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Abstract
In practice, histopathological diagnosis of tumor malignancy often requires a hu-

man expert to scan through histopathological images at multiple magnification levels,
after which a final diagnosis can be accurately determined. However, previous research
on such classification tasks using convolutional neural networks primarily determine a
diagnosis for a single magnification level. In this paper, we propose a case-based ap-
proach using deep residual neural networks for histopathological malignancy diagnosis,
where a case is defined as a sequence of images from the patient at all available levels
of magnification. Effectively, through mimicking what a human expert would actually
do, our approach makes a diagnosis decision based on features learned in combination
at multiple magnification levels. Our results show that the case-based approach achieves
better performance than the state-of-the-art methods when evaluated on BreaKHis, a
histopathological image dataset for breast tumors.

1 Introduction
Histopathology is regarded as the gold standard method for cancer diagnosis, including al-
most all types of cancers, such as breast, lung, colon and prostate cancer [6, 9, 17]. Suspi-
cious tissues are biopsied and the biopsy undergoes fixation, sectioning, and finally mounting
on a slide. The biopsy section then is subjected to haematoxylin and eosin (H&E) staining
which is a routinely used staining procedure that enhances tissue structure and cell mor-
phology. A pathologist would then thoroughly examine the H&E stained slides under a
microscope at multiple magnification levels, searching for morphological signatures indicat-
ing the onset or progression of cancerous tissues whose presence determines whether the
tumor should be diagnosed as benign or malignant. The whole process, however, can be
very time-consuming, since it is often required that the pathologist switch between magnifi-
cation levels and jump among different image locations [15]. In addition, the diagnosis from
a pathologist can sometimes be subjective and heavily dependent on the experience of the
pathologist [9].

In order to address the above problems, computer aided diagnosis (CAD) systems have
been proposed to facilitate cancer diagnosis, not only to reduce labor work for the patholo-
gist, but also to improve objectivity and consistency. Despite the work that has been done
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in the last few decades [5, 6, 9, 21], tumor malignancy classification remains still a chal-
lenge for most automatic cancer diagnosis applications due to the tremendous complexity
of histopathological images, which can be due to various reasons including the staining
variations in specimen treatment process [14] and the diversity of tissue characteristics in
different cancers. Therefore, a robust and reliable CAD system for cancer diagnosis has
to be designed to capture all discriminative features in histopathological images effectively.
However, as has been pointed out by many researchers [5, 6, 9, 20], when using traditional
classification approaches, the feature engineering step can be very difficult that requires a
fair amount of expert domain knowledge.

Recently, a wide variety of new deep learning technologies [10, 12], such as the con-
volutional neural network (CNN), first developed by LeCun et al. [11], have achieved great
success on various computer vision and pattern recognition tasks. Indeed, CNN has become
the state-of-the-art method for image based classification problems, consistently outperform-
ing traditional machine learning methods. More importantly, CNN can automatically extract
discriminative features from images by itself. As a result, no hand-crafted feature engineer-
ing step is required anymore, which saves considerable efforts in most applications including
histopathological image classification.

2 Previous work
Due to its superior performance compared to traditional machine learning methods, CNN has
been widely applied to histopathological cancer diagnosis problems. Cireşan et al. [3] use
CNN to detect mitosis in breast cancer histological images and won the ICPR 2012 mitosis
detection competition. Sirinukunwattana et al. [18] propose a spatially constrained CNN for
nucleus detection and then a Neighboring Ensemble Predictor (NEP) coupled with CNN for
nucleus classification in colon caner histological images, and achieve the highest average F1
score for this problem compared to other methods. Although both of the above two papers
are not directly working on tumor malignancy classification, their results could undoubtedly
benefit cancer diagnosis, since both mitosis and nuclear characteristics are important indica-
tors for cancerous tissue detection. Direct work on malignancy classification have also been
published. For example, Cruz-Roa et al. [4] show that a CNN classifier achieves a balanced
accuracy of 84.23% for the detection of invasive ductal carcinoma, where the best perfor-
mance of methods using handcrafted features and classifiers is 78.74%. Similarly, Litjens et
al. [13] also demonstrate that CNN improves the efficacy of prostate cancer diagnosis.

We note that the previous work mentioned above on histopathological image classifica-
tion using convolutional neural networks are done on whole slide images (WSI), and the
patches used for training are extracted from the original images at a certain fixed magnifi-
cation level. However, an experienced pathologist would not choose to determine a diagno-
sis decision based on a single magnification level. In practice, it is often required that the
pathologists evaluate the histopathological slides at multiple magnification levels [15, 16],
as different magnifications give different features. For instance, lower magnification gives
global texture information and tissue structure while higher magnification resolve more on
cellular morphology and sub-cellular details [6]. Sometimes it is difficult to determine a di-
agnosis merely based on a single magnification level. Only by integrating all the features at
multiple magnification levels, a confident diagnosis can be determined.

Recently, an image dataset BreaKHis is released [19], which provides histopathological
images of breast tumor at multiple magnification levels (40×, 100×, 200× and 400×). Both
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traditional methods using handcrafted features [19] and CNN method [20] have been applied
on this dataset for malignancy classification, and it has been shown that by combining dif-
ferent CNNs using fusion rules, the CNN performance has an improvement of 6% in classi-
fication accuracy, compared to traditional methods. However, one disadvantage of this paper
[20], is that four CNN classifiers have to be trained, with one classifier specialized for each of
the four magnifications. Seeking to find a better solution to this problem, Bayramoglu et al.
[1] propose a magnification independent approach with both single-task (malignancy) and
multi-task (malignancy and magnification) classification, where they ignore magnification
information of the image and train a unique CNN classifier for all magnifications. Although
the performance is slightly impaired, it indeed improves the efficiency. Nevertheless, when
evaluated on the testing sets, both of the previous work [1, 20] on BreaKHis dataset using
CNN fail to determine a diagnosis for a patient based on features from multiple magnifi-
cation levels at the same time. Instead, they give separate classification accuracy for each
individual magnification, independent to other available magnifications.

3 Histopathological case-based classification
In order to build a more reasonable and reliable computer aided diagnosis system, we pro-
pose a case-based approach for histopathological malignancy classification, where a case is
defined as a sequence of images including one or more images from each of all the avail-
able levels of magnification for a certain dataset. For example, for the BreaKHis dataset, a
typical case could consist of one or more images at each of the following magnifications in
order: 40×, 100×, 200× and 400× (Figure 1). A trained classifier should be able to learn
all the features from different magnification images, and give a unique and more accurate
result based on all information given (e.g. tissue structure at lower magnification, cell phe-
notype at higher magnification), equivalent to how an histopathological expert would choose
to perform analysis at multiple magnification levels.

In this section, we first present our algorithm that constructs a case-based image set
from any given histopathological image dataset with multiple magnifications and malignan-
cies (Section 3.1). We then introduce a CNN model to classify our histopathological cases
(Section 3.2). Finally, we describe the three performance metrics that will be used for the
evaluation of histopathological case-based classification (Section 3.3).

Figure 1: A typical histopathological case of breast tumor with different magnifications.

3.1 Case-based image set initialization
Histopathological image datasets are often given as images in multiple separated magni-
fications, but not as cases. Therefore, the first step is to build an appropriate number of
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histopathological cases based on the given dataset. To limit the size of the input set, the
cases will include exactly one image from each magnification level. Algorithm 1 describes
the initialization of a case-based image set from the original dataset with multiple magnifica-
tions and malignancies. Put simply, for each case build, the algorithm randomly chooses one
image from each subset of images that belong to different magnifications, with the restriction
that all images in the same case must have the same malignancy label, which will also be the
final class label for the resulting case. For simplicity, we illustrate in Algorithm 1, assuming
that two types of malignancy (benign and malignant) and four levels of magnification (40×,
100×, 200× and 400×) are available, which is the case for BreaKHis dataset. However, this
algorithm can be applied to any number of malignancy types and magnification levels.

The only parameter passed to the algorithm is the expected number of output cases k
(which we assume to be a multiple of the number of types of malignancy). In training set
initialization, we want this set size, which we will denote as ktrain, to be relatively large in
order to avoid over-fitting our model later on, but also not too large due to limited compu-
tational resources and running time. Therefore, this parameter needs to be fine-tuned for
different problem settings as we will show in more detail in Section 4.

Algorithm 1 can be applied to both training and testing sets, depending on the inputs
of image sets. Note in the training phase, a case consists of one single image from each
magnification level, but not necessary from the same particular patient. The images can be
randomly selected from different patients as long as they share the same malignancy. This is
why the patient information does not come in Algorithm 1. However, in the testing phase, we
may want the cases to be patient specific, which can be achieved by setting patient specific
images as the input to Algorithm 1. After the whole process, the initialized case-based image
sets are ready for training or evaluation.

3.2 ResNet-based classifier

We choose to use deep residual neural networks (ResNets) to classify the histopathological
cases. ResNets are a special kind of convolutional neural networks that have residual units in
parallel to regular convolutional layers. The design of residual units are quite flexible such
that they can also be further engineered in order to get better performance [7, 8]. We start
with a simple 18-layer ResNet model (ResNet-18), as this model can be easily adapted to
even deeper models (e.g. 152 layers) if required. The overall architecture of ResNet-18 is
shown in Figure 2.

The model contains two types of residual units: the residual unit with an identity short-
cut and the residual unit with a projection shortcut. The only difference between these two
types is that in the projection shortcut, an additional convolutional layer is required due to
the change of dimension from input to output. Each residual unit contains six sequential
components: Batch Normalization, Rectified Linear Unit (ReLU), Convolution, Batch Nor-
malization, ReLU and Convolution. An average pooling layer is used before the final fully
connected layer.

3.3 Metrics

Spanhol et al. [20] have introduced two ways to report method performances for medical
image classification: image recognition rate and patient recognition rate. Here, to accommo-
date for our case-based approach, however, we use a case level metric instead of an image
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Algorithm 1: Case-based image set initialization
Input : image sets IMalignancy×Magnification, where Malignancy is the set of

malignancy types, e.g. {benign, malignant}, and Magnification is the set
of magnifications, e.g. {40, 100, 200, 400}

Output : X ← data, y← label
Parameters: k = expected number of output cases

1 Initialize i = 0;
2 foreach mal ∈Malignancy do
3 Initialize countermal = 0 ;
4 Initialize new current combination Xi;
5 repeat
6 foreach mag ∈Magnification do
7 randomly pick an image from image set I(mal, mag) and add to Xi;
8 end
9 if current combination Xi not in X then

10 add Xi to X ;
11 yi = mal;
12 i += 1;
13 countermal += 1;
14 end
15 until countermal ≥ k/|Malignancy|;
16 end

level metric. The case recognition rate is defined as follows:

Case Recognition Rate =
Nrec

Nall
(1)

where Nall is the total number of all cases constructed for the testing set, and Nrec is the
number of correctly classified cases.

Unlike the case recognition rate, the patient recognition rate takes patient information
into account. For each patient p in the testing set, let N pall be the total number of cases that
belong to patient p, and N prec be the number of correctly classified cases for patient p, then
the patient recognition rate can be defined as [20]:

Patient Recognition Rate =
∑p(Nprec/Npall )

Total Number of Patients
. (2)

In addition to the above two recognition rates, we also give a new metric defined at the
diagnosis level. First, we give a final diagnosis to each patient in the testing set based on a
simple voting strategy where we assume that the diagnosis is benign if the ratio of benign to
malignant cases for the patient p is above a threshold, malignancy_threshold:

Patient Diagnosis p =

{
benign, if

Npbenign
Npall

> malignancy_threshold

malignant, otherwise
(3)

where N pbenign is the number of cases that are diagnosed as benign for patient p. For example,
if malignancy_threshold is set to 0.5, the patient p is assigned a diagnosis of benign if more
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Figure 2: (a) Residual unit with identity shortcut; (b) Residual unit with projection shortcut;
(c) Overall architecture of the ResNet used in the paper.

than half of the cases for patient p are classified as benign. Based on the diagnoses assigned
to the patients, diagnosis accuracy for the classification is defined as the follows:

Diagnosis Accuracy =
Number of Correctly Diagnosed Patients

Total Number of Patients
. (4)

We believe the diagnosis accuracy metric should be emphasized more for future re-
search on histopathological diagnosis problems, as it is of utmost clinical importance that
a computer-aided diagnosis system be able to give a final diagnosis for a patient, and based
on the accuracy at which the diagnosis is correct or not, we can judge its performance.

4 Experiments and Results
This section evaluates our case-based approach for histopathological diagnosis that is pro-
posed in Section 3.

4.1 Dataset
To test the proposed case-based approach for histopathological diagnosis, we use the BreaKHis
database [19], a recently released dataset of breast tumor histopathological images. BreaKHis
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contains both benign and malignant breast tumor images, which were collected from 82 pa-
tients at multiple magnification levels (40×, 100×, 200× and 400×). Each patient may have
a different number of images for each magnification. In total, there are 2480 benign and
5429 malignant images, with each image acquired in three channels (RGB).

Besides the histopathological images, BreaKHis also provides a five-fold protocol for
testing. We use the same testing protocol as previous work [1, 20], where the whole dataset
is split into training (70%) and testing (30%) set for five trials, such that none of the images
associated with the patients in the training set are used in the testing set. In the end, 54 out
of the total of 82 patients are grouped into the training set, and the rest of the 28 patients are
used as evaluation samples for all the five folds.

The BreaKHis images are originally of size 700×460×3. To speed up the processing
times and lessen the memory requirements, the images are resized to 100×100×3 for both
the training and testing sets.

4.2 Implementation
With all images from BreaKHis, we implement Algorithm 1 to build histopathological cases
for both the training and testing sets. To find the best parameter ktrain for Algorithm 1 when
initializing the training sets, we utilize fold 1 for a series of experiments by setting the num-
ber of output cases over a range of values from 100 to 40,000 as shown in Figure 3. After
comparing the case-level accuracies for the different sizes of training sets, we choose the
smallest size of the training set that gives the best accuracy as our final ktrain. Note that for
some of the smaller sizes of the training sets, we repeat some of the experiments indepen-
dently three or five times since the performance of trained model can vary a lot for these
sizes. The final chosen parameter ktrain for training set initialization achieves a balance be-
tween computational resource requirement and performance. On the other hand, for testing
set initialization, we simply use ktest = 30,000 for the size of the testing sets as evaluation on
thirty thousands cases gives a quite stable estimation of model performance according to our
trial experiments.

For all experiments, we implement our classifier ResNet using Keras, a deep learning
library written in python with either TensorFlow or Theano as a backend [2]. We use Theano
as the backend in this paper. To optimize the weights, we use stochastic gradient descent,
with a batch size of 100 to compute the gradients using back propagation. The initial learning
rate is set to 0.001, decay by 1e-6 over each update, and Nestrov momentum is set to 0.9.
We train our neural network for 100 epoches. All experiments are done on 4 Intel Xeon(R)
E3-1271 v3 processors with a NVIDIA Quadro K2000/PCIe/SSE2 GPU with CUDA 7.5
installed in a Ubuntu 16.04 LTS.

4.3 Results
First, regarding the choice of ktrain, as is shown in Figure 3, with the increase of the total
number of cases used for training, the testing accuracy also increases and finally reaches the
plateau. When the model is trained on only 100 cases, there is a large variation in model
performance based on five independently conducted experiments. In the worst case, for
100 cases, the performance is not much better than a random guess. However, the model
performance is significantly improved when trained on a large number of cases. In addition,
the variation becomes smaller as well. From the bottom plot in Figure 3, we can see that
the curve starts to converge when the number of cases is increased to 5,000, and reaches a
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maximum at around 10,000. To understand the effect of the choice of ktrain on the running
time, when setting ktrain equal to 40,000, the total training time required for a single fold is
around 900 seconds per epoch, while it is 2 seconds per epoch for ktrain set to 100. By setting
our parameter ktrain equal to 10,000, we significantly reduce the running time by around four
times, from 900 seconds to 226 seconds, when compared to ktrain equal to 40,000, without
sacrificing accuracy. Therefore, we choose to set our parameter ktrain equal to 10,000 in
training set initialization algorithm for all the following experiments.

Figure 3: Performance in terms of case-level accuracy versus number of histopathological
cases ktrain used for training. Top table shows the testing accuracies in each experiment; The
bottom plot is the visualization of the table.

With the parameters ktrain and ktest set, we can then thoroughly evaluate our case-based
approach based on five-fold testing protocol, using the metrics that we described in Section
3.3. For each fold, we first build the case-based training and testing sets using Algorithm 1,
by setting ktrain = 10,000 for the training set and ktest = 30,000 for the testing set. Note that
both the training and testing sets are balanced in terms of the different malignancy types.
After the models are trained, we then evaluate the model performance using the following
three metrics: case recognition rate, patient recognition rate, and diagnosis accuracy. For the
diagnosis of benign or malignant, we set malignancy_threshold to 0.5. Table 1 shows the
final results.

Our case-based approach gives average accuracies of 91.48% (case-level), 86.36% (patient-
level) and 88.57% (diagnosis-level) on the testing sets. As we are the first to use case-level
and diagnosis-level accuracies, we can’t compare the results for these metrics to previous
results. However, based on patient-level accuracy, our case-based approach (86.36%) out-
performs the multi-task CNN method (82.13%, average of four magnifications) [1] and the
magnification independent single-task CNN method (83.25%, average of four magnifica-
tions) [1], and achieves a comparable performance to the best results obtained from the
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Table 1: Performance of case-based approach for histopathological malignancy diagnosis
based on case-level, patient-level and diagnosis-level accuracy.

Accuracy Type Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Case Recogn. Rate 0.9246 0.8596 0.9355 0.9220 0.9323 0.9148
Patient Recogn. Rate 0.8731 0.8424 0.8753 0.8090 0.9182 0.8636
Diagnosis Accuracy 25/28 23/28 26/28 23/28 27/28 0.8857

combination of four patch image extraction strategies and three fusion rules using a patch-
based method for specific magnifications (40×: 90.0%; 100×: 88.4%; 200×: 84.6%; 400×:
86.1%) [20].

We further investigate the misclassified patients in terms of malignancy diagnosis for all
five folds, and summarize the results as confusion matrices in Figure 4. In total, 16 out of
140 patient samples over the five folds are misclassified, with a false positive rate of 5.0%
and a false negative rate of 6.43%.

Figure 4: The confusion matrices of case-based approach for histopathological malignancy
diagnosis in five folds.

5 Conclusion
In this paper, we propose a case-based approach for histopathological malignancy diagnosis
using deep residual neural networks. We first introduce an algorithm for case-based image
set initialization for both training and testing based on histopathological images at multiple
magnification levels, and then present a ResNet-based classifier and three metrics to report
method performances for medical image classification. Finally, we evaluate our proposed ap-
proach using the breast tumor histopathological image dataset BreaKHis. Our results show
that the case-based approach achieves better performance than the state-of-the-art methods.
Moreover, we believe our case-based approach is a more reasonable way for histopatholog-
ical malignancy classification since it makes diagnosis decision based on features learned at
multiple magnifications. Another principle advantage of our work over the previous work
[1, 20] is that our method gives a single diagnosis for the patient, whereas in the previous
work four potentially differing diagnoses are given for the same patient, one for each of four
magnification levels. To be clinically applicable, these latter approaches would then require
a final voting step or similar diagnosis selection step which are not discussed in their papers
[1, 20]. For future work, more complex deep CNN architectures will be investigated.
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[3] Dan C Cireşan, Alessandro Giusti, Luca M Gambardella, and Jürgen Schmidhuber.
Mitosis detection in breast cancer histology images with deep neural networks. In
International Conference on Medical Image Computing and Computer-assisted Inter-
vention, pages 411–418. Springer, 2013.

[4] Angel Cruz-Roa, Ajay Basavanhally, Fabio González, Hannah Gilmore, Michael Feld-
man, Shridar Ganesan, Natalie Shih, John Tomaszewski, and Anant Madabhushi. Auto-
matic detection of invasive ductal carcinoma in whole slide images with convolutional
neural networks. In SPIE medical imaging, pages 904103–904103. International Soci-
ety for Optics and Photonics, 2014.

[5] Cigdem Demir and Bülent Yener. Automated cancer diagnosis based on histopatholog-
ical images: a systematic survey. Rensselaer Polytechnic Institute, Tech. Rep, 2005.

[6] Metin N Gurcan, Laura E Boucheron, Ali Can, Anant Madabhushi, Nasir M Rajpoot,
and Bulent Yener. Histopathological image analysis: A review. IEEE reviews in
biomedical engineering, 2:147–171, 2009.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 770–778, 2016.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In European Conference on Computer Vision, pages 630–645.
Springer, 2016.

[9] Lei He, L Rodney Long, Sameer Antani, and George R Thoma. Histology image
analysis for carcinoma detection and grading. Computer methods and programs in
biomedicine, 107(3):538–556, 2012.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[11] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip
code recognition. Neural computation, 1(4):541–551, 1989.

[12] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

[13] Geert Litjens, Clara I Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagtegaal,
Iringo Kovacs, Christina Hulsbergen-Van De Kaa, Peter Bult, Bram Van Ginneken,
and Jeroen Van Der Laak. Deep learning as a tool for increased accuracy and efficiency
of histopathological diagnosis. Scientific reports, 6, 2016.

https://github.com/fchollet/keras


LAO, FEVENS: CASE-BASED HISTOPATHOLOGICAL MALIGNANCY DIAGNOSIS 11

[14] Michael T McCann, John A Ozolek, Carlos A Castro, Bahram Parvin, and Jelena Ko-
vacevic. Automated histology analysis: Opportunities for signal processing. IEEE
Signal Processing Magazine, 32(1):78–87, 2015.

[15] Lucia Roa-Peña, Francisco Gómez, and Eduardo Romero. An experimental study of
pathologist’s navigation patterns in virtual microscopy. Diagnostic pathology, 5(1):71,
2010.

[16] David Romo, Juan D García-Arteaga, Pablo Arbeláez, and Eduardo Romero. A dis-
criminant multi-scale histopathology descriptor using dictionary learning. In SPIE
Medical Imaging, pages 90410Q–90410Q. International Society for Optics and Pho-
tonics, 2014.

[17] Raphael Rubin, David S Strayer, Emanuel Rubin, et al. Rubin’s pathology: clinico-
pathologic foundations of medicine. Lippincott Williams & Wilkins, 2008.

[18] Korsuk Sirinukunwattana, Shan E Ahmed Raza, Yee-Wah Tsang, David RJ Snead,
Ian A Cree, and Nasir M Rajpoot. Locality sensitive deep learning for detection and
classification of nuclei in routine colon cancer histology images. IEEE transactions on
medical imaging, 35(5):1196–1206, 2016.

[19] Fabio A Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte. A dataset for
breast cancer histopathological image classification. IEEE Transactions on Biomedical
Engineering, 63(7):1455–1462, 2016.

[20] Fabio Alexandre Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte.
Breast cancer histopathological image classification using convolutional neural net-
works. In 2016 International Joint Conference on Neural Networks (IJCNN), pages
2560–2567. IEEE, 2016.

[21] Mitko Veta, Josien PW Pluim, Paul J Van Diest, and Max A Viergever. Breast cancer
histopathology image analysis: A review. IEEE Transactions on Biomedical Engineer-
ing, 61(5):1400–1411, 2014.


