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Abstract

In this paper, we present a method which combines the flexibility of the neural al-
gorithm of artistic style with the speed of fast style transfer networks to allow real-time
stylization using any content/style image pair. We build upon recent work leveraging
conditional instance normalization for multi-style transfer networks by learning to pre-
dict the conditional instance normalization parameters directly from a style image. The
model is successfully trained on a corpus of roughly 80,000 paintings and is able to
generalize to paintings previously unobserved. We demonstrate that the learned embed-
ding space is smooth and contains a rich structure and organizes semantic information
associated with paintings in an entirely unsupervised manner.

1 Introduction

Elmyr de Hory gained world-wide fame by forging thousands of pieces of artwork and selling
them to art dealers and museums [13]. The forger’s skill is a testament to the human talent
and intelligence required to reproduce the artistic details of a diverse set of paintings. In
computer vision, much work has been invested in teaching computers to likewise capture the
artistic style of a painting with the goal of conferring this style in arbitrary photographs in a
convincing manner.

Early work in this effort in computer vision arose out of visual texture synthesis. Such
work focused on building non-parametric techniques for “growing” visual textures one pixel
[5, 27] or one patch [4, 17] at a time. Interestingly, Efros et al. (2001) [4] demonstrated
that one may transfer a texture to an arbitrary photograph to confer it with the stylism of a
drawing. Likewise, Hertzmann et al. (2001) [11] demonstrated a non-parametric technique
for imbuing an arbitrary filter to an image based on pairs of unfiltered and filtered images.

c© 2017. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Irving} 1969

Citation
Citation
{Efros and Leung} 1999

Citation
Citation
{Wei and Levoy} 2000

Citation
Citation
{Efros and Freeman} 2001

Citation
Citation
{Liang, Liu, Xu, Guo, and Shum} 2001

Citation
Citation
{Efros and Freeman} 2001

Citation
Citation
{Hertzmann, Jacobs, Oliver, Curless, and Salesin} 2001



2 GHIASI ET AL.: REAL-TIME ARBITRARY NEURAL ARTISTIC STYLIZATION NETWORK

Figure 1: Stylizations produced by our network trained on a large corpus of paintings and textures.
The left-most column shows four content images. Left: Stylizations from paintings in training set on
paintings (4 left columns) and textures (4 right columns). Right: Stylizations from paintings never
previously observed by our network.

In parallel to non-parametric approaches, a second line of research focused on building
parametric models of visual textures constrained to match the marginal spatial statistics of
visual patterns [15]. Early models focused on matching the marginal statistics of multi-scale
linear filter banks [6, 21]. In recent years, spatial image statistics gleaned from intermediate
features of state-of-the-art image classifiers [23] proved superior for capturing visual textures
[8]. Pairing a secondary constraint to preserve the content of an image – as measured by the
higher level layers of the same image classification network – extended this idea to artistic
style transfer [9] (see also [10]).

Optimizing an image or photograph to obey these constraints is computationally ex-
pensive and contains no learned representation for artistic style. Several research groups
addressed this problem by building a secondary network, i.e., style transfer network, to ex-
plicitly learn the transformation from a photograph a particular painting style [14, 16, 25].
Although this method confers computational speed, much flexibility is lost: a single style
transfer network is learned for a single painting style and a separate style transfer network
must be built and trained for each new painting style.

Most crucially, by partitioning the style transfer problem customized for a specific style
of painting, these methods avoid the critical ability to learn a shared representation across
paintings. Recent work by Dumoulin et al. [3] demonstrated that the manipulation of the nor-
malization parameters was sufficient to train a single style transfer network across 32 varied
painting styles. Such a network distilled the artistic style into a roughly 3000 dimensional
space that is regular enough to permit smooth interpolation between these painting styles.
Despite the promise, this model can cover only a limited number of styles and cannot gener-
alize well to an unseen style. In this work, we extend these ideas further by building a style
transfer network trained on about 80,000 painting and 6,000 visual textures. We demonstrate
that this network can generalize to capture and transfer the artistic style of paintings never
previously observed by the system (see Figure 1). Our contributions in this paper include:

1. Introduce a new algorithm for fast, arbitrary artistic style transfer trained on 80,000
paintings that can operate in real time on never previously observed paintings.

2. Represent all painting styles in a compact embedding space that captures features of
the semantics of paintings.

3. Demonstrate that training with a large number of paintings uniquely affords the model
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Figure 2: Diagram of model architecture. The style prediction network P(·) predicts an embedding
vector~S from an input style image, which supplies a set of normalization constants for the style transfer
network. The style transfer network transforms the photograph into a stylized representation. The
content and style losses [9] are derived from the distance in representational space of the VGG image
classification network [23]. The style transfer network largely follows [3] and the style prediction
network largely follows the Inception-v3 architecture [24].

the ability to predict styles never previously observed.

4. Embedding space permits novel exploration of artistic range of artist.

2 Methods
Artistic style transfer may be defined as creating a stylized image x from a content image c
and a style image s. Typically, the content image c is a photograph and the style image s is
a painting. A neural algorithm of artistic style [9] posits the content and style of an image
may be defined as follows:

• Two images are similar in content if their high-level features as extracted by an image
recognition system are close in Euclidean distance.

• Two images are similar in style if their low-level features as extracted by an image
recognition system share the same spatial statistics.

The first definition is motivated by the observation that higher level features of pretrained
image classification systems are tuned to semantic information in an image [14, 19, 28]. The
second definition is motivated by the hypothesis that a painting style may be regarded as
a visual texture [4, 9, 11]. A rich literature suggests that repeated motifs representative of
a visual texture may be characterized by lower-order spatial statistics [6, 15, 21]. Images
with identical lower-order spatial statistics appear perceptually identical and capture a visual
texture [6, 8, 21, 26]. Assuming that a visual texture is spatially homogeneous implies
that the lower-order spatial statistics may be represented by a Gram matrix expressing the
spatially-averaged correlations across filters within a given layer’s representation [6, 8, 21].

The complete optimization objective for style transfer may be expressed as

min
x
Lc(x,c)+λsLs(x,s) (1)
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where Lc(x,c) and Ls(x,s) are the content and style losses, respectively and λs is a Lagrange
multiplier weighting the relative strength of the style loss. We associate lower-level and
higher-level features as the activations within a given set of lower layers S and higher layers
C in an image classification network. The content and style losses are defined as

Ls(x,s) = ∑
i∈S

1
ni
|| G[ fi(x)]−G[ fi(s)] ||2F (2)

Lc(x,c) = ∑
j∈C

1
n j
|| f j(x)− f j(c) ||22 (3)

where fl(x) are the network activations at layer l, nl is the total number of units at layer l
and G[ fl(x)] is the Gram matrix associated with the layer l activations. The Gram matrix is
a square, symmetric matrix measuring the spatially averaged correlation structure across the
filters within a layer’s activations.

Early work focused on iteratively updating an image to synthesize a visual texture [6,
8, 21] or transfer an artistic style to an image [9]. This optimization procedure is slow and
precludes any opportunity to learn a representation of a painting style. Subsequent work
introduced a second network, a style transfer network T (·), to learn a transformation from
the content image c to its artistically rendered version x̂ (i.e., x̂ = T (c)) [14, 16, 26]. The
style transfer network is a convolutional neural network formulated in the structure of an
encoder/decoder [14, 26]. The training objective is the combination of style loss and con-
tent loss obtained by replacing x in Eq. 1 with the network output T (c). The parameters
of the style transfer network are trained by minimizing this objective using a corpus of
photographic images as content. The resulting network may artistically render an image
dramatically faster, but a separate network must be learned for each painting style.

Training a new network for each painting is wasteful because painting styles share com-
mon visual textures, color palettes and semantics for parsing the scene of an image. Building
a style transfer network that shares its representation across many paintings would provide a
rich vocabulary for representing any painting. A simple trick recognized in [3] is to build a
style transfer network as a typical encoder/decoder architecture but specialize the normaliza-
tion parameters specific to each painting style. This procedure, termed conditional instance
normalization, proposes normalizing each unit’s activation z as

z̃ = γs

(
z−µ

σ

)
+βs (4)

where µ and σ are the mean and standard deviation across the spatial axes in an activation
map [26]. γs and βs constitute a linear transformation that specify the learned mean (βs)
and learned standard deviation (γs) of the unit. This linear transformation is unique to each
painting style s. In particular, the concatenation ~S = {γs,βs} constitutes a roughly 3000-d
embedding vector representing the artistic style of a painting. We denote this style transfer
network as T (·,~S). The set of all {γs,βs} across N = 32 paintings constitute 0.2% of the
network parameters. Dumoulin et al. [3] showed that such a network provides a fast styliza-
tion of artistic styles and the embedding space is rich and smooth enough to allow users to
combine the painting styles by interpolating the learned embedding vectors of 32 styles.

Although an important step forward, this “N-style network" is still limited compared to
the original optimization-based technique [9] because the network is limited to only work
on the styles explicitly trained on. The goal of this work is to extend this model to (1) train
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on N � 32 styles and (2) perform stylizations for unseen painting styles never previously
observed. The latter goal is especially important because the degree to which the network
generalizes to unseen painting styles measures the degree to which the network (and embed-
ding space) represents the true breadth and diversity of all painting styles.

In this work, we propose a simple extension in the form of a style prediction network
P(·) that takes as input an arbitrary style image s and predicts the embedding vector ~S of
normalization constants, as illustrated in Figure 2. The crucial advantage of this approach
is that the model can generalize to an unseen style image by predicting its proper style em-
bedding at test time. We employ a pretrained Inception-v3 architecture [24] and compute
the mean across each activation channel of the Mixed-6e layer which returns a feature vector
with the dimension of 768. Then we apply two fully connected layers on top of it to predict
the final embedding ~S. The first fully connected layer is purposefully constructed to contain
100 units which is substantially smaller than the dimensionality of ~S in order to compress
the representation. We find it sufficient to jointly train the style prediction network P(·) and
style transfer network T (·) on a large corpus of photographs and paintings.

A parallel work has proposed another method for fast, arbitrary style transfer in real-
time using deep networks [12]. Briefly, Huang et al (2017) employ the same transformation
(Equation 4) to normalize activation channels, however they calculate γs and βs as the mean
and standard deviation across the spatial axes of an encoder network applied to a style image.
Although the style transformation is simpler, it provides a fixed heuristic mapping from
style image to normalization parameters, whereas our method learns the mapping from the
style image to style parameters directly. Our experimental results indicate that the increased
flexibility achieves better objective values in the optimization.

3 Results
We train the style prediction network N(·) and style transfer network T (·) on the ImageNet
dataset as a corpus of training content images and the Kaggle Painter By Numbers (PBN)
dataset1, consisting of 79,433 labeled paintings across many genres, as a corpus of training
style images. Additionally, we train the model when Describable Textures Dataset (DTD)
is used as the corpus of training style images. This dataset consists of 5,640 images labeled
across 47 categories [2]. In both cases, we agument the training style images. We randomly
flip, rescale, crop the images and change the hue and contrast of them. We present our results
on both training style dataset.

3.1 Trained network predicts arbitrary painting and texture styles.

Figure 1 (left) shows stylizations from the network trained on the DTD and the PBN datasets.
The figure highlights a number of stylizations across a few photographs. We note that the
networks were trained jointly and unlike previous work [3, 14], it was unnecessary to select
a unique Lagrange multiplier λs for each painting style. That is, a single weighting of style
loss suffices to produce reasonable results across all painting styles and textures.

Importantly, we employed the trained networks to predict a stylization for paintings and
textures never previously observed by the network (Figure 1, right). Qualitatively, the artistic
stylizations appear to be indistinguishable from stylizations produced by the network on

1 https://www.kaggle.com/c/painter-by-numbers
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Figure 3: Generalization to unobserved painting styles. A. Distribution of style and content loss for
stylization using observed and unobserved paintings from PBN training set. B. Comparison of style
and content loss between proposed method, direct optimization [9] (blue) and AdaIN [12] (yellow).
C. Sample images demonstrating stylization applied between proposed method and AdaIN [12] for
selected points in panel B.

actual paintings and textures the network was trained against. We took this as an encouraging
sign that the network learned a general method for artistic stylization that may be applied for
arbitrary paintings and textures. In the following sections we quantify this behavior and
measure the limits of this generalization.

3.2 Generalization to unobserved paintings.

Figure 1 indicates that the model is able to predict stylizations for paintings and textures
never previously observed that are qualitatively indistinguishable from the stylizations on
trained paintings and textures. In order to quantify this observation, we train a model on
the PBN dataset and calculate the distribution of style and content losses across 2 pho-
tographs for 1024 observed painting styles (Figure 3A, black) and 1024 unobserved paint-
ing styles (Figure 3A, blue). The distribution of losses for observed styles (style: mean
= 2.08e4± 2.50e4; content: mean = 8.92e4± 3.13e4) is largely similar to the distribution
across unobserved styles (style: mean = 1.95e4±3.73e4; content: mean = 8.94e4±3.55e4).
This indicates that the method performs stylizations on observed paintings with nearly equal
fidelity as measured by the model objectives for unobserved styles. Importantly, if we train
the model on a distinct but rich visual textures dataset (DTD) and test the stylizations on
unobserved paintings from PBN, we find that the model produces similar artistic stylizations
both quantitatively (style: mean = 2.67e4± 6.49e4; content: mean = 8.76e4± 3.55e4) and
qualitatively (in terms of visual inspection). Due to space constraints, we provide detailed
analysis in the supplementary material.

We next asked how well the learned networks perform on unobserved painting styles
when compared to the original optimization-based method [9]. Figure 3B plots the content
and style loss objectives for our proposed method (x-axis) and [9] (blue points). Note that
even though [9] directly optimizes for these two objectives, the proposed method obtains
content and style losses that are comparable (style: 1.95e4 vs 1.12e4; content: 8.94e4 vs
9.09e4). These results indicate that the learned representation is able to achieve an objective
comparable to one obtained by direct optimization on the image itself.

We additionally compared our proposed method against a parallel work to perform fast,
arbitrary stylization termed AdaIN [12]. We found that our proposed method achieved lower
content and style loss. Specifically, (style: 1.95e4 vs 2.56e4; content: 8.94e4 vs 12.3e4). In

Citation
Citation
{Gatys, Ecker, and Bethge} 2015{}

Citation
Citation
{Huang and Belongie} 2017

Citation
Citation
{Huang and Belongie} 2017

Citation
Citation
{Gatys, Ecker, and Bethge} 2015{}

Citation
Citation
{Gatys, Ecker, and Bethge} 2015{}

Citation
Citation
{Gatys, Ecker, and Bethge} 2015{}

Citation
Citation
{Huang and Belongie} 2017



GHIASI ET AL.: REAL-TIME ARBITRARY NEURAL ARTISTIC STYLIZATION NETWORK 7

addition, paired t-test showed that these differences are statistically significant (style: p-value
of 1.9× 10−9 with t-statistic of −6.04; content: p-value of 0.0 with t-statistic of −91.9),
indicating that our proposed model achieved consistently better dual objectives (Figure 3B,
yellow points). See Figure 3C for a comparison of each method.

Figure 4: Ability to generalize vs.
proximity to training examples

Figure 4 shows how the generalization ability of the
model (measured in terms of style loss) is related to the
proximity to training examples. Specifically, we plot style
loss on unobserved paintings versus the minimum L2 dis-
tance between the Gram matrix of unobserved painting
and the set of all Gram matrices in the training dataset
of paintings. The plot shows clear positive correlation
(r2 = 0.9), which suggests that our model achieves lower
style loss when the unobserved image is similar to some
of the training examples in terms of the Gram matrix.
More discussion of this figure is found in the supplemen-
tary material.

3.3 Scaling to large numbers of paintings is critical for generalization.

A critical question we next asked was what endows these networks with the ability to gen-
eralize to paintings not previously observed. We had not observed this ability to generalize
in previous work [3]. A simple hypothesis is that the generalization is largely due to the fact
that the model is trained with a far larger number of paintings than previously attempted. To
test this hypothesis, we trained style transfer and style prediction networks with increasing
numbers of example painting styles without data augmentation. Figure 5A reports the distri-
bution of content and style loss on unobserved paintings for increasing numbers of paintings.

First, we asked whether the model is better able to stylize photographs based on paintings
in the training set by dint of having trained on larger numbers of paintings. Comparing left-
most and right-most points of the dashed curves in Figure 5A for the content and style loss
indicate no significant difference. Hence, the quality of the stylizations for paintings in the
training set do not improve with increasing numbers of paintings.

We next examined how well the model is able to generalize when trained on increasing
numbers of painting styles. Although the content loss is largely preserved in all networks,
the distribution of style losses is notably higher for unobserved painting styles and this distri-
bution does not asymptote until roughly 16,000 paintings. Importantly, after roughly 16,000
paintings the distribution of content and style loss roughly match the content and style loss
for the trained painting styles. Figure 5B shows three pairings of content and style im-
ages that are unobserved in the training data set and the resulting stylization as the model is
trained on increasing number of paintings (Figure 5C). Training on a small number of paint-
ings produces poor generalization whereas training on a large number of paintings produces
reasonable stylizations on par with a model explicitly trained on this painting style.

3.4 Embedding space captures semantic structure of styles.

The style transfer model represents all paintings and textures in a style embedding vector ~S
that is 2758 dimensional. The style prediction network predicts ~S from a lower dimensional
representation (i.e., bottleneck) containing only 100 dimensions.
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Figure 5: Training on a large corpus of paintings is critical for generalization. A. Distribution of
style and content loss for stylizations applied to unseen painting styles for proposed method trained on
increasing numbers of painting styles. Solid line indicates median with box showing ±25% quartiles
and whiskers indicating 10% and 90% of the cumulative distributions. Dashed line and gray region
indicate the mean and range of the corresponding losses for training images. Three sample pairs of
content and style images (B) and the resulting stylization with the proposed method as the method
is trained on increasing numbers of paintings (top number). For comparison, final column in (B)
highlights stylizations for a model trained explicitly on the these styles.

Given the compressed representation for all artistic and texture styles, one might suspect
that the network would automatically organize the space of artistic styles in a perceptually
salient manner. Furthermore, the degree to which this unsupervised representation of artistic
style matches our semantic categorization of paintings.

We explore this question by qualitatively examining the low dimensional representation
for style internal to the style prediction network. A 100 dimensional space is too large to
visualize, thus we employ the t-SNE dimensional reduction technique to reduce the repre-
sentation to two dimensions [18]. Note that t-SNE will necessarily distort the representation
significantly in order compress the representation to small dimensionality, thus we restrict
our analysis to qualitative description.

Figure 6A (left) shows a two-dimensional t-SNE representation on a subset of 800 tex-
tures across 10 human-labeled categories. One may identify that regions of the embedding
space cluster around perceptually similar visual textures: the bottom-right contains a pre-
ponderance of waffles; the middle contains many checkerboard patterns; top-center contains
many zebra-like patterns. Figure 6B (left) shows the same representation for a subset of 3768
paintings across 20 artists. Similar clustering behavior may be observed across colors and
spatial structure as well.

The structure of the low dimensional representation does not just contain visual similar-
ity but also reflect semantic similarity. To highlight this aspect, we reproduce the t-SNE plot
but replace the individual images with a human label (color coded). For the visual texture
embedding (Figure 6A) we display a metadata label associated with each human-described
texture. For the painting embedding (Figure 6B) we display the name of the artist for each
painting. Interestingly, we find that resides a region of the low-dimensional space that con-

Citation
Citation
{Maaten and Hinton} 2008



GHIASI ET AL.: REAL-TIME ARBITRARY NEURAL ARTISTIC STYLIZATION NETWORK 9

Describable Textures Dataset Painter by Numbers

A B

Figure 6: Structure of a low-dimensional representation of the embedding space. A: Two-dimensional
representation using t-SNE for 800 textures [2] across 10 human-labeled categories. Right is the same
as previous but texture replaced with a human annotated label. B: Same as previous but with Painting
by Numbers dataset across for 3768 paintings across 20 labeled artists. Note the zoom-in highlighting
a localized region of embedding space representing Monet paintings. Please zoom-in for details.

tains a large fraction of Impressionist paintings by Claude Monet (Figure 6B, magnified in
inset). These results suggest that the style prediction network has learned a representation
for artistic styles that is largely organized based on our perception of visual and semantic
similarity without any explicit supervision.

3.5 The structure of the embedding space permits novel exploration.
To explore the embedding structure further, we examined whether we can generate reason-
able stylizations by varying local style changes for a specific painting style. In detail, we
calculate the average embedding of the paintings from a specific artist and vary the em-
bedding vector along along the two principal components of the cluster. Figure 7 shows
stylizations from these embedding variations in a 5x5 grid, together with actual paintings of
the artist whose embeddings are nearby the grid. The stylizations from the grid captures two
axis of style variations and correspond well to the neighboring embeddings of actual paint-
ings. The results suggest that the model might capture a local manifold from an individual
artist or painting style.

Although we trained the style prediction network on painting images, we find that em-
bedding representation is extremely flexible. In particular, supplying the network with a con-
tent image (i.e. photograph) produces an embedding that acts as the identity tranformation.
Figure 8 highlights the identity transformation on a given content image. Importantly, we
can now interpolate between the identity stylization and arbitrary (in this case, unobserved)
painting in order to effectively dial in the weight of the painting style.

4 Conclusions
We have presented a new method for performing fast, arbitrary artistic style transfer on
images. This model is trained at a large scale and generalizes to perform stylizations based
on paintings never previously observed. Importantly, we demonstrate that increasing the
corpus of trained painting style confers the system the ability to generalize to unobserved
painting styles. We demonstrate that the ability to generalize is largely predictable based on
the proximity of the unobserved style to styles trained on by the model.
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Figure 7: Exploring the artistic range of an artist using the embedding representation. Calculated two-
dimensional principal components for a given artist and plotted paintings from artist in this space. The
principal component space is graphically depicted by the artistic stylizations rendered on a photograph
of the Golden Gate Bridge. The center rendering is the mean and each axis spans ±4 standard devi-
ations in along each axis. Each axis tick mark indicates 2 standard deviations. Left: Paintings and
principal components of Janos Mattis-Teutsch (1884-1960). Right: Paintings and principal compo-
nents of Fernand Leger (1881-1955). Please zoom in on electronic version for details.

Figure 8: Linear interpolation between identity transformation and unobserved painting. Note that the
identity transformation is performed by feeding in the content image as the style image.

We find that the model architecture provides a low dimensional embedding space of
normalization constants that captures many semantic properties of paintings. We explore
this space by demonstrating a low dimensional space that captures the artistic range and
vocabulary of a given artist. In addition, we introduce a new form of interpolation that
allows a user to arbitrarily to dial in the strength of an artistic stylization.

This work offers several directions for future exploration. In particular, we observe that
the embedding representation for paintings only captures a portion of the semantic informa-
tion available for a painting. One might leverage metadata of paintings in order to refine the
embedding representation through a secondary embedding loss [7, 20]. Another direction
is to improve the visual quality of the artistic stylization through complementary methods
that preserve the color of the original photograph or restrict the stylization to a spatial region
of the image [10]. In addition, in a real time video, one could train the network to enforce
temporal consistency between frames by appending additional loss functions [22].

Aside from providing another tool for manipulating photographs, artistic style transfer
offers several applications and opportunities. Much work in robotics has focused on train-
ing models in simulated environments with the goal of applying this training in real world
environments. Improved stylization techniques may provide an opportunity to improve gen-
eralization to real-world domains where data is limited [1]. Furthermore, by building models
of paintings with low dimensional representation for painting style, we hope these represen-
tation might offer some insights into the complex statistical dependencies in paintings if not
images in general to improve our understanding of the structure of natural image statistics.
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