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Abstract

Object Transfiguration generates diverse novel images by replacing an object in the
given image with particular objects from exemplar images. It offers fine-grained con-
trols of image generation, and can perform tasks like “put exactly those eyeglasses from
image A onto the nose of the person in image B”. However, object transfiguration often
requires disentanglement of objects from backgrounds in feature space, which is chal-
lenging and previously requires learning from paired training data: two images sharing
the same background but with different objects. In this work, we propose a deterministic
generative model that learns disentangled feature subspaces by adversarial training. The
training data are two unpaired sets of images: a positive set containing images that have
some kind of object, and a negative set being the opposite. The model encodes an image
into two complement features: one for the object, and the other for the background. The
object and background features from a “positive” parent and a “negative” parent, can be
recombined to produce four children, of which two are exact reproductions, and the other
two are crossbreeds. Minimizing the adversarial loss between crossbreeds and parents
will ensure the crossbreeds inherit the specific objects of parents. On the other hand,
minimizing the reconstruction loss between reproductions and parents can ensure the
completeness of the features. Overall, the object and background features are complete
and disentangled representations of images. Moreover, the object features are found to
constitute a multidimensional attribute subspace. Experiments on CelebA and Multi-PIE
datasets validate the effectiveness of the proposed model on real world data, for gen-
erating images with specified eyeglasses, smiling, hair styles, and lighting conditions.
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It may be distributed unchanged freely in print or electronic forms.
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(a) Object Removal (b) Object Transplanting
Figure 1: Components and working mechanism of GeneGAN. (a) Encoder of GeneGAN
decomposes an image to the background feature A and the object feature u. The decoder can
reconstruct an image without the object (a non-smiling face), from background feature A and
the zero object feature ε . (b) Decomposed object feature can be used to transplant the object
to another image. When “smiling” feature u and background feature B are fed to a decoder,
the generated image Bu would have the same level and style of smiling as Au. The outputs
of Encoder and inputs of Decoder in the second row are flipped respectively for clarity of
presentation.

1 Introduction

Object transfiguration is a type of conditional image generation. It first decomposes an image
into an object part and a background part. The object can be modified before recombination
with the unchanged background to generate a novel image. Object transfiguration can pro-
duce images of desired attributes and has found applications in image editing [1, 2, 3, 4, 5, 6],
and image synthesizing [7, 8, 9]. Depending on the task, the object can be physical objects
like eyeglasses, or more abstract concepts like facial expressions. The generated images
would then be answers to questions like “what if her eyeglasses is on my nose?” or “what if
I smile like her?”

Under the Linear Feature Space conjecture [10] for features extracted by Deep Neural
Networks, we may achieve complex object transfiguration tasks like removal and transplant-
ing of objects, by linear operations on the feature vectors. The images generated from the
modified feature vectors can still be natural-looking and have negligible artifacts. In fact,
previous works [5, 11] have shown that making a face in an image smile, is as simple as
addition with an vector in feature space:

smiling face = φ
−1(φ(non-smiling face)+vsmiling), (1)

where φ is a mapping from images to features, and the transform vector vsmiling can be
computed as the difference between cluster centers of features of smiling faces and non-
smiling faces.

However, there are many styles and levels of smiling. For example, some kinds of smiling
do not expose teeth, and some are more manifested in eyes than in mouths. Hence repre-
senting smiling by a single transform vector will severely limit the diversity of smiling in
generated images. To address this diversity issue, the Visual Analogy-Making [12] method
proposes to employ Object Transfiguration for image generation. A pair of reference images,
for example two images where the same person smiles in one and not in the other, is used to
to specify the object and consequently the transform vector. Though the method significantly
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increases the diversity of generated images, such paired data are hard to acquire except in
controlled environments.

Yet another approach to Object Transfiguration is the recently proposed GAN with cyclic
loss approach, which exploits Dual Learning [13, 14, 15, 16] to map between the source im-
ages (non-smiling faces) and the target images (smiling faces). Nevertheless, Dual Learning
relies on the invertibility of the mapping for the cyclic loss to work. When the intrinsic di-
mensions of the source and target domains are not the same, for example when the source
domain does not have the object and the target domain has it, the cyclic loss cannot be ap-
plied.

In this work, we propose a model that can generate an object feature vector from a single
image. The object feature can then be transplanted to other images to generate novel images
with that particular object. Our model is made up of two parts: an Encoder that decomposes
an image to a background feature part and an object feature part, and a Decoder that can
combine a background feature and an object feature to produce an image. Figure 1 illus-
trates typical usage patterns of the proposed model: object removal and object transplanting,
which are both done by some wiring of Decoders and Encoders. All instances of Decoders
and Encoders share parameters respectively. Direct chaining of the Encoder and Decoder
is effectively an autoencoder [17]. Unlike previous works that require class labels to en-
sure disentanglement of the two spaces [12, 18, 19, 20], we do not assume that any of the
two spaces have additional fine-grained labels, but relies on preservation of information and
adversarial training to achieve the disentanglement.

Moreover, object features produced by the Decoder are found to constitute an attribute
vector space: the non-presence of objects is mapped to the zero vector, the norm is pro-
portional to the strength of the object (like level of smiling), and linear combinations pro-
duce other feasible object features. Though previous works [5, 11] observe that the one-
dimensional attribute vector also demonstrates these properties, we are able to extract higher
dimensional attribute subspace, due to the increase of diversity of object features. Ex-
periments on transfigurations of hair styles and eyeglasses demonstrate the effectiveness
of GeneGAN in disentangling features, and the richness of resulting attribute subspaces.
A Tensorflow implementation of our method is available at https://github.com/
Prinsphield/GeneGAN.

2 Method
In this section, we formally outline our method and present the problem of learning the
disentangled features for backgrounds and objects.

The training data is made of two sets: the positive set containing images having the
objects is {xi

Au}N
i=1, and the negative set is {xi

Bε
}M

i=1. u stands for the feature of an object (also
an instance of an attribute). While ε stands for the feature of the “null” object, indicating the
non-presence of the attribute. xAu stands for an image that will be encoded to background
feature A and object feature u. We will sometimes refer to the image xAu simply as Au when
it is clear from context. The two sets of images need not be paired.

2.1 Model
Our model is made up of an Encoder that maps an image to two complement feature parts,
and a Decoder that is the inverse of Encoder. Division between object and background is
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(a) GAN with cyclic losses (b) Stacked GeneGAN
Figure 2: (a) The method of GAN with cyclic losses will suffer loss of information when
removing an object: there will be incomplete information when going from non-smiling
faces to smiling faces to determine the level and style of smiling in generated images. (b)
The Stacked GeneGAN model. The smiling of two images are swapped twice, through
recombinations, to reconstruct the original images.

Figure 3: The training diagram of GeneGAN. The information about the smiling in image
Au is flowed to its reproduction Au and crossbreed Bu through object feature u.

unknown and can be learned from the following constraints:

1. An image with ε object does not have an object, so that it is indistinguishable from the
negative set {xi

Bε
}N

i=1 in training data.

2. An image with 6= ε object does have an object, so that it is indeed indistinguishable
from the positive set {xi

Au}N
i=1.

Such “indistinguishable” constraint can be enforced by introduction of adversarial dis-
criminators [21, 22], which interprets indistinguishable as “there does not exist discriminator
that can assigns different score to two sets”.

This inspires us to introduce the training diagram as illustrated in Figure 3 for our model,
namely GeneGAN. During training, four children Au, Aε , Bu, Bε are created out of object
and background features of two parent images Au and Bε as follows: first, the Encoder will
create four pieces of codes for the two images, namely A, u, B and ε; then Decoders will
create four legal recombinations as children: Au, Aε , Bu, Bε .
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Out of four children, two recombinations Au and Bε are exact reconstructions, while
Aε and Bu are novel crossbreeds. By using an Adversarial Discriminator to require that
Au being indistinguishable from Bu, and that Au can be decoded from A and u, we can
enforce that all information about the object to be carried by u. Similarly, if Aε is not
distinguishable from Bε , we can ensure that A does not contain any information about the
objects. Overall, we can achieve the disentanglement of the object information from the
background factors. Moreover, inclusion of reconstruction loss also stabilizes the training of
Adversarial Discriminator [14, 15, 16].

2.1.1 Loss Function of Training

Given two images xAu and xBε , the data flow of training of GeneGAN can be summarized in
following equations:

(A,u) = Encoder(xAu) (B,ε) = Encoder(xBε)
xAε = Decoder(A,0) xBu = Decoder(B,u)
x′Au = Decoder(A,u) x′Bε

= Decoder(B,0)
. (2)

We use 0 instead of ε when decoding to xAε and xBε , to ensure the hard constraint that Aε

should not contain any information about Bε , and that no information should be contained
in ε .

The generator receives four types of losses: (1) the standard GAN losses, which measures
how realistic the generated images are; (2) the reconstruction losses, which measures how
well the original input is reconstructed after a sequence of encoding and decoding. (3) the
nulling losses, which reflects how well the object features are disentangled from background
features and (4) the optional parallelogram losses, which enforces a constraint between the
children and the parents in image pixel values, confer Section 2.1.2 for more details. We
omit the weights of the losses and left the details to online implementation. Pε and P6=ε stand
for the distributions of images without and with the objects, respectively.

LAu
reconstruct = ‖xAu− x′Au‖1 LBε

reconstruct = ‖xBε − x′Bε
‖1

Lε
GAN =−Ez∼Pε

[logD(xAε ,z)] L 6=ε

GAN =−Ez∼P6=ε
[logD(xBu,z)]

Lε = ‖ε‖1 Lparallelogram = ‖xAu + xBε − xAε − xBu‖1

LG = LAu
reconstruct +LBε

reconstruct +Lε
GAN +L 6=ε

GAN +Lε +Lparallelogram

(3)

The nulling loss will force the background information to be encoded in the background
feature B. In fact, the object feature ε will contain neither object nor background information,
as ε is forced to be zero.

The reconstruction loss will serve multiple purposes. First, the losses associated with
Au and Bε will ensure that Decoder and Encoder are inverse to each other. In addition,
background feature A is forced to contain background information, to allow Decoder to re-
construct Au from A and u.

The discriminator receives the standard GAN discriminator losses, which will ensure the
crossbreeds to inherit particular objects of parents.

Lε
D =−Ez∼Pε

[logD(xAu,z)]−Ez∼Pε
[log(1−D(xBu,z))]

L 6=ε

D =−Ez∼P6=ε
[logD(xAε ,z)]−Ez∼P6=ε

[log(1−D(xBε ,z))]

LD = Lε
D +L 6=ε

D

(4)
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As the constraints are only approximately enforced by losses, there will be potential
leakage of information between the object and feature part. We leave it as future work to
explore even stronger enforcement of constraints.

2.1.2 Attribute Drift Problem and Parallelogram Constraint

In experiments, we observe that occasionally the encoding and decoding processes may hap-
pen to “drift” an object, i.e. have an endomorphism over the objects, while still achieving
low reconstruction and discriminator losses. This happens when the same u exhibits different
visual appearance when combining with different background. For example, when Au is a
face with eyeglasses and the crossbreed Bu is a face with sun glasses, both the reconstruction
loss and discriminator losses can still be minimal.

To avoid this drift, for spatially aligned objects, we propose the following parallelogram
constraint on the image domain:

Lparallelogram = ‖xAu + xBε − xAε − xBu‖1 (5)

The loss will encourage a sun glass, when transplanted, to stay as a sun glass, and not
mutating into an eyeglass. Note it will not make sense to include the parallelogram loss
for GAN with cyclic losses, as the transformation of two original images are completely
independent of each other. Adding a parallelogram loss will only increase the overfitting
level of the model.

2.2 Comparison against GAN with cyclic loss

Method of GAN with cyclic loss suffers from under-determination problem when performing
object removal and reconstruction. For example, in Figure 2(a), though the non-smiling
version of a smiling face is well defined, there is no well-grounded information to determine
how much smiling should be present when mapping from the non-smiling faces to smiling
faces. In contrast, GeneGAN ensures preservation of information, as all information of
parents Au and Bε are still present in the crossbreeds Aε and Bu.

However, it is also possible to add cross-links to allow of exchange information. In fact,
we have also experimented with Stacked GeneGAN, a training diagram that bears more re-
semblance to the method of GAN with cyclic losses, as illustrated in Figure 2. With Stacked
GeneGAN, only crossbreeds are created as children of the parent images. The children will
be recombined again to produce grand-children, which ideally have the same features as their
grand-parents. Reconstruction losses can then be used to enforce this invariance, exactly as
is done in the method of GAN with cyclic losses.

However, we find this “double-swap” training diagram to be inferior to GeneGAN in
experiments. We observe that the reconstruction losses will be significantly higher as the
grand-children went through more nonlinear transformations than children. We conjecture
that the higher reconstruction losses will compete more with the adversarial losses in the
optimization, and may cause instability of training and degrades the quality of generated
images.
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3 Experiments
In this section we perform experiments on real-world datasets to validate the effectiveness
of our method. For training, we use learning rate of 5e-5 and momentum of 0, under RM-
SProp [23] learning rule. The Neural Network models used in this section are all equipped
with Batch Normalization [24] to speedup convergence. The encoder has three 4×4 stride-2
convolution layers with Leaky ReLU activation functions [25] and zero-padded by radius of
1. The number of output channels are 128, 256 and 512, respectively. The decoder has three
4× 4 Deconvolution layers with fractional stride of 1

2 [26] and zero padded by radius of 1.
The number of output channels are 512, 256 and 3, respectively. The output of the last layer
is clipped by tanh and then affine transformed to be in value range [0,1]. Experiments are
performed on Linux machines with Intel Xeon CPUs and NVidia TitanX Graphic Processing
Units.

3.1 Dataset

The CelebA [27] dataset is a large-scale face attributes dataset including 202599 face im-
ages of 10177 identities, each with 40 attributes annotations and 5 landmark locations. The
landmark locations can be used to spatially align the faces.

The Multi-PIE database [28] contains over 754,200 images from 337 subjects, captured
under 15 viewpoints and 19 illumination conditions.

3.2 Swapping of Objects

As GeneGAN only exploits the weak 0/1 labels of the images, and that there will be no
training data about the recombined versions, we will not distinguish between the training
data and test data in most experiments carried out in this subsection.

An object in an image can be replaced by passing another object to the decoder. Simi-
larly, an object can be removed by passing ε to the decoder. As our model can disentangle
the object feature from the background feature, the crossing usage pattern as illustrated in
Figure 1(b) can also be used to swap the objects.

In each row of Figure 4, the object parts of the images are overridden by the objects
of the first image in the row. Of particular interest is Figure 4(a). It can be observed that
the hair styles follow closely the source images on the top row. In fact, the directions of
hairs are in good agreement with the source images. We note that some examples contain
serious artifacts, for example the fourth column of Figure 4(c). We conjecture that as the
helmet is a quite uncommon background, the model has difficulty in disentangling it from
the object. An obvious solution is to increase the amount of training data covering such
situations. There are also some difficult cases when transplanting eyeglasses between faces
of different poses, as it would be necessary to rotate the eyeglasses. The parallelogram loss
is no longer applicable and need be replaced with a more robust constraint.

3.3 Generalization to Unseen Images and Comparisons with GANs
with cyclic losses

Figure 6 compares GeneGAN with DiscoGAN. Though DiscoGAN may also reconstruct
images that are of good quality, the objects in the reconstructed images are not quite related
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(a) hair

(b) smiling

(c) glasses
Figure 4: Replacing the object for images in each row with those of the column heads.
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Figure 5: Swapping the lighting conditions of two faces on Multi-PIE dataset. From left to
right, the six images in a row are: original Au and Bε , recombined Aε and Bu, and recon-
structed Au and Bε respectively.

(a) GAN with cyclic losses (b) GeneGAN
Figure 6: Comparison between GAN with cyclic losses (the best model before divergence),
and GeneGAN. The top row, middle row, and the bottom row are images with original,
removed and reconstructed objects respectively.

to the original images, and the novel instances have random objects. In contrast, GeneGAN
produces consistent reconstructions and the crossbreeds are more predictable.

Figure 7 gives results of testing a GeneGAN model trained on CelebA dataset on the
Wider Face dataset, which contains face images in even less constrained environments. It
can be seen that the GeneGAN model generalizes well to unseen data. Despite the large
variations of faces of the Wider Face dataset, the crossbreeds are still natural-looking and
carries the desired backgrounds and objects.

3.4 Interpolation in Attribute Subspace

Figure 8 gives interpolation of object features in attribute subspace. Note the backgrounds
(human identities) are approximately the same, while objects (hair styles) are interpolated.
Let the features of the four corner images be A11u11, A12u12, A21u21 and A22u22, novel im-
ages are generated from the combination of the unchanged background B and bi-linearly
interpolated object features:

u11(x2− x)(y2− y)+u21(x− x1)(y2− y)+u12(x2− x)(y− y1)+u22(x− x1)(y− y1)

(x2− x1)(y2− y1)
(6)

where (x,y) is the coordinate in the diagram.
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Figure 7: Performance of GeneGAN on unseen data from Wider Face [29].

Figure 8: The attribute space can be interpolated by several object feature vectors.

4 Conclusion

In this paper, we propose GeneGAN, a deterministic conditional generative model that can
perform object transfiguration task. The proposed model learns to disentangle the object
from background in feature space, by learning from the labels of presence/non-presence of
objects in unpaired training data. Consequently, our model can extract an object feature
vector from a single image and transplant it to another image, hence allows fine-grained
control of generated images. The objects can be abstract and difficult to characterize, like
hair styles and lighting conditions. The training method for our model is symmetric and
allows exploiting the reconstruction loss, which improves stability of training. The setup of
our model also gives rise to an attribute subspace, which contains multiple vectors that are
representatives of different objects. The vectors can be scaled, inverted and interpolated to
manipulate the objects in generated images.

As future work, it would be interesting to investigate whether more complex crossbreed-
ing patterns between more parents would allow further improvements of stability of training,
quality and diversity of generated images.
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