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Abstract

Traditional image tagging and retrieval algorithms have limited generalizability as a
result of being trained with heavily curated datasets. These limitations are most evident
when arbitrary search words are used that do not intersect with training set labels. Weak
labels from user-generated content (UGC) found in the wild (e.g., Google Photos, FlickR,
etc.) have an almost unlimited number of unique words in the metadata tags. Prior work
on word embeddings successfully leveraged unstructured text with large vocabularies,
and our proposed method seeks to apply similar cost functions to open source imagery.
Specifically, we train a deep learning image tagging and retrieval system on large-scale
UGC using sampling methods and joint optimization of word embeddings. By using
the Yahoo! FlickR Creative Commons (YFCC100M) dataset, such an approach builds
robustness to common unstructured data issues that include but are not limited to irrelevant
tags, misspellings, multiple languages, polysemy, and tag imbalance. The final proposed
algorithm not only yields comparable results to state of the art in conventional image
tagging, but enables a new capability to train algorithms on large-scale unstructured text
in the YFCC100M dataset and outperform cited work in zero-shot capability.

1 Introduction
Automated approaches to image tagging and retrieval have benefited from some of the
techniques developed for detection and localization competitions [4, 13, 21] such as the
rise of convolutional neural networks (CNNs) [11, 22, 23]. Such algorithms work well on
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curated datasets but are unfortunately limited in the number of keywords they support due to
small training label sets. To be useful, deep learning approaches need to accommodate open
vocabulary search, meaning that their implementations would require training label sets to be
orders of magnitude larger.

Rather than manually extending curated datasets, one idea is to use open source im-
agery datasets that are created with user-generated content (UGC) like the Visual Genome
project [10] or Yahoo! FlickR Creative Commons (YFCC100M) [24]. These datasets have
the advantage of containing an almost unlimited number and variety of unique tags that cover
much of the vocabulary of the English language. The issue with training on their metadata
tags is that they also include noise in the form of misspellings, unevenly distributed numbers
of tags, different languages, and irrelevant and unduly specific tags. Our approach to remedy
the so-called “weak labels” in these UGC datasets is to statistically overcome the inherent
noise with the sheer scale of the data.

Leveraging the scale of UGC data is non-trivial for a variety of reasons. While there is
an abundance of work addressing image scale in YFCC100M [16], the focus of our work is
on the scale of the labels, which take the form of noisy metadata tags. The challenge with
this is negotiating matrix operations on deep learning architectures that require a final layer
that is proportional to the number of words. The number of weights in this final layer is
(nhidden units×munique tags), about 43M parameters in our case. As reported in [9], the forward
and backpropagation of a single batch on their final layer alone ( 1

4 the size of ours) takes 1.6
seconds, and requires simplifying heuristics. Considering only the last layer, a single epoch
through the YFCC100M dataset would take over two weeks!

Fortunately, the use of word embeddings [15, 18] as a way of working with unstructured
text and large vocabularies are well-studied. Several works [12, 17, 25] have sought to
exploit word embeddings by projecting image features into the resulting semantic space.
Such efforts primarily focus on zero-shot learning by targeting static word vectors as labels.
By maintaining static word vectors, these approaches assume that semantic and syntactic
similarity equate to visual similarity, which is often not the case (word co-occurrence and
parts of speech often have little to do with visual appearance). As a result, projecting into
word embedding space merely uses the word vectors and does not scale to, nor truly train on,
unstructured UGC.

Our proposed method sidesteps this issue by jointly optimizing both image and word
embeddings, while simultaneously addressing the scale issue through the use of negative
sampling and noise contrastive estimation [7]. Specifically, we use the traditional cross-
entropy cost function and provide an analytical comparison to ranking cost functions [2, 25], to
which we also apply the proposed sampling methods for fair comparison. In doing so, we train
against the largest UGC corpus currently available in open source [24], and demonstrate that
despite the issues, automated tagging using a sampled cost function can produce considerably
more useful information than the original user-generated tags. More importantly, we allow
users to search for relevant images using an almost unlimited vocabulary.

2 Approach
Our proposed approach makes use of un-normalized cost functions from the natural language
processing domain and uses optimization strategies rooted in unsupervised and embedding
approaches. Most notably, Restricted Boltzmann Machines and word embeddings like
word2vec rely on some variant of noise contrastive estimation, where the distribution of
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foreground (e.g., the surrounding context of a word) is separated from the distribution of the
background (e.g., the probability distribution over all words in the corpora). In our case, the
context is the set of tags for each image, and negative samples can be obtained by sampling
from the tag distribution. It is then straightforward to use the skip-gram approach (Fig. 1)
with the following cost function:

L({Wi},vvvp,n) =
P

∑
p

logEp

[
σ( fff T

{Wi}vvvp)
]
+

N

∑
n

logEn

[
σ(− fff T

{Wi}vvvn)
]

+α

(
∑
p,p′

σ(vvvT
p vvvp′)+∑

p,n
σ(−vvvT

p vvvn)

) (1)

where vvvp are positively sampled vectors coming from words the image has been tagged
with, vvvn are the negatively sampled vectors from the probability distribution over all possible
tags, P is the number of positive samples, N is the number of negative samples, E[·] is the
expectation value, σ(·) is the sigmoid function, α is a tuning parameter, and the feature vector
fff is parameterized by the set of weights {Wi} from a neural network h(·,{Wi}):

fff {Wi} = h(xxx,{Wi}) (2)

with inputs being ImageNet Large Scale Visual Recognition Competition [21] features xxx.
The first term in (1) positively correlates the feature vector with the metadata tags, pulling

the image closer to the context through backpropagation over {Wi}. The second term pushes
the them away from the background distribution. The final two terms, with α taken to be
small (we use 0.01), serve to promote similarity in co-occurring tags. The architecture of our
neural network is:

imfeats→ 4096→ 8192→ 2048→ 300→ wordvecs

We try both Inception and VGG features in combination with word vectors (word2vec and
Glove). Importantly, (1) not only takes the set of weights {Wi} from the neural network h(·)
for parameters, but is also, notably different than most cited work [12, 17, 25], a function of
vvvp,n. In other words, our method also optimizes the word vectors.

2.1 Out of Vocabulary Updates
The tag set in a UGC corpus is generally extensive, but still does not include all possible words.
Word embeddings are trained on much larger corpora and hence we seed our model with a
pre-trained word embedding [14] to increase the number of words it can handle. However this
introduces a new problem: we only train on words present in the image corpus so words that
are unique to the word embedding will never be updated when jointly optimizing in Sec. 3.
The relationship between optimized and unoptimized words quickly devolves, and the dot
product between them becomes meaningless.

Our solution to this, illustrated in Fig. 1, is to make a final optimization pass after training
the neural network on the image corpus. This step makes the most sense when performed
offline, simply snapping out-of-vocabulary words into place. This allows us to apply what we
know of the semantic relationship between the out-of-vocabulary words and the in-vocabulary
words, i.e., words that have been optimized when training the neural network.

Let VW be word vectors from the text corpus, and VI be word vectors from the image
corpus. The set difference is {VD}= {VW}−{VI}. Without loss of generality, let us assume
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Figure 1: Jointly optimizing word vectors and image weights.

that all words in the image corpus exist in the word corpus, i.e. {VI} ⊂ {VW} and furthermore,
we can organize V∪ to be ordered in the following manner: V∪ = [VI |VD].

Before training in Sec. 2.2, let us preserve the initial word vectors VI and VD. We can
write a nonlinear correlation matrix1 for every word vector to every other word vector as:

C(i) = σ

([
V T

I VI V T
I VD

V T
D VI V T

D VD

])
, (3)

where the superscript i denotes the initial semantic relationships of each word to one another.
After training with our image corpus, all the vectors in VI will have changed while none of the
vectors in VD will have been updated. To update VD in the absence of any image information,
we can only rely on semantic information, which is specified by the relationships in (3) by
the lower and right-hand submatrices of C(i). Specifically, we wish to match initial and final
correlations from seen words to unseen words and between the unseen words themselves:

L(w)(vvvd ,vvvm) =C(i)
d,m logσ(vvvT

d vvvm)+(1−C(i)) log
(
1−σ(vvvT

d vvvm)
)

(4)

for vvvd ∈ {VD} and vvvm ∈ {V∪}.

2.2 On Sampling
Inherent in (1) is the idea that positive and negative sampling can converge to a meaningful
result in expectation. A similar approach was initially attempted in [25] using single samples,
but was quickly abandoned due to updates being too sparse. In practice, with proper inital-
ization of the final layer (i.e., using pre-trained word vectors) with a large corpus (we used
New York Times and Wikipedia [14]), reasonable image retrieval results begin appearing and
converging with a single pass through the YFCC100M data, at least for frequently occurring
words. To assess the efficiency of sampling, see Fig. 2 which was created using a smaller
corpora where it is possible to use traditional optimization in the cross-entropy loss function
as a comparison point with respect to sampled loss.

Since our variables are tensors, we require the number of samples to be consistent between
images for batch purposes. That is, we must fix P and N. We choose a fixed number of
positive samples, chosen uniformly since we make no assumptions on tag ordering. For any
image with fewer than P tags, we sample with replacement to reach our threshold.

1Note that for computational purposes, we do not explicitly construct C(i), but rather store a subset of the original
word vectors and compute dot products online.
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(a) The effect of sampling (b) The effect of joint optimization

(c) On varying the number of positive samples (d) On varying the number of negative samples

Figure 2: Sampling loss plots
291 Labels 925 Labels

17665 Images 102709 Images

Full Sampled Full Sampled

Fast0Tag [25] 2.12s 0.39s 43.6s 3.22s
Fixed WV 1.21s 0.32s 9.3s 1.94s
Proposed Approach 1.30s 0.43s 10.9s 2.31s

Table 1: Timing per epoch.

We choose P = 5 and N = 10 because the knee in the curve appears in Fig. 2(c) at under
10 for positive and negative samples. Another conclusion in Fig. 2(d) is that single samples in
both positive and negative universally perform more poorly across 100 epochs. In Fig. 2(c), we
observe that performance approaches near-parity when P≥ 5 for larger numbers of samples.
The number of negative samples seems to have less of an effect than previously thought as we
observe similar performance when N ≤ 100 neg samples in Fig. 2(d). This has implications
for how neural networks are trained in general when it is noted that training and optimizing
for all the zeros in one/multi-hot encodings is common. The plots seem to suggest that this is
unnecessary.

The computational complexity of (1) is O(max(P,N)) per image. For comparison,
Fast0Tag [25] has complexity that scales according to O(PN) per image because of its
double sum over p and n. Without sampling, if there are more than a few labels per image,
this grows quite significantly, particularly if there are large numbers of positive labels for
a single image because it ranks every tag to every other tag for all images in a minibatch.
Table 1 shows the unsurprising effect of sampling versus a full optimization. Transitioning
from 291 tags (IAPR TC-12 [5] 2s/epoch) to 925 tags (NUS-WIDE [3], 43s/epoch) was
significant, while going from 925 tags to 13980 (Visual Genome [10]) was untenable on our
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single GPU due to both memory and time constraints.

2.3 On the Cost Function
The proposed objective (1) stands in contrast to prior work based on projections of images
into semantic space based on ranking. Most notably, the Fast0Tag objective which originates
from RankNet [2] can be rewritten to take the form:

L= β ∑
p

∑
n

logσ
(

fff T (vvvp− vvvn)
)

(5)

where β is a tuning parameter.
Our first cost function (1) looks very different from (5), but (1) can be rewritten with a

few simplifying assumptions: that P = N, which we will call L, and that we can remove the
expectation values. Then the first two terms become:

L =
L

∑
p

logσ( fff T vvvp)+
L

∑
n

logσ(− fff T vvvn)

=
L

∑
p

L

∑
n

1
L

log
(
σ( fff T vvvp)σ(− fff T vvvn)

)
= β

′
L

∑
p

L

∑
n

log
(

σ
(

fff T (vvvp− vvvn)
)
+ evvvT

p fff + e−vvvT
n fff
)

(6)

where β ′ is an arbitrary constant.
Indeed, while (5) ranks the difference between every positive example to every other

negative example, the extra terms in (6) are dot products between images and words to
maximize or minimize. Thus, rather than operate only on directionality, the nonlinear
correlations between individual images and relevant individual tags are also weighted.

3 Implementation
To replicate our work (code at https://github.com/lab41/attalos), nontrivial
details remain in the execution of the ideas in Sec. 2.2 due to the scale of the data. Such
considerations include pre-training the final layer of our neural network, the partition of the
architecture onto GPU/CPU memory, and additional considerations that are necessary for
sampling.

3.1 Pre-training the Final Layer
There are two issues with initializing the final layer. First, rare words will have few examples
in the tag set and hence have poor quality vectors. Second, the layer has so many parameters
that the tags alone do not provide enough data to train it. Pre-training using a very large word
corpus alleviates these concerns. We pre-train the final layer using word2vec or Glove2. We
tested several corpora and settled on Wikipedia8B [14]. The dimensionality of the hidden

2We tried both; Glove tended to provide better results, though we did not explore many text corpora.
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layer before the final word embedding is 300 and thus each word vector is 300 dimensions.
These vectors are stored in a 432,213×300 weight matrix.

3.2 GPU/CPU Split
Keeping parameters in memory decreases training time, however work in deep learning,
which mostly focuses on using GPUs, has shown that negotiating GPU DRAM (memory)
hampers the flexibility that a researcher needs to fully explore a domain [19]. Onboard server
memory is abundant and so we look to exploit this memory instead by performing CPU based
calculations where possible.

Mikolov’s original word2vec is trained using multi-threaded CPUs. Since his work deals
primarily with unstructured text, his neural network is wide rather than deep, using a single
hidden layer. Our algorithm makes use of both CPU and GPU. We place the word embeddings
(the final layer of the neural network) off GPU, and the corresponding gradient calculations
of (1) are done with the CPU. The backpropagation through the remainder of the neural
network (all the dense layers prior) is still done on the GPU using Tensorflow. Such a split
makes training times quicker and feasible.

3.3 Scaled Sampling
We use words that occur with the highest frequencies, which limits the number to 423k.
To ensure consistent tensor dimensions, for each image, we sampled 5-10 positive tags
uniformly.3 Unfortunately, sampling from a 432k dimensional distribution is time consuming
and our original code profile assessed that 60% of time was spent in sampling.

To side-step this issue, we explored two options: (1) pre-sampling at each epoch and
(2) using the metadata from an adjacent image. The first option is done by taking a random
subset from the distribution of tags in the corpus at each epoch. During backpropagation, we
sample again from this random subset. This fast sampling may create inherent bias issues
as the chance of re-sampling frequently used words is high. Using the metadata from the
adjacent image in the batch avoids this problem because the images are randomly selected.
Using this method reduced computation time to negligible rates. Overall, by sampling, we
can iterate through an entire epoch of YFCC100M in under 3 hours. The bulk of our models
converged to meaningful results within a single epoch. What follows in Sec. 4 was rapidly
prototyped for 40 epochs through the YFCC100M dataset.

4 Results
While the primary objective is to train on UGC, we compute quantitative metrics on curated,
traditional corpora in order to compare against state of the art. These include IAPR TC-12 (IA
- 291 unique tags) [5], ESP-game (ESP - 288 tags, INRIA-LEAR’s version) [20], NUS-WIDE
(using splits from [25], 81/925/1006 tags) [3], Visual Genome (VG - 13980 unique tags) [10],
and YFCC100M [24] (millions, but we pruned to 432k tags) with both InceptionNet [23] and
downloaded YFCC-VGG features [22].

To assess image tagging capability, we train, validate, and test against proper splits from
a single corpus. To assess generalization capability for a variety of content and word tags,
we perform cross-corpus evaluation: train on a single dataset, then test on a different dataset.
For example, IA→ESP is trained and validated on the IAPR TC-12 training/validation splits

3In future implementations, we imagine this would be some form of an inverse distribution of the tag frequency.
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Figure 3: YFCC Image Retrieval and Truth Tags. Each pair of columns is a search term, and
the top six images are retrieved. To demonstrate how much we rely on the statistical properties
of the dataset, the metadata tags are also shown next to each image retrieved. In many cases
the metadata is in a different language. As a side note, it is apparent that a significant portion
of weddings in the YFCC100M dataset occur in Taiwan.

and tested on the ESP-game test split. For YFCC100M, we only test on ESP-Game since
YFCC100M→YFCC100M evaluation is not meaningful due to noisy truth data. Along with
cited algorithms in Table 3, we use neural network approaches (both sampled and unsampled)
using the cross-entropy function (with joint optimization) trained for a total of 750 epochs of
the data. The effect of sampling on accuracy can be shown to be negligible during training
while vastly improving running times as previously shown in Table 1.

The proposed methods are denoted in Table 2 and Table 3 as X-Ent, Opt+X-Ent, and
S+Opt+X-Ent. The “Opt” stands for an optimized final word vector layer, the “S” stands for
the sampled version, and X-Ent means a cross-entropy cost function with a word vector final
layer. We also include “Avg WV” as a benchmark in Table 3, referring to an approach using
the average of an image’s tag vectors as a target for the deep neural network.

NUS-Wide Dataset [3] Multi-Corpora

925→81 925→1006 IA→ESP VG→ESP YFCC→ESP

P R F1 P R F1 P R F1 P R F1 P R F1

Fast0Tag 16.2 39.3 22.9 15.6 14.9 15.2 15.7 6.9 9.6 Will Not Scale
Fixed WV 21.2 36.3 26.9 17.1 14.8 16.3 16.2 6.1 9.4 14.1 17.9 15.7 Will Not Scale
Full XEntropy 21.1 37.3 27.0 17.3 15.9 16.1 16.3 7.0 9.8 14.8 18.1 16.3

S+Fast0Tag 15.0 43.4 22.3 12.4 10.3 11.6 5.9 8.3 6.9 17.6 18.4 18.0 5.1 3.9 4.4
S Fixed WV 15.9 44.2 22.9 13.0 11.3 12.1 10.0 5.2 7.1 16.6 19.8 18.1 17.4 17.6 17.5
Proposed Algorithm 15.4 44.6 22.9 13.1 11.6 12.3 13.3 10.2 12.1 17.3 19.0 18.1 21.9 15.1 17.9

Table 2: Zero-shot and multi-corpus tagging top 5 results for precision/recall/F1. Due to
space constraints, we report at limited precision, but the bolded results are the hightest results
at full precision.

We use a provided implementation of Fast0Tag [25] from the author as well as an original
implementation using sampling, denoted in the tables as S+Fast0Tag. Such an implementation
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IA [5] ESP [20]

P R F1 P R F1

least-squares 40 19 26 35 19 25
Avg WV 21 13 16 38 20 26
TagProp [6] 45 34 39 39 27 32
FastTag [1] 47 26 34 46 22 30
Fast0Tag [25] 41 33 36 38 35 36
Fixed WV 44 34 39 38 36 37
Full Cross-entropy 43 36 39 38 36 37
Sampled Fast0Tag 37 38 37 37 38 38
Sampled Fixed WV 38 39 38 37 37 37
Proposed Algorithm 38 39 38 37 39 38

Table 3: On the effect of using Fast0Tag and other methods versus the cross-entropy cost
function for a single corpus evaluation. We selected the higher number at precision.

was able to achieve reasonable runtimes (on par with cross-entropy), which is evident in
Table 1 in Sec. 2.2. We used the sampled code in place of the provided code for larger datasets,
where the provided code was incapable of performing due to memory and complexity issues.
It is important to note that many of the algorithms, especially the nearest neighbor ones,
simply cannot address the large scale vocabulary in UGC nor the quantity of images in a
reasonable amount of time, either at inference time or during training time.

Across both Table 2 and Table 3, optimized cross-entropy outperforms Fast0Tag [25],
whether sampled or non-sampled. Although the goal in sampling was not to achieve the
highest accuracy but to deal with scale, in many cases, adding sampling to the approach
boosted recall for both conventional and cross-corpora evaluation. Our explanation for this
phenomenon is that sampling helped to deal with noisy tagging.

The NUS-WIDE dataset can be used to evaluate zero-shot learning by using the splits from
the Fast0Tag paper [25] with a varying numbers of tags. The 925 tag split does not intersect
with the 81 tag splits, and the 1006 tag split is the union. We also include cross-corpora
results where we train on one dataset and test on another dataset. However, the goal of the
proposed algorithm is generalization using a large vocabulary. This was achieved through two
large datasets: the Visual Genome object dataset (a subset of annotations distinct from the
localization and captioning set) and to a larger extent, the YFCC100M dataset. We perform
some pre-processing, removing images with no tags and cutting off low-frequency words to
achieve a tag count of approximately 14k and 432k words, respectively.

Visual Genome

P R F1

Avg WordVec 14.2 4.4 6.7
DenseCap-Objects 13.3 14.9 14.0
Sampled Fast0Tag 14.2 5.6 8.1
Sampled Fixed WV 14.5 5.3 7.7
Proposed Algorithm 17.6 10.3 13.0

Table 4: Results without training on localization information using Visual Genome dataset.

Finally, for comparison, we also retrained DenseCap [8] to identify objects rather than
phrases, replacing its recurrent network with a multi-hot encoding as the final layer after
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localization. Densecap has an unfair advantage in that it is designed specifically for localized
object detection, but it is apparent that the proposed algorithm still has higher precision and
comparable retrieval and F1 scores.

5 Conclusions
We have proposed a method that can tag and retrieve images with UGC scale vocabulary
through joint image and word vector optimization and sampling methods. We have demon-
strated that our tagging mechanism can yield considerably more useful information than the
original tags themselves.
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