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Abstract

We propose an algorithm that provides a pixel-wise classification of building fa-
cades. Building facades provide a rich environment for testing semantic segmentation
techniques. They come in a variety of styles that reflect both appearance and layout char-
acteristics. On the other hand, they exhibit a degree of stability in the arrangement of
structures across different instances. We integrate appearance and layout cues in a single
framework. The most likely label based on appearance is obtained through applying the
state-of-the-art deep convolution networks. This is further optimized through Restricted
Boltzmann Machines (RBM), applied on vertical and horizontal scanlines of facade mod-
els. Learning the probability distributions of the models via the RBMs is utilized in two
settings. Firstly, we use them in learning from pre-seen facade samples, in the traditional
training sense. Secondly, we learn from the test image at hand, in a way the allows the
transfer of visual knowledge of the scene from correctly classified areas to others. Ex-
perimentally, we are on par with the reported performance results. However, we do not
explicitly specify any hand-engineered features that are architectural scene dependent,
nor do we include any dataset specific heuristics/thresholds.

1 Introduction
Facade parsing has attracted much research in recent years [2, 5, 16]. The problem has
well known appearance challenges, such as occlusions, lighting/color variations, reflections,
changes in architectural elements state (open and closed windows and doors), and the de-
terioration in building parts. On the other hand, most facades follow a Manhattan layout
assumption, in addition to other persistent structural guidelines perceived by humans. These
include the affinity of some structures to specific areas in the scene. Also, facades are charac-
terized by the existence of repeated structures in grid-like arrangements. However, learning
the guidelines and applying them to unseen data is made very difficult by the versatile nature
of architectural designs.
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An approach to facade splitting is employing a set of shape grammar rules specified man-
ually by a human expert [15] or automatically learned [20]. Research has also been directed
towards implementing a more flexible form of architectural guidelines. These guidelines are
concerned with alignment, symmetry, similarity, co-occurrence and components layout. In
[14], Martinovic et al. make use of these architectural principles in their final classification
decision. They refine the output of a preceding pixel classification step by applying this set
of restricting principles in an ad hoc procedure. Each principle is applied in isolation and
in most part, as a matter of fulfilling a certain criterion is exceeding a manually specified
threshold. Their work has been upgraded in [16]. While, maintaining the overall frame-
work, they incorporate deformable part-based model detectors for object localization and
perform max-margin learning of the CRF parameters in grid graphs. In addition, they refine
the facade configuration through integer optimization. However, they resort once again to
the heuristic weak architectural principles for post processing such as, rejecting a balcony
hypothesis if it is not topped with a window and accepting running balconies only on spe-
cific floors of the building. In [11], Kozinski et al. specify a user-defined shape prior of grid
form, in which they embed constraints of adjacency. They categorize the boundaries between
structure pairs into 3 subtypes: straight, winding and irregular, and ones of containment in
hierarchical form. Their final model is the one that acheives the minimal number of penalties
over adjacency patterns, optimized through the Viterbi algorithm. The algorithm in [2], iter-
atively accesses the image, searching for specific structures in each iteration. Starting from
the basic assumption that all pixels are wall ones, it then tries to replace this labeling with
optimized local arrangements of window/balcony, roof/sky/chimney, and door/shop through
dynamic programming runs. In [5] every pixel is represented by a vector of image features
(such as: location, RGB values, and HOG features), in addition to contextual ones (such as:
neighbourhood statistics, and bounding box features).Each feature vector is supplied inde-
pendently to an ensemble of classifiers. It lacks the concurrency in classification of pixels of
the arrangement and hence, it lacks the global optimality in the proper sense.

In this paper, we develop a pipeline which relies on 2 deep learning techniques, namely;
Convolution Neural Network (CNN) [12] and RBM [6]. CNNs are acclaimed for achieving
state-of-the-art results on the PASCAL VOC 2012 benchmark [1]. We utilize them in the
classification module based on appearance qualities of the regions. The output is refined by
another fine-grained classification module that uses RBMs to enforce contextual constraints.
The difficulty in using context at pixel level classification to solve appearance ambiguities
has been twofold. Firstly, representing the layout in a feature space that is more compu-
tationally efficient than the raw pixel space, while being able to preserve important scene
characteristics. Secondly, the ability to assess the share of each pixel in the global layout, in
a way that allows a local decision in fine grained vision tasks. Several efforts can be found
in [19, 22]. Our use of the RBM is an attempt to tackle the aforementioned difficulties. We
utilize its generative ability to restore the true structure of the scene. The algorithm maintains
a global outlook while being able to fine-tune the final classifications at the pixel level. This
is in contrast to the norm in the literature, which only refines classifications of preliminary
whole structures. In addition, it builds its labeling on 2 models; the one based on experience
from past data and a model of the captured layout of the scene at hand. This allows flexibility
and extends the generalization ability of the trained machines.
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Figure 1: A schematic showing system modules

2 Proposed Algorithm
The input to our algorithm is a RGB-valued facade image I. The aim is to provide an in-
terpretation of the scene into meaningful architectural structures. Formally, the algorithm
receives as input a set of image pixels D = {dn}N

n=1 in the 2d space. N = r×c, where r and c
are the vertical and horizontal dimensions of the image respectively. The algorithm classifies
these data points by assigning them to a predefined set of labels L= {Lm}M

m=1, such that L
holds indices to M architectural structures. We present a deep learning pipeline that utilizes
both appearance and structural aspects of the scene. The core of our algorithm is the use
of RBMs, to enforce architectural constraints deduced from past data and then to learn the
structure of the test image at hand to allow it to make pixel labeling decisions based on the
majority of its own pixels. The RBMs cascade is initially stimulated by predictions collected
from a deep convolution network. Please refer to figure 1 for an overview of the algorithm.

2.1 Appearance cues
We have utilized the VGG-model [18] of a CNN, adapted to the task of pixel-wise classifi-
cation [13]. The main features of the architecture is relying on small filter sizes that range
from 1× 1 to 3× 3, to restrict the number of parameters to learn and prevent over-fitting.
Also, there are deconvolution and interpolation layers to restore the original image size. In
addition, lower level features and features from higher levels are combined through special-
ized skip layers and propagated ahead in the architecture. Learning the network parameters
is based on minimizing the cross-entropy between the network outcome and ground truth.

The outcome of this phase is I0 an appearance-based multinomial labeling map for the
image, obtained through a softmax operation on the CNN classification scores.

2.2 Structure cues
Inspired by the work in [7], we opt for a generative probabilistic model for learning and en-
forcing architectural guidelines. We extend the RBM-based model from recognizing whole
images to fine-grained recognition of image regions in a similar way to the Shape Boltzmann
Machine (SBM) [4] and its extended version to multi-part objects (MSBM) [3]. However,
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our utilized visible nodes are binary instead of the SBM multinomial nodes. This is to pre-
serve the original learning rule of the RBM formulation and retain its convergence properties
[8]. In the following, we present a generic formulation of the utilized RBMs, throughout this
work. The RBM consists of 2 sets of nodes; namely the visible v and hidden nodes h. The
interconnections are symmetrical and the intra-connections are not allowed. The restriction
imparts on the graphical model properties of tractability with respect to the calculated distri-
butions. The model finds a joint probability distribution for v and h that can be represented
as a Gibbs distribution of the form,

P(v,h;θ) =
1
Z

exp(−E (v,h;θ)) (1)

where, Z is the partition function

Z = ∑
v
∑
h

exp(−E (v,h;θ)) (2)

and E is the joint energy

E (v,h;θ) =−hTWv−aT v−bT h (3)

W and {a,b} are the weight tensor and the set of visible and hidden biases, respectively.
Collectively, they comprise the set of network parameters θ . During training, θ is optimized
to maximize the log-likelihood of the visible data, by minimizing the discrepancy between
this data and its reconstructed version. We use the FEPCD sampling technique introduced in
[10] to approximate the derivative of the log probability of the training data, in the stochas-
tic gradient descent process used to optimize θ . Similar to PCD [21], multiple persistent
Markov chains are maintained to approximate the model-dependent expectations of the data.
However, contrary to the PCD, there is a deterministic selection of the chains based on the
free energy of the visible vector. The authors argue that the samples with the lower en-
ergy adhere better to the model’s distribution, as they compute the likelihood gradient more
accurately. Thus, the algorithm retains only half of the chains having the lowest energies.

In all settings, vi ∈ [0,1] and h j ∈ {0,1} and the conditional distributions defined over
them are given by

p(vi = 1|h) = σ

(
ai +∑wi j

i
h j

)
(4)

p(h j = 1|v) = σ

(
b j +∑wi j

i
vi

)
(5)

where, σ (·) is the logistic function.
We use the probability pi = p(vi = 1|h) instead of sampling binary values. According to

[8], this reduces the sampling noise and boosts the learning speed. In addition, the value pi
will be regarded as the likelihood of having a certain label Lm at some pixel.

2.3 Layout validation
We have trained 2 specialized RBMs: Ry for vertical and Rx horizontal scanlines. For each
direction, the ground truth labeled image G ∈ Φ is resized to a fixed dimension (sy for the
vertical and sx for the horizontal), while leaving the other dimension as a free parameter in
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Algorithm 1 Structural Inference
Require: I0,Ry

Φ
,Rx

Φ
,B

Ry
Ψ

initialized,Rx
Ψ

initialized
for eachk ∈ {y,x} do

I0
k ← resize(I0,sk)

ΓI0
k
← binarizeScanlines(I0

k )

ΓΦ

I0
k
← reconstruct(Rk

Φ
,ΓI0

k
)

end for
T ← f ormMetaFeatures(ΓΦ

I0
y
,ΓΦ

I0
x
)

I1← predict(B,T )
for eachk ∈ {y,x} do

I1
k ← resize(I1,sk)

ΩI1
k
← binarizeScanlines(I1

k )

Ω̂I1
k
← augment(ΩI1

k
)

Rk
Ψ
← train(Rk

Ψ
,Ω̂I1

k
)

ΓΨ

I0
k
← reconstruct(Rk

Ψ
,ΓI0

k
)

end for
T ← f ormMetaFeatures(ΓΨ

I0
y
,ΓΨ

I0
x
)

I2← predict(B,T )

order to preserve the aspect ratio. We use nearest neighbour interpolation for the resizing.
The result is two transformed images Gy and Gx. Gy produces f loor (sy · (c�r)) scanlines
of length sy and Gy produces f loor (sx · (r�c)) scanlines of length sx, where r and c are the
original height and width of the image. Basically, a scanline is a vector of pixel labels. The
directional scanlines are accumulated into 2 training sets for the Ry

Φ
and Rx

Φ
RBMs.

Each scanline is binarized. This means, the qth pixel on the scanline is represented by
a one-hot mini-vector oq

L with the value 1 at its label index. This is similar to the approach
found in [23]. The mini-vectors of all pixels on a single scanline are aggregated in one flat
vector. The visible data ΩGy and ΩGx for the RBMs are the collections of these flat vectors in
each direction. As such the machine, when trained on these scanlines, learns the associations
between different labels at different aligned locations concurrently along columns and rows.

The approach of image subdivision can be found in [4]. It is normally carried out to
keep the computation burden within tolerable limits and to escape severe resizing that might
destroy the image layout. More importantly, it allows the RBM to focus on the highly stable
pixel interactions which are mostly local. In our application, we opt for the scanline subdi-
visions as they hold the essence of architectural scene global semantics. They encode cues
of structure order, neighbouring relations, equidistant repetitions, approximate location and
alignment. In addition, as the training assumes independence between scanlines, we are im-
plementing the weight sharing concept, commonly seen in CNNs, which achieves translation
invariance. Thus, the location is no longer a coordinate value (even in normalized form) but
rather a gestalt voting that emerges from the majority of pixels labels on the scanline. This
tackles the scale-space difficulties encountered in location dependent approaches and boosts
the algorithmic ability to deal with cropped images of facades. We regard our formulation
based on scanlines as the first to tackle the problem of imposing layout constraints on scenes
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(a) (b) (c)

Figure 2: Final labeling of a sample facade image (a) without dataset augmentation, (b)
with dataset augmentation. (c) The groundtruth map. It is clear that the door and chimney
structures were correctly recovered in (b)

using RBM. In [3] the quadrant subdivision is confined to cropped images of single objects
in focus ( horse, face). The added complexity of scenes has multiple implications handled by
scanlines. Severe resizing of the image in order to get the image quadrants to a size compa-
rable to our scanlines, would devastate the layout of the building and render some structures
unseen even by human eye. Generally, in context related applications, the challenge is using
the largest scope of the image while maintaining the problem in reasonable size. Our for-
mulation allows the decision at a single pixel to use knowledge from the whole span of the
image width and height, thus achieving a higher degree of globalness and within tolerable
computational burden. It encodes arrangement relations between more structures and allows
repetition patterns to be more evident. Whereas, a quadrant subdivision will probably miss
the symmetry of windows in a grid and miss encoding relations between structures inherent
to different zones (sky and shop).

In our algorithm, we have 2 sources of learning. First, the Ry
Φ

and Rx
Φ

that build the
posterior distribution from the training set, as explained. This is referred to as learning from
seen data in the ground truth. The second source is the test image itself. This is achieved by
RBMs Ry

Ψ
and Rx

Ψ
. We utilize the same machine architectures and the network parameters are

initialized in the same manner. The only difference in the training is, the sets of directional
scanlines are taken from a single layout validated test image, as will be shown. Learning from
unseen data has been possible due to the existence of highly repetitive patterns in facades.
Thus, the RBMs are able to construct the distribution upon the scanline parts that conform
with the majority, while filtering out outliers.

Inference. The algorithm is presented in 1. At test time, we perform reconstructions of
the CNN output on the trained RBMs. I0 is subjected to a resizing into sy and sx dimensions
by nearest neighbour interpolation. The resulting I0

y and I0
x images are divided into scanlines

and the scanlines are binarized, as explained for Gy and Gx. These scanlines aggregated
mini-vectors are clamped to the visible nodes of Ry

Φ
and Rx

Φ
. The reconstructions ΓΦ

I0
k

in each

direction k constitute of posteriors that reflect the visible node tendency to fire. And since
the relative position of each label with respect to the pixel is fixed, the posteriors can easily
be mapped to crisp predictions to get the multinomial maps I1

k . For the nth
k pixel, the assigned

label
d̂nk = arg

Lm∈L
max ōnk

L (6)

where ōnk
L is the reconstructed mini-vector for the pixel over all labels. I1

k (k ∈ {y,x}) are
merged into original image dimensions, resized again to fit each sk and converted to binarized
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scanlines ΩI1
y

and ΩI1
x
.

Algorithm 2 Augmentation procedure
Require: ΩI1

y
,ΩI1

x
,L

Ω̂I1
y
= {}

Ω̂I1
x
= {}

dimx← countrows(Ω2
Ix)

dimy← countcols(Ω2
Iy)

for eachLm ∈ L do
for eachk ∈ {y,x} do

S← getScanlineso f Label(ΩI1
k
,Lm)

t← f loor(dimk/‖S‖)
Ŝ← repeat(S, t)
Ω̂I1

k
← append(Ω̂I1

k
, Ŝ)

end for
end for

Adaptation. Ry
Φ

and Rx
Φ

are used to enforce architectural guidelines. However, in the
aforementioned procedure a rarely encountered facade scanline, but completely valid, is not
guaranteed to have a low energy. This is due to the fact the RBM will place the probability
mass on the frequently encountered scanlines. It will always produce the models that resem-
ble what have been seen in its training set with sub-optimal adaptability to what is currently
visualized in the image. Thus, we need an approach that increases the likelihood of certain
labeled scanlines because of their abundance in the test image, regardless of their low fre-
quency in the training ones. Hence, we train RBMs Ry

Ψ
and Rx

Ψ
on the validated test image

scanlines. This time the RBMs will place the probability mass on what is frequent in the
current image. In effect, we are extending the receptive field beyond the rows and columns
to which the pixel directly belongs and propagating true labels from one area to another.

ΩI1
k

are now augmented (see below) to form the training visible vectors Ω̂I1
k

for Ry
Ψ

and
Rx

Ψ
. After learning the parameters of the RBMs, they are applied on the original scanlines

obtained from the CNN output I0
k to produce directional posterior scores, which are then

merged. These scoring maps are interpolated bilinearly to fit them in the r and c dimensions.
To sum up, the inference is dependent upon the correlation between the hypothesis per-

ceived by appearance and the one suggested by common architectural layouts. That is to say,
if a label is found at a certain pixel in I0 and simultaneously in the set of putative structural
labels, then it has a high chance of being assigned to the pixel. Otherwise, the most likely
class will be propagated to it, based on the mass of scanlines that have a similar overall
configuration in the test image.

Merging posteriors from directional RBMs. A final per-pixel decision can be taken by
choosing the label with the maximum (maximum average) of the posteriors of both direc-
tions. However, we found a more sophisticated method based on higher-level reasoning on
the RBM results for merging directional RBM outputs that boosted accuracies. After the
training on Rk

Φ
was done, we obtained the reconstructions of the training fold on Rk

Φ
. A
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meta-feature vector was constructed per-pixel from the reconstructed posteriors in both di-
rections, such that its length is 2 ·M. The target classes are the true pixel labels obtained
from the ground truth. We train B a backpropagation Multi-Layer Perceptron (MLP) with
single hidden layer, on this data after massive sampling. At inference on the test fold, the
meta-feature per-pixel is once again constructed but this time from the reconstructions on
Rk

Ψ
and ran on B to deduce the final labeling.

ΩI1
k

augmentation. Imbalanced data is a widely recognized problem for classification
techniques [9]. It makes a minority class more prone to be misclassified, due to its rela-
tive scarcity in the training set. In our experiments, we noticed that this was highly likely
to affect small structures (such as door and chimney) when reconstructing the scanlines on
Ry

Ψ
and Rx

Ψ
(figure 2). This is due to the fact a dataset of scanlines built from a single image

would have such structures in extremely low counts. Interestingly, this did not occur when
the scanlines were tested on Ry

Φ
and Rx

Φ
, despite being minority classes with the same ratio as

in the test image. We realized that the representation power of a class is not only dependent
on the relative count of its instances in the set, but can also be attributed to the size of the
class in absolute terms. This phenomenon has been called the lack of density and its impli-
cation is explained in [17]. We believe the overfitting problem in very small training sets
aggravates the imbalance, such that the machine has limited generalization ability not only
beyond its training set, but even beyond the majority models in its training set.

We carry out an arbitrary augmentation procedure explained in algorithm 2. The proce-
dure lead to increasing the count of small classes and achieving more balanced class-to-class
ratios. However, it did not by any means accomplish priors equalization, because adding
scanlines for one class inevitably increases other classes as well. Overfitting is an issue
when learning from a single image. However, the objective in the first place is not boost-
ing the generalization ability of the image-specific RBM as it will not be applied to unseen
data but only reapplied on its training data. As such, we are exploiting the denoising ability
of the RBM to conform outlier scanlines to the majority. Learning on RBMs proceeds in
batches with an update of the set of parameters after the processing of each batch has ended.
Scanlines with minority classes need to be represented in each batch inorder to prevent them
from being filtered out as outliers and not contributing to the built conditional probability
distribution of v and h. For this reason, we need an augmentation phase such that scanlines
with minority classes are cloned and added to the training set.

3 Evaluation

We tested our proposed algorithm on the ECP-Monge dataset [20] and the CMP dataset [24].
The ECP-Monge contains 104 rectified images of facades in Hausmannian style. There are
8 structures specified in the groundtruth maps. We use the corrected ground truth [14]. The
CMP dataset is considered more challenging as it contains 378 samples with 12 structures
from various (often difficult to model) styles.

In the experiments, sy and sx were unified for all images and set to 300 and 200, respec-
tively. In all settings of RBMs, Rk

Φ
and Rk

Ψ
, the number of hidden nodes was set equal to the

number of visible ones. Also, we trained all RBMs for 50 epochs. Our formulation based on
the most stable layout representative, the scanline, allowed the RBMs to converge within this
unprecedented small number of learning epochs. For the CNN, we retrained the VGG-model
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Figure 3: Sample results- first column: Original image; second column: Groundtruth map;
third column: CNN output; fourth column: DPF-Φ output; fifth column: DPF-Ψ output.

on each dataset for 250 epochs, while maintaining the original parameters of learning rate,
momentum and weight decay of the pretrained net.

As a performance measure, we utilize the pixel accuracy. It is calculated as follows;
T P/(T P+FN). True Positives T P and False negatives FN are determined overall the set of
image pixels. We report our results based on 5-fold cross validation to ensure fair comparison
between our algorithm Deep Facade Parsing (DPF-Ψ) and related work. We present the
results in table 1.

[5] is the highest reported accuracy on the ECP-Monge dataset, to-date. It achieves
90.0% in the phase based on image features (equivalent to our appearance-based module)
and 91.4% after structural improvement. Their results are reported for the older version of
ground truth images based on 7 classes. The disregarded class is for the chimney structure.
This kind of minority classes is often a bottleneck for the algorithms. In the literature, the
lowest class accuracies were seen for doors and chimneys. Even in their own reported results,
the door was the class of lowest accuracy. Thus, one can not be sure what the true overall
accuracy will be, if the chimney structure was included as in our case. Same reasoning
applies for [11].

The results show that we are on-par with state-of-the-art algorithms in terms of accuracy.
More importantly, our algorithm highlights the benefit of context in image analysis. We
report one of the highest accuracy gains, after inclusion of layout cues, defined as A2−A1,
without the dataset tailored refining rules found in [2, 16]. In figure 3, we display results of
a selection of samples. Please, refer to the supplementary materials for the rest of
the results.

As a self-test, we examine 2 variants of our algorithm to evaluate the different aspects
proposed in its pipeline. These are:

• variant 1- Same as DFP-Ψ with the per-pixel classification obtained through maxi-
mizing the posterior based on the average of both directions to get the labeling. This
is used to assess the goodness of the MLP as a merging criterion. For the ECP-Monge
dataset the pixel accuracy was 90.87 and for the CMP dataset the figure was 67.70.
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Dataset ECP-Monge CMP
Method A1 A2 A1 A2

[24] 59.60 84.20 33.20 60.30
[16] 84.75∗ 88.02∗ - -
[2] 86.71 90.34 - -

[11] 90.10∗ 91.30∗ - -
[5] 90.80∗ 91.40∗ 66.20 68.10

DPF-Ψ 86.45 91.31 61.46 69.02

Table 1: Overall pixel accuracies based on appearance cues A1 and when combined with
layout cues A2. The references marked with ∗ are included for completeness of results and
are not suitable for direct comparison.

• variant 2- DFP-Φ which involves running the test image on Ry
Φ

and Rx
Φ

only, with-
out the adaptation phase and its complementary augmentation. The results for ECP-
Monge dataset and the CMP dataset were 90.49 and 65.54, respectively.

• variant 3- Same as DFP-Ψ but without augmenting the dataset for training on Ry
Ψ

and
Rx

Ψ
. This variant was run only in a pilot experiment on the ECP-Monge dataset on

1 testing fold. There was no need to examine the rest of the folds because the pixel
accuracy was consistently worse than I1 (result of MLP B run on Rk

Φ
outputs) yielding

an accuracy of 87.63.

4 Conclusion

We have presented a pipeline for facade parsing. It relies on the state-of-the-art techniques
of computer vision, and acheives on-par results with related research efforts. We do not in-
clude any ad hoc post-processing steps, nor do we manually specify any architecture-based
features. The pipeline is initialized with classifications from the VGG-16 convolution model
customized to semantic segmentation. The results are further improved through a probabilis-
tic shape prior captured by trained RBMs. We present a novel idea to learn from test images,
to increase the generalization ability of the algorithm. We illustrate the importance of dataset
augmentation for severely small imbalanced datasets, resulting from a single test image. Our
future work is targeted at experimenting with deeper architectures of Boltzmann machines.
In addition, we intend to adapt our pipeline to images of articulated objects. Formulations
such as ours will help boost the RBM as a powerful tool in structural modeling beyond single
object of focus.
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