus the regularization term becomes

R=
1
2

σ
2
α Tr

[
∇

2
α=0 log‖exp{zi}‖1

]
. (6)

Suppose the number of transformation types is K, thus the dimension of the vector α is
also K. For the computation efficiency, we calculate the above Hessian by only considering
the diagonal elements:

Tr
[
∇

2
α=0 log‖exp{zi}‖1

]
=

K

∑
k=1

(
∂ zi

∂αk

)>
∂ 2`

∂ z2
i

∂ zi

∂αk
≈

K

∑
k=1

C

∑
c=1

∂ 2`

∂ z2
c

(
∂ zc

∂αk

)2
∣∣∣∣∣
αk=0

,
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where `= log‖exp{zc}‖1. C is the number of channels at the final layer, which in this work
is equal to the number of classes. zc denote the c-th element in zi. Several simple calculations
give

∂ 2`

∂ z2
c
=

exp(zc)

‖exp(zi)‖1

(
1− exp(zc)

‖exp(zi)‖1

)
.

Thus, the final form of the regularization is

R=
K

∑
k=1

C

∑
c=1

exp(zc)

‖exp(zi)‖1

(
1− exp(zc)

‖exp(zi)‖1

) (
∂ zc

∂αk

)2
∣∣∣∣∣
αk=0

.

Note that the exp(zc)
‖exp(z)‖1

is the score for the c-th class after a softmax function. When
exp(zc)
‖exp(z)‖1

= 1
2 , the weight achieves the maximal regularization. In other words, the regular-

ization term highlights the samples, which gives an equal probability of belonging or not
belonging to the c-th class. The second term in the regularization is a measure of the sen-
sitiveness of the image representation w.r.t. the transformation. If there is ambiguity in the
belongingness of the image to a category, the sensitiveness to the transformation is enforced
to be small.

Now, we proceed to calculate the gradient of the generated representation w.r.t. the trans-
formation parameter:

∂ zc

∂αk

∣∣∣∣
α=0

=
∂ zc

∂Tα (x)
∂Tα (x)

∂αk

∣∣∣∣
α=0

= ∇xz · ∂Tα (x)
∂αk

∣∣∣∣
α=0

.

Note that Tα(x) = x if α = 0. Here ∇xz is the Jacobian matrix of gw(x) for the image x,
and ∂Tα(x)/∂αk is the tangent vector associated with transformation Tα .

The theory of Lie algebra [4] ensures that the composition of local (small) transforma-
tions corresponds to linear combinations of the corresponding tangent vectors. Therefore, if
the CNN is successfully trained to be locally invariant w.r.t. several transformations, it will
also be invariant w.r.t. their composition.

The final objective function is

L(X) =
1
n

{
n

∑
i=1
−〈yi,zi〉+ log‖exp{zi}‖1 +

λσ2
α

2

K

∑
k=1

C

∑
c=1

∂ 2`

∂ z2
c

(
∂ zc

∂αk

)2
∣∣∣∣∣
αk=0

 , (7)

where λ is a trade-off coefficient to control the effect of the regularization. It is feasible to
devise an efficient algorithm for performing the filter update, which is analogous to ordi-
nary Back Propagation (BP). However, in addition to propagating neuron activations, it also
propagates the tangent vectors. This is a unique feature of mCNN.

3.3 Network Architecture
The architecture of mCNN is depicted in Figure 2. Considering the classification scenario
on the MNIST and AffNIST digit number datasets, the network contains seven layers with
weights: the first layer is the Lie derivative layer, the second and fourth layers are convo-
lutional layers, the third and fifth layers are ave-pooling layers, and the remaining two are
fully-connected layers. The Rectified Linear Unit (ReLU) non-linearity is applied to the
output of the first fully-connected layer. The output of the last fully-connected layer is fed to
a 10-way softmax which produces a distribution of the 10 class labels.

The Lie derivative layer carries out Lie derivatives upon the input images to approximate
local transformation. The first convolutional layer filters the 40 ·40 ·2 input image from the
first layer with 20 kernels of size 5 ·5 ·2 with a stride of 1 pixel (this is the distance between
the receptive field centers of neighboring neurons in a kernel map). The first ave-pooling
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layer has 20 kernels of size 2 · 2 · 20 with a stride of 2 pixels connected to the outputs of
the first convolutional layer. The second convolutional layer has 20 kernels of size 5 ·5 ·20
connected to the outputs of the first ave-pooling layer. The second ave-pooling layer has
50 kernels of size 2 · 2 · 20 with a stride of 2 pixels connected to the outputs of the second
convolutional layer. The fully-connected layers have 500 and 10 neurons, respectively.

Note that our approach is not restricted to the CNN module used, and can be generalized
to other state-of-the-art architectures (i.e. ResNet [7], ResNext [24], DenseNet [10], etc.) for
performance boosting.

4 Experiments
4.1 Experimental Settings
Datasets We use MNIST1 and affNIST2 digit number datasets to evaluate the performance
of our proposed mCNN. Besides, the recently released challenging large-scale MS-Celeb-
1M3 public dataset is used to test the generalization capability of mCNN for face recognition.

MNIST and affNIST Datasets. The original MNIST handwritten digit dataset contains
60K training samples and 10K testing samples. The digits have been size-normalized and
centered in a fixed-size image. affNIST is made by taking images from MNIST and ap-
plying various reasonable affine transformations to the images. In the process, the images
are resized to 40×40 pixels large, with significant transformations involved, so much of the
challenge for the models is to learn that a digit means the same thing in the upper right corner
as it does in the lower left corner. Some example images in the affNIST dataset are shown in
Figure 3 (a). The affNIST testing data are created by transforming the 10K original MNIST
testing data; the affNIST training data come from 50K MNIST training data; the affNIST
validation data come from the remaining 10K MNIST training data. The evaluation system
measures the classification Top-1 accuracy.

MS-Celeb-1M Dataset. MS-Celeb-1M is a large-scale real-world face dataset, along
with the protocol for evaluation of classification. The training set contains about 10M web
images from the top 76,674 entities sampled from the 1M celebrity list in terms of their
popularities, with approximately 100 images for each celebrity. The noise in the training
data has not been manually removed to allow data cleaning, noisy label removal, and learning
with noisy data proposed by the possible solutions. The validation set includes two tracks,
Dev1 (Hard set) and Dev2 (Random set), each of which contains 500 images. The face
images in the Hard set have large variations, while those in Random set are randomly selected
and subjects therein highly likely to be covered by the training data. The evaluation system
measures the recognition recall at a given precision 95%.

Implementation Details The proposed mCNN is implemented based on the publicly avail-
able Caffe platform [11], which is trained on a single NVIDIA GeForce GTX TITAN X GPU
with 12G memory. The weights of all convolutional layers are initialized by normal distri-
bution with an std of 0.001. During training, the learning rate is initialized to 0.01. We train
our model using Stochastic Gradient Descent (SGD) algorithm with a batch size of 128,
momentum of 0.9, and weight decay of 0.0005.

For digit classification, we use a Vanilla CNN trained on MNIST and an Affine CNN
trained on the affNIST dataset with data augmentation corresponding to the specific trans-

1http://yann.lecun.com/exdb/mnist/.
2http://www.cs.toronto.edu/ tijmen/affNIST/.
3https://www.microsoft.com/en-us/research/project/ms-celeb-1m-challenge-recognizing-one-million-

celebrities-real-world/.
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Figure 3: (a) Example images in the affNIST dataset: top row shows the original cen-
tered and non-transformed digits; row 2-3 show the x-axis translated digits, with the tan-
gent vectors: {±10,±7.5,±5,±2.5}/{±5}; row 4-5 show the y-axis translated digits, with
the tangent vectors: {±10,±7.5,±5,±2.5}/{±5}; row 6-7 show the scaled digits, with the
multiplication factors: {0.8}/{1.2}; bottom 2 rows show the rotated digits, with the angles:
{5,10,15,20}/{−5,−10,−15,−20}. (b) Visualization of the filters from two convolutional layers,
(top) conv1 layer and (bottom) conv2 layer, in three CNNs: (left) Vanilla CNN trained on MNIST data,
(middle) Affine CNN trained on affNIST data, and (right) mCNN trained on MNIST data.

formation as two baselines. Our proposed mCNN is trained on MNIST dataset for roughly
40 epochs and it takes 1.5-2 hours for the final model. The performance with 7 different
network settings (i.e. λ ranging from 0.0 to 10.0 discretely) will be compared in the follow-
ing experiments. We test our models on affNIST with two complementary sub-experimental
settings where the elementary transformations of translation, scaling, rotation, and the corre-
sponding combination of all the elementary transformations are applied respectively. Specif-
ically, in sub-experimental setting I (transformations with small variance)/II (transforma-
tions with large variance), for translation, two different local transformations Tα are ap-
plied by horizontal (x-axis) translation and vertical (y-axis) translation with distances in
{−5,5}/{±10,±7.5,±5,±2.5}; for scaling, the local transformations Tα are conducted by
multiplying the patch scale with the factors {0.9,1.1}/{0.8,1.2}; for rotation, the local trans-
formations Tα are conducted by rotating the image with the angles {−5,5}/{±5,±10,±15,
± 20}; for combination, all of the above mentioned elementary local transformations are
ensembled.

For face recognition, for fair comparison, we use the modern architecture ResNet-101 [7]
as the backbone CNN module of mCNN. Since the provided training dataset is crawled from
the Internet without manually checking, there are a certain percentage of data which are ac-
tually noisy. For example, some of the faces are given with false labels and some images
even do not contain faces. Thus, we propose a two-stage method to learn robust and disam-
biguated deep facial representations for effectively classifying celebrity faces at large scale.
The first stage is to find outliers from each celebrity to clean the noisy data in the provided
training set. We implement this by pretraining mCNN on the CASIA-WebFace dataset with
a final 10,575-way classification layer and a softmax loss for 100 epochs. Then, we use the
pre-trained mCNN model to extract deep features from all the aligned face images in MS-
Celeb-1M. For all deep features corresponding to one celebrity, we calculate the median of
all these deep features as the cluster centroid and Euclidean distance of each deep feature to
the centroid. Based on the distances, we remove 12% of the data as outliers. Built on the
cleaned dataset, the second stage is the task-specific robust and disambiguated deep feature
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Method Top-1 acc @ x-axis
Translation I/II (%)

Top-1 acc @ y-axis
Translation I/II (%)

Top-1 acc @
Scaling I/II (%)

Top-1 acc @
Rotation I/II (%)

Top-1 acc @
Combination I/II (%)

Vanilla CNN 46.32/42.18 26.28/22.62 90.25/85.42 94.40/89.98 36.68/32.52
Affine CNN 88.93/83.72 67.29/63.51 97.95/93.53 98.11/94.06 86.79/82.11
mCNN

λ=0.00 46.30/42.06 26.26/22.60 90.26/85.43 94.38/89.86 36.71/32.49
mCNN

λ=0.01 50.94/46.85 31.05/27.66 92.31/88.67 94.91/90.02 41.05/37.43
mCNN

λ=0.10 59.37/53.29 40.13/36.58 95.19/90.02 95.97/92.35 52.68/48.76
mCNN

λ=0.50 71.41/66.01 54.25/49.12 96.22/91.96 97.16/92.88 63.23/60.85
mCNN

λ=1.00 83.12/77.32 66.93/58.86 97.51/93.10 97.52/93.10 75.19/72.96
mCNN

λ=5.00 87.89/82.87 66.75/62.97 97.82/92.79 98.02/93.96 86.11/81.95
mCNN

λ=10.00 86.54/81.95 64.92/61.22 95.23/90.18 96.43/91.34 84.23/81.04

Table 1: Comparison of our mCNN digit classification performance with two baseline methods when
evaluating on sub-experimental setting I/II. We also report results of the proposed mCNN with 7 dif-
ferent network settings in terms of the regularization factor λ . Our best results are given in bold.

learning. We implement this by further fine-tuning the pre-trained network ended with a new
76,674-way classification layer and a softmax loss for 100 epochs. The whole process takes
11-12 days for the final specific model. As the testing data are not provided, we use the
validation set instead for evaluation.

4.2 Results and Comparisons
Results on MNIST and affNIST: As shown in Table 1, as λ increases, the classification
accuracy of mCNN improves consistently, which demonstrates that the proposed regulariza-
tion can effectively enhance the robustness of our model to data transformation. However,
starting from λ = 5.00, further increasing λ does not bring performance improvement any
more. We even observe performance drop by further increasing λ . The reason is that a
large value of λ will enforce the learned filters to be all zero ones, which always produce
invariant performance without any discriminative information. Thus, in this work, we set
λ = 5.00 for trade-off. mCNNλ=5.00 outperforms the Vanilla CNN with significant gains
for the classification task on MNIST and affNIST datasets. mCNNλ=5.00 can even match
the Affine CNN with the specific data augmentation for both the sub-experimental setting I
with small variance and the sub-experimental setting II with large variance. This superior
performance indicates that by minimizing the mCNN loss over all possible transformations
on training images through doing marginalization over the transformation parameters, the
sensitiveness of the output representations w.r.t. the image transformations is effectively
decreased. Moreover, for the combination scenarios, our proposed mCNN can achieve the
performance comparable to doing 26 different transformations on each training image, at the
computational cost of only 3.85% (i.e. 1/26) of that used by the augmentation. Besides,
the training and testing phases of mCNN are all conducted for the classification task in an
end-to-end way, thus the deep feature learning in our work is more efficient than previous
methods. We also visualize the learned filters in three different CNNs in Figure 3 (b). It is
interesting that similar to Affine CNN, mCNN also learns more diverse filter kernels than
Vanilla CNN, which can help handle various transformations.

Results on MS-Celeb-1M: We further verify the generalization capacity of the proposed
mCNN on the two tracks Dev1 (Hard set)/Dev2 (Random set) of MS-Celeb-1M validation
set. As illustrated in Figure 4 and Table 2, on Random set the proposed mCNN reaches the
Coverage 65.4% when Precision=95%, and on Hard set the proposed mCNN reaches the
Coverage 49.8% when Precision=95%.

Generally, mCNN shows higher performance than other recent state-of-the-art methods
in terms of Coverage at Precision=95% on MS-Celeb-1M Hard set. This demonstrates that
the proposed mCNN can be generalized well to other computer vision tasks, such as face
recognition. Note that we only utilize a single model here for evaluation. We believe that the
performance of our model can be further improved with more ensembled models specified
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Figure 4: Results on the MS-Celeb-1M dataset. (a) The Precision-Coverage curve of mCNN on the
two tracks of validation set. (b) The evaluation performance of our mCNN (highlighted in red) in
MS-Celeb-1M benchmark (Dev1 of the validation set) in terms of Coverage at Precision=95%. Best
viewed in color.

Method Coverage @ P = 0.95%
Dev1/Dev2

Coverage @ P = 0.99%
Dev1/Dev2

NII-UIT-KAORI∗ -/0.001 -/0.001
BUPT_MCPRL∗ 0.040/0.064 0.007/0.006
CIIDIP∗ 0.020/0.154 0.018/0.025
IMMRSB3RZ∗ 0.042/0.171 0.039/0.104
BUPT_PRIS∗ 0.210/0.421 0.117/0.216
faceman∗ 0.330/0.461 0.211/0.339
FaceAll∗ 0.254/0.554 0.142/0.417
1510∗ 0.001/0.570 0.001/0.065
CIGIT_NLPR∗ 0.534/0.684 0.026/0.045
mCNN 0.498/0.654 0.136/0.316
(* indicates corresponding result is reported by MS-Celeb-1M leaderboard4)

Table 2: Performance comparison of mCNN with state-of-the-arts on the two tracks Dev1 (Hard
set)/Dev2 (Random set) of large-scale MS-Celeb-1M face recognition. Symbol “-" implies that the
result is not reported for that method. A large number means better performance. The best performance
is highlighted in bold.

with different loss functions, and we would like to examine this in the future.

5 Conclusion
We proposed a marginalized Convolutional Neural Network (mCNN) that learns transfor-
mation invariant representations and thus performs better on testing data with unseen trans-
formation. The mCNN minimizes the empirical loss over all possible transformations on the
training images through doing marginalization over the transformation parameters. Exper-
imental results on the MNIST and affNIST datasets demonstrate that mCNN can match or
outperform the original CNN using much fewer training samples. Its good generalization
capability to other tasks (e.g. face recognition) is also verified by experiments on the large-
scale MS-Celeb-1M public dataset. Moreover, compared with the traditional CNNs which
use data augmentation to improve performance, the computational cost of our scheme is only
3.85%.
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