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Abstract

Bilinear pooling of Convolutional Neural Network (CNN) features [22, 23], and their
compact variants [10], have been shown to be effective at fine-grained recognition, scene
categorization, texture recognition, and visual question-answering tasks among others.
The resulting representation captures second-order statistics of convolutional features in
a translationally invariant manner. In this paper we investigate various ways of normal-
izing these statistics to improve their representation power. In particular we find that
the matrix square-root normalization offers significant improvements and outperforms
alternative schemes such as the matrix logarithm normalization when combined with el-
ementwise square-root and `2 normalization. This improves the accuracy by 2-3% on a
range of fine-grained recognition datasets leading to a new state of the art.

We also investigate how the accuracy of matrix function computations effect network
training and evaluation. In particular we compare against a technique for estimating
matrix square-root gradients via solving a Lyapunov equation that is more numerically
accurate than computing gradients via a Singular Value Decomposition (SVD). We find
that while SVD gradients are numerically inaccurate the overall effect on the final accu-
racy is negligible once boundary cases are handled carefully. We present an alternative
scheme for computing gradients that is faster and yet it offers improvements over the
baseline model. Finally we show that the matrix square-root computed approximately
using a few Newton iterations is just as accurate for the classification task but allows an
order-of-magnitude faster GPU implementation compared to SVD decomposition.

1 Introduction
Convolutional Neural Networks (CNNs) trained on large-scale image classification tasks
have emerged as powerful general-purpose feature extractors in recent years. Representa-
tions using the activations of layers of such networks have been shown to be effective for
tasks ranging from object detection, semantic segmentation, texture recognition, to fine-
grained recognition of object categories. While most techniques extract activations from
the penultimate layers of the network, a different line of work has considered aggregating
higher-order statistics of CNN activations. Examples include the VLAD [1, 17], Fisher
vector [7, 29] and bilinear (second-order) pooling [5, 15, 22]. These techniques are in-
spired by classical texture representations which were build on hand-designed filter banks
(e.g., wavelets or steerable pyramids) or SIFT features [24]. Second-order aggregation of
CNN activations not only provides significant improvements over classical representations
but also is more effective than those built using first-order aggregation (e.g., sum or max) for
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tasks such as texture synthesis [11], style transfer [12], image classification tasks [7, 21, 22].
In particular the Bilinear CNN (B-CNN) [22, 23] has emerged as a state-of-the-art network
architecture for texture and fine-grained recognition.

In this paper we investigate the effect of feature normalization in detail and study its
impact on the accuracy of the B-CNN. In particular we investigate a class of matrix functions
that scale the spectrum (eigenvalues) of the covariance matrix obtained after bilinear pooling.
One such normalization is the matrix-logarithm function defined for Symmetric Positive
Definite (SPD) matrices. It maps the Riemannian manifold of SPD matrices to a Euclidean
space that preserves the geodesic distance between elements in the underlying manifold.
Empirically, the O2P approach [5] showed that this mapping results in better performance
when used with linear classifiers. A follow-up work by Ionescu et al. [15] extended the
approach using deep features and showed similar improvements for semantic segmentation.
Huang and Gool [14] recently applied this technique for image classification using second-
order features. However, computing the logarithm of a matrix and its gradient is expensive
and numerically unstable on modern GPUs. Hence, normalization using matrix functions
remains largely unexplored for training state-of-the-art networks.

The matrix-logarithm mapping applies a non-linear scaling to the eigenvalues of the ma-
trix. This is because the logarithm of a SPD matrix A with a Singular Value Decomposi-
tion (SVD) of A =UΣUT is given by log(A) =U log(Σ)UT . Here log(Σ) applies logarithm
to the diagonal elements of Σ in an elementwise manner. While elementwise square-root
compensates for "burstiness" of visual words in a bag-of-visual-words model [30], spectral
normalization is appropriate for covariance matrices since correlated features contribute to
the eigenvalues in a similar manner. Based on this observation we consider schemes that ap-
ply a power normalization to the spectrum of the matrix. For example, the matrix square-root
A1/2 =UΣ1/2UT applies elementwise square-root to the diagonal elements of Σ. Other ma-
trix powers can be defined similarly. Our experiments show that matrix-normalization offers
complementary benefits to elementwise normalization schemes. Empirically, the combina-
tion of matrix square-root and elementwise square-root works the best and leads to a 2-3%
improvement in accuracy over the baseline B-CNN approach on three fine-grained recogni-
tion datasets. Moreover, the matrix square-root can be more efficiently computed than matrix
logarithm using variants of Newton iterations on the GPU.

The gradients of the matrix functions can also be derived using the SVD. However, since
the SVD is ill-conditioned when the matrix has eigenvalues that are numerically close. Prior
work of Ionescu et al. [15] has noted this problem and suggested that double precision com-
putations were necessary for training. Fortunately, for the case of matrix square-root one can
avoid the SVD decomposition entirely and compute the gradients by solving a Lyapunov
equation. This allows us to systematically evaluate the effect of numerical precision of gra-
dients on the accuracy of the final model. In particular we find that training using Lyapunov
gradients indeed leads to more accurate models. A simpler but less accurate scheme that
ignores the matrix normalization entirely during fine-tuning also improves over the base-
line model. Finally, we propose techniques to improve the efficiency of matrix square-root
computation on GPUs. Computing the square-root via a SVD on GPUs is a bottleneck in
the network evaluation. Instead we explore variants of Newton iterations for computing the
square-root. In particular we show that few iterations of a modified Denman-Beavers iter-
ations are sufficient for classification needs. Moreover, these iterations only involve matrix
multiplications, are easily parallelizable, and are an order-of-magnitude faster than SVD-
based approach for square-root computation.
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Figure 1: Improved B-CNN architecture with a log(A) or A1/2, signed square-root, and `2 normal-
ization layers added after the bilinear pooling of CNN activations.

2 Method and related work
Our method builds on the B-CNN architecture proposed in our earlier work [22, 23]. We
review the architecture and describe the improvements based on matrix-function layers in
Section 2.1. We then describe different ways these layers can be implemented that tradeoff
numerical precision and accuracy in Section 2.2.

2.1 The B-CNN architecture
The B-CNN architecture employs bilinear pooling to aggregate the locationwise outer-product
of two features by global averaging. This results in a covariance matrix which captures the
pairwise interactions between the two features. In this work we analyze the case when the
two features are identical which results in a symmetric positive semi-definite matrix. Fol-
lowing the terminology of our earlier work [22, 23] these are symmetric B-CNNs and are
identical to the Second-Order Pooling (O2P) [5] popularized for semantic segmentation.

The network architecture is illustrated in Figure 1. Given an image a CNN is used to
extract a set of features xi across locations i= 1,2, . . . ,n. The bilinear (second-order) pooling
extracts the second-order statistics and adds a small positive value ε to the diagonal resulting
in matrix A given by:

A =
1
n

(
n

∑
i=1

xixi
T

)
+ εI (1)

Given a feature xi of d dimensions the matrix A is of size d × d. Our earlier work [22]
showed that normalization of the matrix A is critical for good performance. In particular,
elementwise signed square-root (x← sign(x)

√
|x|) and `2 normalization is applied to the

matrix A before it is plugged into linear classifiers. Both the pooling and normalization
steps are efficient and piecewise differentiable and hence the entire network can be trained
in an end-to-end manner by back-propagating the gradients of the objective function (e.g.,
cross-entropy loss for classification tasks).

Normalization using matrix functions. The improved B-CNN architecture additionally
applies a matrix function normalization to the matrix A after pooling (Figure 1). In particular
we consider the matrix logarithm log(A) originally proposed in the O2P scheme and the
matrix power function Ap for fractional positive values of 0 < p < 1. Of particular interest
is when p = 1/2 which corresponds to the matrix square-root defined as a matrix Z such
that ZZ = A. Unlike elementwise transformations, matrix-functions require computations
that depend on the entire matrix. Approaches include variants of Newton iterations or via a
Singular Value Decomposition (SVD) (described next).
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2.2 Matrix functions and their gradients
Computing matrix functions and their gradients via SVD. Ionescu et al. [15] explore
matrix back-propagation for training CNNs and using techniques for computing the deriva-
tive of matrix functions (e.g., [26]). Given matrix A with a SVD given by A =UΣUT , where
the matrix Σ = diag(σ1,σ2, . . . ,σn), the matrix function f can be written as Z = f (A) =
Ug(Σ)UT , where g is applied to the elements in the diagonal of Σ. Given the gradient of a
scalar loss L with respect to Z, the gradient of L with respect to A can be computed as:

∂L
∂A

=U

{(
KT �

(
UT ∂L

∂U

))
+

(
∂L
∂Σ

)
diag

}
UT . (2)

Here � denotes element-wise matrix multiplication. The matrix K is a skew-symmetric
matrix given by Ki, j = 1/(σi−σ j)I(i 6= j), where I(·) is the indicator function. The gradients
of L with respect to U and Σ are:

∂L
∂U

=

{
∂L
∂Z

+

(
∂L
∂Z

)T}
Ug(Σ),

∂L
∂Σ

= g′(Σ)UT ∂L
∂Z

U. (3)

Here g′(Σ) is the gradient of the g with respect to Σ. Since g is applied in an elementwise
manner the gradients can be computed easily. For example for the matrix square-root

g′(Σ) = diag
(

1
2
√

σ1
,

1
2
√

σ2
, . . . ,

1
2
√

σn

)
. (4)

Gradients of matrix-square root by solving a Lyapunov equation. Given a symmetric
PSD matrix A, with Z = A1/2, and a small change dA to the matrix A, the change dZ to the
matrix Z satisfies the equation:

A1/2dZ +dZA1/2 = dA. (5)

This can be derived by applying the product rule of derivatives to the equation ZZ = A. From
this one can derive the corresponding chain rule for the loss L as:

A1/2
(

∂L
∂A

)
+

(
∂L
∂A

)
A1/2 =

∂L
∂Z

. (6)

The above is a Lyapunov equation [25] which has a closed-form solution given by:

vec
(

∂L
∂A

)
=
(

A1/2⊗ I + I⊗A1/2
)−1

vec
(

∂L
∂Z

)
. (7)

Here⊗ is the Kronecker product and the vec(·) operator unrolls a matrix to a vector. However
the above expression can be solved more efficiently using the Bartels-Stewart algorithm [2].

Numerical stability and truncated SVD gradients. While the SVD can be used to com-
pute arbitrary matrix functions in the forward step, computing the gradients using the Equa-
tion 2 is problematic when the matrix A has eigenvalues that are close to each other. This
stems from the fact that SVD is ill-conditioned in this situation. Adding a small ε to the
diagonal of A does not solve this problem either. In practice a truncated SVD gradient where
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the matrices K and Σ are set to zero for indices corresponding to eigenvalues that falls be-
low a threshold τ works wells. However, even with the truncated SVD we found that the
gradient computation results in numerical exceptions. Simply ignoring these cases worked
well for fine-tuning when the learning rates were small but their impact on training networks
from scratch remains unclear. Lyapunov gradients on the other hand are numerically stable
because the inverse in Equation 7 depends on 1/σmin where σmin is the smallest eigenvalue
of the matrix A1/2. Moreover, they can be computed as efficiently as the SVD gradients. In
Section 3.5 we evaluate how numerical precision of gradients effects the accuracy.

Newton’s method for computing the matrix square-root. A drawback of SVD based
computations of matrix functions is that the computation on GPU is currently poorly sup-
ported and sometimes slower than CPU computations. In practice for the networks we con-
sider the time taken for the SVD is comparable to the rest of the network evaluation. For
smaller networks this step can become the bottleneck. Instead of computing the matrix
square-root accurately, one can instead run a few iterations of a Netwon’s method for root
finding to the equation F(Z) = Z2−A = 0. Higam [13] describes a number of variants and
analyzes their stability and convergence properties. One such is the Denman-Beavers itera-
tions [9]. Given Y0 = A and Z0 = I, where I is the identity matrix, the iteration is defined by

Yk+1 =
1
2
(Yk +Z−1

k ), Zk+1 =
1
2
(Zk +Y−1

k ). (8)

The matrices Yk and Zk converge quadratically to A1/2 and A−1/2 respectively. In practice
about 20 iterations are sufficient. However, these iterations are not GPU friendly either since
they require computing matrix inverses which also lack efficient GPU implementations. A
slight modification of this equation obtained by replacing the inverses using a single iteration
of Newton’s method for computing inverses [3] results in a different update rule given by:

Yk+1 =
1
2

Yk(3I−ZkYk), Zk+1 =
1
2
(3I−ZkYk)Zk. (9)

However, unlike the Denman-Beavers iterations the above iterations are only locally con-
vergent, i.e., they converge if ||A− I||2 < 1. In practice one can scale the matrix A = αA
to satisfy this condition [4]. These iterations only involve matrix multiplications and are
an order-of-magnitude faster than SVD computations on the GPU. Moreover, one can run
these iterations for a small number of iterations (even one!) to trade-off accuracy and speed.
In Section 3.5 we evaluate the effect of the accuracy of forward computation on the per-
formance of the network. The matrix logarithm can be obtained by iterative scaling and
square-root using the identity log(A) = 2k log(A1/2k

) and using a Taylor series expansion of
the matrix logarithm when the A1/2k

becomes sufficiently close to identity matrix. In this
case computing matrix logarithm is inherently slower than computing matrix square-root.

3 Experiments
We describe the datasets and our experimental setup in Section 3.1 and Section 3.2. The
accuracy of B-CNNs on three fine-grained classification datasets with various normaliza-
tion schemes are presented in Section 3.3 with non fine-tuned networks. These results show
that the matrix square-root offers complementary benefits to the elementwise normalization
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proposed in earlier work. We then show results using end-to-end fine-tuning with the nor-
malization layers in Section 3.4. We present variants of Newton iterations for computing the
matrix square-root and evaluate the impact on the accuracy in Section 3.5. We then compare
these results to prior work in Section 3.6, especially with other techniques that improve the
performance of B-CNNs using ensembles [28], by reducing the feature dimension [10, 18],
or by aggregating higher order statistics [8].

3.1 Datasets
We present experiments on the Caltech-UCSD birds [33], Stanford cars [19], and FGVC
aircrafts [27] fine-grained recognition datasets. The birds dataset provides 11,788 images
across 200 species of birds with object bounding boxes and detailed part annotations. Birds
are small, exhibit pose variations, and appear in clutter making recognition challenging. The
Stanford cars dataset consists of 196 models categories with 16,185 images in total and
provides object bounding boxes. The task is to recognize makes and models of cars, e.g.,
2012 Tesla Model S or 2012 BMW M3 coupe. The aircrafts dataset contains 10,000 images
of 100 different aircraft variants such as Boeing 737-300 and Boeing 737-400. Although
these datasets provide different levels of annotations we only use category labels in our
experiments.

3.2 Models
We experiment with B-CNNs based on the VGG-M [6] and 16-layer VGG-D [32] network.
Following our earlier work [22, 23] we resize the image to 448x448 pixels and extract the
features from relu5 and relu5_3 layers of the VGG-M and VGG-D network respectively. For
the aircraft dataset we found that a central crop of size 448x448 obtained from the image
resized to 512x512 improves the accuracy of the baseline model [22] by a few percentage
points (e.g., 84.1% → 86.9% using the B-CNN model with VGG-D network). We use this
cropping scheme for all experiments on the aircraft dataset. The bilinear pooling results in
a 512x512 dimensional representation for both the networks. This is then passed through
elementwise signed square-root normalization (x← sign(x)

√
|x|) and `2 normalization, fol-

lowed by a linear SVM or logistic regression for classification.
For improved B-CNNs we apply the matrix logarithm or the matrix square-root normal-

ization after bilinear pooling and add a small positive number to the diagonal to make the
matrix strictly positive definite, as shown in Figure 1. The maximum value of σmax ≈ 106

of the outer-product features and we find that ε = 1 is sufficient for to ensure that the matrix
is positive definite to numerical precision. Optionally, the elementwise signed square-root
normalization is applied after the matrix normalization steps. In all cases we apply `2 nor-
malization of the feature since this is just a global scaling and makes the selection of hy-
perparmeters in the classification layer consistent across models and datasets. The effect of
various normalization schemes and their combinations are shown in Table 1.

Training and evaluation. We follow same training and evaluation protocol [22, 23]
where for fine-tuning a k-way linear and softmax layer is added on top of the pre-trained
networks. This layer is initialized using logistic regression after which the entire network is
trained end-to-end using stochastic gradient descent with momentum for 50-100 epochs with
a learning rate η = 0.001. We perform left-right image flipping as data augmentation. After
fine-tuning the last layer is replaced by k one-vs-rest linear SVMs with the hyperparameter
C = 1. At test time model is evaluated on an image and its flipped copy and their predictions
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Normalization Accuracy on dataset
Network log(A) A1/2 sgnsqrt(A) Birds Cars Aircrafts

VGG-M

D 72.0 77.8 74.7
D 70.8 77.4 77.1

D 70.3 76.8 75.0
D D 72.7 81.2 81.0

D D 76.3 83.4 80.7

VGG-D

D 80.1 82.9 77.7
D 77.9 79.8 78.7

D 80.6 82.3 78.7
D D 81.1 85.1 81.4

D D 82.8 86.7 80.9
Table 1: Accuracy of B-CNNs with different normalization schemes with non fine-tuned networks.
The best results are obtained with matrix-square root followed by element-wise signed square-root
normalization. Notably the matrix square-root is better than the matrix logarithm normalization on
most datasets for both networks.

are averaged. Both test-time flipping and SVM training can be ignored for the VGG-D
networks for a negligible loss in accuracy. We report per-image accuracy on the test set
provided in the dataset.

3.3 Effect of feature normalization

1 3/4 1/2 1/22 1/23 1/24 1/25

Power

74

76

78

80
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88

A
c
c
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ra
c
y

Birds

Cars

Aircrafts

Figure 2: Accuracy vs. the exponent p.

Effect of the exponent p in the matrix
power normalization Ap. Figure 2 shows
that accuracy of non fine-tuned B-CNNs
with the VGG-D network using power nor-
malization Ap for different values of the
power p. The value p = 1 corresponds to
the baseline B-CNN accuracy [22] where
only elementwise signed square-root and `2
normalization are applied. Note the im-
proved results for aircrafts compared to [22]
due to the central cropping scheme de-
scribed earlier. The plots show that the ma-
trix square-root (p = 1/2) works the best and outperforms the baseline B-CNN accuracy by
a considerable margin.

Effect of combining various normalization schemes. Table 1 shows the accuracy of non
fine-tuned B-CNNs using various normalization schemes. The baseline model is shown
as the row with only the sgnsqrt(A) column checked. Matrix square-root or the matrix
logarithm normalization alone does not always improve over elementwise signed square-
root normalization. However, when combined, the improvements are significant suggesting
that the two normalization schemes are complementary. Overall the combination of matrix
square-root normalization is better than the matrix logarithm normalization. This is fortunate
since the matrix square-root and its gradient can be accurately computed as described in
Section 2.2.
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Normalization Accuracy on dataset
Network A1/2 sgnsqrt(A) Birds Cars Aircrafts

VGG-M D 72.0 78.1 77.8 86.5 74.7 81.3
D D 76.3 81.3 83.4 88.5 80.7 84.0

VGG-D D 80.1 84.0 82.9 90.6 77.7 86.9
D D 82.8 85.8 86.7 92.0 80.9 88.5

Table 2: For each dataset the accuracy before and after end-to-end fine-tuning of the networks are
shown on the left and right column respectively. Matrix square-root normalization provides consistent
improvements in accuracy over the baseline across all datasets.

3.4 Effect of network fine-tuning

We perform fine-tuning of the network using the matrix square-root layer in combination
with elementwise square-root layer. Table 2 shows the results with fine-tuning B-CNNs with
the VGG-M and VGG-D networks. For these experiments the gradients were computed us-
ing the Lyapunov technique described in Section 2.2. Training with SVD-based gradients
led to a slightly worse performance, details of which are described in the next section. The
matrix square-root normalization remains useful after fine-tuning and results in a 2-3% im-
provement on average across the fine-grained datasets for both networks. The improvements
are especially large for the VGG-M network.

3.5 Are exact computations necessary?

Despite the improvement it offers a drawback of the matrix square-root is that computing the
SVD is relatively slow and lacks batch-mode implementations. For the VGG-D network the
computing the SVD of a 512x512 matrix takes about 22 milliseconds on a NVIDIA Titan X
GPU, which is comparable to the rest of the network evaluation. Instead of computing the
matrix square-root accurately using SVD, one can compute it approximately using a few it-
erations of the modified Denman-Beavers iterations described in Section 2.2. Table 3 shows
that accuracy on the final classification task and time taken as a function of number of iter-
ations. As few as 5 iterations are sufficient for matching the accuracy of the SVD method
while being 5× faster. Surprisingly, even a single iteration provides non-trivial improve-
ments over the baseline model (0 iterations) and takes less than 1 millisecond to evaluate.
Although we didn’t implement it, the method can be made faster using a batch-mode version
of these iterations. With these iterative methods matrix-normalization layers are no longer
the bottleneck in network evaluation.

Forward Backward
Iterations 0 1 5 10 20 SVD LYAP SVD Faster

Birds 80.1 81.7 83.0 82.9 82.8 82.8 85.8 85.5 85.3
Cars 82.9 85.0 87.0 86.8 86.7 86.7 92.0 91.8 91.4

Aircrafts 77.7 79.5 81.3 81.1 80.9 80.9 88.5 87.8 86.8
Time 0 1ms 4ms 6ms 11ms 22ms - - -

Table 3: On the left is the effect of number of Newton iterations for computing the matrix square-root
on the speed and accuracy of the network. On the right is the accuracy obtained using various gradient
computation techniques in the backward step. The VGG-D network is used for this comparison.
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Annotation Accuracy on dataset
Method Network Train Test Birds Cars Aircrafts
B-CNN VGG-M - - 78.1 86.5 81.3
B-CNN VGG-D - - 84.0 90.6 86.9
B-CNN VGG-M + VGG-D - - 84.1 91.3 86.6

Improved B-CNN VGG-M - - 81.3 88.5 84.0
Improved B-CNN VGG-D - - 85.8 92.0 88.5

STNs [16] Inception-BN - - 84.1 - -
BoostCNN [28] B-CNN - - 86.2 92.1 88.5

Krause et al. [20] VGG-D Box - 82.0 92.6 -
PD+SWFV-CNN [34] VGG-D - - 83.6 - -

PD+FC+SWFV-CNN [34] VGG-D - - 84.5 - -
CBP [10] VGG-D - - 84.0 - -

LRBP [18] VGG-D - - 84.2 90.9 87.3
KP [8] VGG-D - - 86.2 92.4 86.9

Table 4: Comparison with the prior work. The second column shows the basic networks used for
each method, and the third and fourth columns show the extra annotations used during train and test.
Our improved B-CNN consistently outperforms the baseline B-CNN architecture [22] by a significant
margin and is comparable to the state-of-the-art.

Table 3 also shows the accuracy of fine-tuning with various gradient schemes for the
matrix square-root. The time taken for backward computations (both LYAP and SVD) are
negligible given the SVD decomposition computed in the forward step and hence are not
shown in the table. A faster scheme where the matrix square-root layer is ignored during
fine-tuning is worse, but in most cases outperforms the fine-tuned baseline B-CNN model
(Table 2). Although we found that SVD gradients are orders of magnitude less precise than
Lyapunov gradients, the loss in accuracy after fine-tuning is negligible.

Our attempts at fine-tuning the network with matrix-logarithm using SVD-based gradi-
ents were not very successful, even with double precision arithmetic. On the other hand, all
the experiments with matrix square-root were done with single precision arithmetic. This
suggests that the numerical issues are partly due to the logarithm scaling of the eigenvalues.

3.6 Comparison with prior work

Since its introduction the B-CNN architecture has been improved in a number of ways. Ta-
ble 4 compares the Improved B-CNN with those extensions along with other best performing
methods. The Compact Bilinear Pooling (CBP) [10] approach applies Tensor Sketch [31] to
approximate the second-order statistics and reduces the feature dimension by two orders
of magnitude achieving 84% accuracy on birds dataset. LRBP [18] applies low-rank ap-
proximation to the covariance matrix further reducing the computational complexity obtain-
ing 84.2% accuracy on birds. BoostCNN [28] boosts multiple B-CNNs trained at multiple
scales and achieves the best results on birds (86.2%) and aircrafts (88.5%) without requir-
ing additional annotations at training time. However, their approach is one to two orders
of magnitude slower. The recently-proposed Kernel Pooling (KP) [8] approach aggregates
higher-order statistics by iteratively applying the Tensor Sketch compression to the features
and achieves 86.2% on birds. Improved B-CNN achieves comparable results to BoostCNN
and KP for a small increase in computational cost compared to the baseline architecture.
These approaches are complementary and may be combined for added benefits.

Citation
Citation
{Jaderberg, Simonyan, Zisserman, and Kavukcuoglu} 2015

Citation
Citation
{Moghimi, Belongie, Saberian, Yang, Vasconcelos, and Li} 2016

Citation
Citation
{Krause, Jin, Yang, and Fei-Fei} 2015

Citation
Citation
{Zhang, Xiong, Zhou, Lin, and Tian} 2016

Citation
Citation
{Zhang, Xiong, Zhou, Lin, and Tian} 2016

Citation
Citation
{Gao, Beijbom, Zhang, and Darrell} 2016

Citation
Citation
{Kong and Fowlkes} 2017

Citation
Citation
{Cui, Zhou, Wang, Liu, Lin, and Belongie} 2017

Citation
Citation
{Lin, RoyChowdhury, and Maji} 2015

Citation
Citation
{Gao, Beijbom, Zhang, and Darrell} 2016

Citation
Citation
{Pham and Pagh} 2013

Citation
Citation
{Kong and Fowlkes} 2017

Citation
Citation
{Moghimi, Belongie, Saberian, Yang, Vasconcelos, and Li} 2016

Citation
Citation
{Cui, Zhou, Wang, Liu, Lin, and Belongie} 2017



10 LIN AND MAJI: IMPROVED BILINEAR POOLING WITH CNNS

4 Conclusion
We propose an improved B-CNN architecture that uses matrix-normalization layers, offers
complementary benefits to elementwise normalization layers, and leads consistent improve-
ments in accuracy over the baseline model. The matrix square-root normalization outper-
forms the matrix logarithm normalization when combined with elementwise square-root nor-
malization for most of our experiments. Moreover, the matrix square-root can be computed
efficiently on a GPU using few Newton iterations and allows accurate gradient computations
via a Lyapunov equation. Interestingly, even a single iteration provides improvements over
the baseline architecture while adding negligible cost to the forward computation. For fu-
ture work we will explore if computing the gradients by unrolling the iteration is sufficiently
accurate for training. This can be faster and would allow the subsequent layers to adapt to
the errors of the iterative method. The source code and pre-trained models will be made
available on the project page: http://vis-www.cs.umass.edu/bcnn.
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[1] R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD: CNN ar-

chitecture for weakly supervised place recognition. In Computer Vision and Pattern
Recognition (CVPR), 2016.

[2] R. H. Bartels and G. Stewart. Solution of the matrix equation AX+XB=C. Communi-
cations of the ACM, 15(9):820–826, 1972.

[3] A. Ben-Israel. An iterative method for computing the generalized inverse of an arbitrary
matrix. Mathematics of Computation, pages 452–455, 1965.

[4] A. Ben-Israel. A note on an iterative method for generalized inversion of matrices.
Mathematics of Computation, 20(95):439–440, 1966.

[5] J. Carreira, R. Caseiro, J. Batista, and C. Sminchisescu. Semantic segmentation with
second-order pooling. In European Conference on Computer Vision (ECCV), 2012.

[6] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the
details: Delving deep into convolutional nets. In British Machine Vision Conference
(BMVC), 2014.

[7] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for texture recognition and
segmentation. In Computer Vision and Pattern Recognition (CVPR), 2015.

[8] Y. Cui, F. Zhou, J. Wang, X. Liu, Y. Lin, and S. Belongie. Kernel pooling for convolu-
tional neural networks. In Computer Vision and Pattern Recognition (CVPR), 2017.

[9] E. D. Denman and A. N. Beavers. The matrix sign function and computations in sys-
tems. Applied mathematics and Computation, 2(1):63–94, 1976.

http://vis-www.cs.umass.edu/bcnn


LIN AND MAJI: IMPROVED BILINEAR POOLING WITH CNNS 11

[10] Y. Gao, O. Beijbom, N. Zhang, and T. Darrell. Compact bilinear pooling. In Computer
Vision and Pattern Recognition (CVPR), 2016.

[11] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis and the controlled gen-
eration of natural stimuli using convolutional neural networks. In Advances in Neural
Information Processing Systems, 2015.

[12] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using convolutional
neural networks. In Computer Vision and Pattern Recognition (CVPR), 2016.

[13] N. J. Higham. Stable iterations for the matrix square root. Numerical Algorithms, 15
(2):227–242, 1997.

[14] Z. Huang and L. J. Van Gool. A riemannian network for spd matrix learning. In
Association for the Advancement of Artificial Intelligence (AAAI), 2017.

[15] C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix backpropagation for deep net-
works with structured layers. In International Conference on Computer Vision (ICCV),
2015.

[16] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer
networks. In Advances in Neural Information Processing Systems, 2015.

[17] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a
compact image representation. In Computer Vision and Pattern Recognition (CVPR),
2010.

[18] S. Kong and C. C. Fowlkes. Low-rank bilinear pooling for fine-grained classification.
In Computer Vision and Pattern Recognition (CVPR), 2017.

[19] J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3d object representations for fine-grained
categorization. In 3D Representation and Recognition Workshop, at ICCV, 2013.

[20] J. Krause, H. Jin, J. Yang, and L. Fei-Fei. Fine-grained recognition without part anno-
tations. In Computer Vision and Pattern Recognition (CVPR), 2015.

[21] T.-Y. Lin and S. Maji. Visualizing and understanding deep texture representations. In
Computer Vision and Pattern Recognition (CVPR), 2016.

[22] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN Models for Fine-grained
Visual Recognition. In International Conference on Computer Vision (ICCV), 2015.

[23] T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear Convolutional Neural Networks for
Fine-grained Visual Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017.

[24] D. G. Lowe. Object recognition from local scale-invariant features. In International
Conference on Computer Vision (ICCV), 1999.

[25] A. M. Lyapunov. The general problem of the stability of motion. International Journal
of Control, 55(3):531–534, 1992.

[26] J. R. Magnus and H. Neudecker. Matrix differential calculus with applications in statis-
tics and econometrics. Wiley series in probability and mathematical statistics, 1988.



12 LIN AND MAJI: IMPROVED BILINEAR POOLING WITH CNNS

[27] S. Maji, E. Rahtu, J. Kannala, M. Blaschko, and A. Vedaldi. Fine-grained visual clas-
sification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[28] M. Moghimi, S. Belongie, M. Saberian, J. Yang, N. Vasconcelos, and L.-J. Li. Boosted
convolutional neural networks. In British Machine Vision Conference (BMVC), 2016.

[29] F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies for image catego-
rization. In Computer Vision and Pattern Recognition (CVPR), 2007.

[30] F. Perronnin, J. Sánchez, and T. Mensink. Improving the Fisher kernel for large-scale
image classification. In European Conference on Computer Vision (ECCV), 2010.

[31] N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature maps.
In International conference on Knowledge discovery and data mining. ACM, 2013.

[32] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations (ICLR),
2015.

[33] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD
Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, CalTech, 2011.

[34] X. Zhang, H. Xiong, W. Zhou, W. Lin, and Q. Tian. Picking deep filter responses for
fine-grained image recognition. In Computer Vision and Pattern Recognition (CVPR),
2016.


